Identification of Land and Potential Production of Willow Biomass Crops Using a Multi-Criteria Land Suitability Assessment
Abstract
:1. Introduction
Feedstocks | Projected Purpose-Grown Biomass Supply (Million Dry Ton) | Potential Energy Production, GJ (TBtu) | Potential Land Demand (Million ha) |
---|---|---|---|
Purpose-grown biomass [9,30] | 1.59 (Mature-market low pathway) | ~2.86 × 1007 (27.1) a | 0.18 b |
1.87 (Mature-market medium pathway) | ~3.36 × 1007 (31.0) a | 0.21 b | |
3.32 (Mature-market high pathway) | ~5.95 × 1007 (56.4) a | 0.37 b | |
3.32 (Evolving and emerging resources pathway) | ~5.95 × 1007 (56.4) a | 0.37 b | |
Warm-season grasses and willow [29] | 4.3 (Big Step Forward Pathway) [29] | ~7.44 × 1013 (70.5 b) | 0.4 |
7.9 (Giant Leap Forward and Distributed Production Pathways) | ~2.12 × 1014 (201 b) | 0.7 |
2. Methodology
Variable/Factor | Data Sources | Resolution | Land Use Scenarios and Layer Constraints |
---|---|---|---|
Land use and land cover | USDA-NASS Cropland Data Layers (CDL) [54] | 30 m × 30 m | Cropland scenario (CL): Includes all cultivated croplands, barren land, herbaceous areas, and shrublands. Excludes forests, open water, developed areas, and wetlands. No conventional croplands scenario (NCC): Croplands excluding conventional agricultural crops (soybeans, corn, and wheat), barren land, herbaceous lands, and shrublands. Excludes forests, open water, developed areas, and wetlands. No croplands scenario (NCL): Includes barren land, herbaceous lands, and shrublands. Excludes all croplands, forests, open water, developed areas, and wetlands. |
Soil erodibility factor, whole soil (K-factor) | SSURGO data [55] | 30 m × 30 m | Land with Kw-factor values 0 and 0.55 μm/s were excluded. |
Distance to water bodies (DTW) | USGS National Hydrography Dataset (NHD) [56] | 30 m × 30 m | DTW ≥ 3000 m were excluded. |
Soil nitrate leaching index (LI) | NY Leaching Index [57,58,59,60,61] | 30 m × 30 m | LI values ≥ 2 were excluded. |
Soil organic carbon (SOC) content at 0–30 cm | SSURGO data [55] | 30 m × 30 m | Soils with SOC content of 0 kg C/m2 were excluded. |
National Commodity Crop Productivity Index (NCCPI) | NASS soil survey database [60,62] | 30 m × 30 m | Soils with an NCCPI value of 0 were excluded |
Soil available water storage capacity (AWSC) within 30 cm rootzone | Soil Survey Geographic Database (SSURGO) [55] | 10 m × 10 m | Soils with ≤20% of AWSC at the depth of 0 to 30 cm were excluded. |
Topography (slope) | USGS National Elevation Data (NED) [63] | 10 m × 10 m | Lands with a slope ≥ 15% (8.53 degree) were excluded. |
Field efficiency (FE) | USDA land cover [54] | 30 m × 30 m | Lands with ≤95% harvesting efficiency were excluded. |
Parcel size ≤ 2 ha | Raster to polygon conversion | 30 m × 30 m | Parcel size ≤ 2 ha was excluded. |
2.1. Estimation of Potential Land
2.2. Land Suitability for Constraint Variables
2.2.1. Soil Erodibility (Kw-Factor)
2.2.2. Distance to Surface Water Sources (DTW)
2.2.3. Nitrate Leaching Index (LI)
2.2.4. Soil Organic Carbon (SOC) Content
2.2.5. National Commodity Crop Productivity Index (NCCPI)
2.2.6. Soil Average Water Storage (AWS) at Root Zone
2.2.7. Soil Topography (Slope)
2.2.8. Field Efficiency (FE)
2.3. Estimation of Potential Willow Production
2.4. Accuracy Assessment
3. Results
4. Accuracy Assessment
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- NYSCAC. Scoping Plan; New York State Climate Action Council: Albany, NY, USA, 2022; p. 433. [Google Scholar]
- Wilcox, J.; Hammer, H.; Patane, N. Appendix G: Integration Analysis Technical Supplement New York State Climate Action Council Scoping Plan; New York State Energy Research & Development Authority (NYSERDA): Albany, NY, USA; New York State Department of Environmental Conservation (NYSDEC): Albany, NY, USA, 2022; p. 184. [Google Scholar]
- Jezierska-Thöle, A.; Rudnicki, R.; Kluba, M. Development of Energy Crops Cultivation for Biomass Production in Poland. Renew. Sustain. Energy Rev. 2016, 62, 534–545. [Google Scholar] [CrossRef]
- Haszeldine, R.S.; Flude, S.; Johnson, G.; Scott, V. Negative Emissions Technologies and Carbon Capture and Storage to Achieve the Paris Agreement Commitments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20160447. [Google Scholar]
- Kraxner, F.; Nilsson, S.; Obersteiner, M. Negative Emissions from BioEnergy Use, Carbon Capture and Sequestration (BECS)—The Case of Biomass Production by Sustainable Forest Management from Semi-Natural Temperate Forests. Biomass Bioenergy 2003, 24, 285–296. [Google Scholar]
- Langholtz, M.; Busch, I.; Kasturi, A.; Hilliard, M.R.; McFarlane, J.; Tsouris, C.; Mukherjee, S.; Omitaomu, O.A.; Kotikot, S.M.; Allen-Dumas, M.R.; et al. The Economic Accessibility of CO2 Sequestration through Bioenergy with Carbon Capture and Storage (BECCS) in the US. Land 2020, 9, 299. [Google Scholar] [CrossRef]
- Dahlberg, J.; Wolfrum, E.; Bean, B.; Rooney, W.L. Compositional and Agronomic Evaluation of Sorghum Biomass as a Potential Feedstock for Renewable Fuels. J. Biobased Mat. Bioenergy 2011, 5, 507–513. [Google Scholar] [CrossRef]
- Hohenstein, W.G.; Wright, L.L. Biomass Energy Production in the United States: An Overview. Biomass Bioenergy 1994, 6, 161–173. [Google Scholar]
- U.S. Department of Energy. 2023 Billion-Ton Report: An Assessment of U.S. Renewable Carbon Resources, M.H. Langholtz (Lead); Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2024; p. 301. [Google Scholar] [CrossRef]
- Lemus, R.; Lal, R. Bioenergy Crops and Carbon Sequestration. Crit. Rev. Plant Sci. 2005, 24, 1–21. [Google Scholar]
- Mitchell, R.; Schmer, M.; Anderson, W.; Jin, V.; Balkcom, K.; Kiniry, J.; Coffin, A.; White, P. Dedicated Energy Crops and Crop Residues for Bioenergy Feedstocks in the Central and Eastern USA. Bioenergy Res. 2016, 9, 384–398. [Google Scholar]
- Volk, T.A.; Verwijst, T.; Tharakan, P.J.; Abrahamson, L.P.; White, E.H. Growing Fuel: A Sustainability Assessment of Willow Biomass Crops. Front. Ecol. Environ. 2004, 2, 411–418. [Google Scholar]
- Volk, T.; Abrahamson, L.; Nowak, C.; Smart, L.; Tharakan, P.; White, E. The Development of Short-Rotation Willow in the Northeastern United States for Bioenergy and Bioproducts, Agroforestry and Phytoremediation. Biomass Bioenergy 2006, 30, 715–727. [Google Scholar]
- Mitchell, C.; Stevens, E.; Watters, M. Short-Rotation Forestry–Operations, Productivity and Costs Based on Experience Gained in the UK. For. Ecol. Manag. 1999, 121, 123–136. [Google Scholar] [CrossRef]
- Wilkinson, A. Poplars and Willows for Soil Erosion Control in New Zealand. Biomass Bioenergy 1999, 16, 263–274. [Google Scholar] [CrossRef]
- McIvor, I.; Douglas, G.; Dymond, J.; Eyles, G.; Marden, M. Pastoral Hill Slope Erosion in New Zealand and the Role of Poplar and Willow Trees in Its Reduction. In Soil Erosion Issues in Agriculture; IntechOpen: London, UK, 2011; pp. 257–278. [Google Scholar]
- Minor, M.A.; Volk, T.A.; Norton, R.A. Effects of Site Preparation Techniques on Communities of Soil Mites (Acari: Oribatida, Acari: Gamasida) under Short-Rotation Forestry Plantings in New York, USA. Appl. Soil Ecol. 2004, 25, 181–192. [Google Scholar] [CrossRef]
- Campbell, S.P.; Frair, J.L.; Gibbs, J.P.; Volk, T.A. Use of Short-Rotation Coppice Willow Crops by Birds and Small Mammals in Central New York. Biomass Bioenergy 2012, 47, 342–353. [Google Scholar] [CrossRef]
- Sage, R.; Tucker, K. Integrated Pest Management in Short Rotation Coppice for Energy-a Grower’s Guide; Game Conservancy Trust: Fordingbridge, UK, 1994; p. 7, TRN: GB9751467. [Google Scholar]
- Volk, T.A. Alternative Methods of Site Preparation and Coppice Management during the Establishment of Short-Rotation Woody Crops; State University of New York College of Environmental Science and Forestry: Syracuse, NY, USA, 2002; ISBN 0-493-91939-2. [Google Scholar]
- Dimitriou, I.; Aronsson, P. Willows for Energy and Phytoremediation in Sweden. UNASYLVA-FAO 2005, 56, 47. [Google Scholar]
- Robinson, B.H.; Mills, T.M.; Petit, D.; Fung, L.E.; Green, S.R.; Clothier, B.E. Natural and Induced Cadmium-Accumulation in Poplar and Willow: Implications for Phytoremediation. Plant Soil 2000, 227, 301–306. [Google Scholar]
- United States Department of Energy (USDOE). Economic Availability of Feedstocks. In 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy; Oak Ridge National Laboratory: Oak Ridge, TN, USA; U.S. Department of Energy: Washington, DX, USA, 2016; Volume 1, p. 448. [Google Scholar]
- Volk, T.A.; Berguson, B.; Daly, C.; Halbleib, M.D.; Miller, R.; Rials, T.G.; Abrahamson, L.P.; Buchman, D.; Buford, M.; Cunningham, M.W.; et al. Poplar and Shrub Willow Energy Crops in the United States: Field Trial Results from the Multiyear Regional Feedstock Partnership and Yield Potential Maps Based on the PRISM-ELM Model. GCB Bioenergy 2018, 10, 735–751. [Google Scholar] [CrossRef]
- Creutzig, F.; Ravindranath, N.H.; Berndes, G.; Bolwig, S.; Bright, R.; Cherubini, F.; Chum, H.; Corbera, E.; Delucchi, M.; Faaij, A. Bioenergy and Climate Change Mitigation: An Assessment. GCB Bioenergy 2015, 7, 916–944. [Google Scholar]
- Fingerman, K.R.; Torn, M.S.; O’Hare, M.H.; Kammen, D.M. Accounting for the Water Impacts of Ethanol Production. Environ. Res. Lett. 2010, 5, 014020. [Google Scholar] [CrossRef]
- NYS DEC Forests and Trees. Available online: https://www.dec.ny.gov/lands/309.html (accessed on 12 September 2023).
- USGS. 2021 CONUS National Land Cover Database (NLCD); USGS: Reston, VA, USA, 2023. [Google Scholar]
- NYSERDA. Renewable Fuels Roadmap and Sustainable Biomass Feedstock Supply for New York; Pace University and Cornell University, New York State Department of Agriculture and Markets, New York State Department of Environmental Conservation: Albany, NY, USA, 2010; p. 140. [Google Scholar]
- Hellwinckel, C.; Ugarte, D.; Field, J.; Langholtz, M. Chapter 5: Biomass from Agriculture. In 2023 Billion-Ton Report, M.H. Langholtz (Lead); Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2024. [Google Scholar] [CrossRef]
- Cook-Patton, S.C.; Gopalakrishna, T.; Daigneault, A.; Leavitt, S.M.; Platt, J.; Scull, S.M.; Amarjargal, O.; Ellis, P.W.; Griscom, B.W.; McGuire, J.L.; et al. Lower Cost and More Feasible Options to Restore Forest Cover in the Contiguous United States for Climate Mitigation. One Earth 2020, 3, 739–752. [Google Scholar] [CrossRef]
- Richardson, D.; Zimmerman, C.; Armstrong, A.; Woodbury, P.; Wightman, J. Reforestation Potential in New York State: Estimating Acres of Post-Agricultural Lands That Could Be Reforested; The Nature Conservancy and Cornell College of Agriculture and Life Science: Albany, NY, USA, 2023; p. 26. [Google Scholar]
- New York State Energy and Research Development Authority (NYSERDA). Sources and Sinks of Major Greenhouse Gases Associated with New York State’s Natural and Working Lands: Forests, Farms, and Wetlands; E&S Environmental Chemistry, Inc.: Corvallis, OR, USA, 2020; p. 117. [Google Scholar]
- Searle, S.; Malins, C. A Reassessment of Global Bioenergy Potential in 2050. GCB Bioenergy 2015, 7, 328–336. [Google Scholar] [CrossRef]
- Buchholz, T.; Volk, T.A. Improving the Profitability of Willow Crops—Identifying Opportunities with a Crop Budget Model. Bioenergy Res. 2011, 4, 85–95. [Google Scholar] [CrossRef]
- Pulighe, G.; Bonati, G.; Colangeli, M.; Morese, M.M.; Traverso, L.; Lupia, F.; Khawaja, C.; Janssen, R.; Fava, F. Ongoing and Emerging Issues for Sustainable Bioenergy Production on Marginal Lands in the Mediterranean Regions. Renew. Sustain. Energy Rev. 2019, 103, 58–70. [Google Scholar] [CrossRef]
- Feng, Q.; Chaubey, I.; Engel, B.; Cibin, R.; Sudheer, K.P.; Volenec, J. Marginal Land Suitability for Switchgrass, Miscanthus and Hybrid Poplar in the Upper Mississippi River Basin (UMRB). Environ. Model. Softw. 2017, 93, 356–365. [Google Scholar] [CrossRef]
- Viccaro, M.; Caniani, D.; Masi, S.; Romano, S.; Cozzi, M. Biofuels or Not Biofuels? The “Nexus Thinking” in Land Suitability Analysis for Energy Crops. Renew. Energy 2022, 187, 1050–1064. [Google Scholar] [CrossRef]
- Abbasi, M.; Pishvaee, M.S.; Bairamzadeh, S. Land Suitability Assessment for Paulownia Cultivation Using Combined GIS and Z-Number DEA: A Case Study. Comput. Electron. Agric. 2020, 176, 105666. [Google Scholar] [CrossRef]
- Jaroenkietkajorn, U.; Gheewala, S.H. Land Suitability Assessment for Oil Palm Plantations in Thailand. Sustain. Prod. Consum. 2021, 28, 1104–1113. [Google Scholar] [CrossRef]
- Michael Griffel, L.; Toba, A.-L.; Paudel, R.; Lin, Y.; Hartley, D.S.; Langholtz, M. A Multi-Criteria Land Suitability Assessment of Field Allocation Decisions for Switchgrass. Ecol. Indic. 2022, 136, 108617. [Google Scholar] [CrossRef]
- Schueler, V.; Fuss, S.; Steckel, J.C.; Weddige, U.; Beringer, T. Productivity Ranges of Sustainable Biomass Potentials from Non-Agricultural Land. Environ. Res. Lett. 2016, 11, 074026. [Google Scholar] [CrossRef]
- Eisenbies, M.H.; Volk, T.A.; Posselius, J.; Foster, C.; Shi, S.; Karapetyan, S. Evaluation of a Single-Pass, Cut and Chip Harvest System on Commercial-Scale, Short-Rotation Shrub Willow Biomass Crops. Bioenergy Res. 2014, 7, 1506–1518. [Google Scholar]
- Jia, G.; Shevliakova, E.; Artaxo, P.; De Noblet-Ducoudré, N.; Houghton, R.; House, J.; Kitajima, K.; Lennard, C.; Popp, A.; Sirin, A. Land–Climate Interactions. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019. Available online: https://www.ipcc.ch/srccl/chapter (accessed on 21 July 2024).
- Mehmood, M.A.; Ibrahim, M.; Rashid, U.; Nawaz, M.; Ali, S.; Hussain, A.; Gull, M. Biomass Production for Bioenergy Using Marginal Lands. Sustain. Prod. Consum. 2017, 9, 3–21. [Google Scholar] [CrossRef]
- Viccaro, M.; Cozzi, M.; Rocchi, B.; Romano, S. Conservation Agriculture to Promote Inland Biofuel Production in Italy: An Economic Assessment of Rapeseed Straight Vegetable Oil as a Self-Supply Agricultural Biofuel. J. Clean. Prod. 2019, 217, 153–161. [Google Scholar] [CrossRef]
- Kahsay, A.; Haile, M.; Gebresamuel, G.; Mohammed, M. Land Suitability Analysis for Sorghum Crop Production in Northern Semi-Arid Ethiopia: Application of GIS-Based Fuzzy AHP Approach. Cogent Food Agric. 2018, 4, 1507184. [Google Scholar] [CrossRef]
- Berbel, J.; Bournaris, T.; Manos, B.; Matsatsinis, N.; Viaggi, D. Multicriteria Analysis in Agriculture: Current Trends and Recent Applications; Springer: Cham, Switzerland, 2018; ISBN 3-319-76929-4. [Google Scholar]
- Knoll, J.E.; Anderson, W.F.; Strickland, T.C.; Hubbard, R.K.; Malik, R. Low-Input Production of Biomass from Perennial Grasses in the Coastal Plain of Georgia, USA. Bioenergy Res. 2012, 5, 206–214. [Google Scholar] [CrossRef]
- Cronin, J.; Zabel, F.; Dessens, O.; Anandarajah, G. Land Suitability for Energy Crops under Scenarios of Climate Change and Land-use. GCB Bioenergy 2020, 12, 648–665. [Google Scholar] [CrossRef]
- Schneider, J.M.; Zabel, F.; Mauser, W. Global Inventory of Suitable, Cultivable and Available Cropland under Different Scenarios and Policies. Sci. Data 2022, 9, 527. [Google Scholar] [CrossRef]
- van Asselen, S.; Verburg, P.H. Land Cover Change or Land-Use Intensification: Simulating Land System Change with a Global-Scale Land Change Model. Glob. Change Biol. 2013, 19, 3648–3667. [Google Scholar] [CrossRef]
- Daly, C.; Halbleib, M.D.; Hannaway, D.B.; Eaton, L.M. Environmental Limitation Mapping of Potential Biomass Resources across the Conterminous U Nited S Tates. GCB Bioenergy 2018, 10, 717–734. [Google Scholar] [CrossRef]
- USDA-NASS. USDA-NASS Cropland Data Layer 2022. Available online: https://croplandcros.scinet.usda.gov (accessed on 9 December 2023).
- Soil Survey Staff Soil Survey Geographic Database (SSURGO) 2023. Available online: https://www.nrcs.usda.gov/resources/data-and-reports/soil-survey-geographic-database-ssurgo (accessed on 5 January 2024).
- USGS-NHD National Hydrography Dataset 2023. Available online: https://www.usgs.gov/national-hydrography/national-hydrography-dataset (accessed on 27 September 2023).
- Czymmek, K.J.; Ketterings, Q.M.; van Es, H.; DeGloria, S. The New York Nitrate Leaching Index; CSS Extension Publication E03-2; Cornell University, Department of Crop & Soil Sciences: Ithaca, NY, USA, 2003. [Google Scholar]
- Ketterings, Q.; Workman, K.; Gates, D.; Hornesky, J.; Langner, A.; Latessa, S.; Bush, R.; Jordan, B.; Albrecht, G. New York Nitrate Leaching Index: User’s Manual and Documentation; Nutrient Management Spear Program (NMSP), Cornell University: Ithaca, NY, USA, 2022; p. 33. [Google Scholar]
- Williams, J.; Kissel, D. Water Percolation: An Indicator of Nitrogen-leaching Potential. In Managing Nitrogen for Groundwater Quality and Farm Profitability; Soil Science Society of America, Inc.: Madison, WI, USA, 1991; pp. 59–83. [Google Scholar]
- USDA-NRCS Web Soil Survey 2023. Available online: https://websoilsurvey.nrcs.usda.gov/app (accessed on 14 March 2024).
- NOAA-NWS National Weather Service 2024. Available online: https://www.weather.gov (accessed on 11 January 2024).
- Dobos, R.; Sinclair, H.; Robotham, M. National Commodity Crop Productivity Index (NCCPI) User Guide; Service NRC: Lincoln, NE, USA, 2012. [Google Scholar]
- USGS-NED National Elevation Dataset (NED) 2023. Available online: https://www.usgs.gov/programs/national-geospatial-program/national-map (accessed on 17 January 2024).
- Davis, S.; Hay, W.; Pierce, J. Biomass in the Energy Industry: An Introduction; BP plc: London, UK, 2014; pp. 44–45. [Google Scholar]
- Römkens, M.; Young, R.; Poesen, J.; McCool, D.; El-Swaify, S.; Bradford, J. Soil Erodibility Factor (K). Compilers. In Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., Eds.; Agric. HB: Washington, DC, USA, 1997; pp. 65–99. [Google Scholar]
- Pierce, F.; Lal, R. Monitoring the Impact of Soil Erosion on Crop Productivity. In Soil Erosion Research Methods; Routledge: Oxfordshire, UK, 2017; pp. 235–263. ISBN 0-203-73935-3. [Google Scholar]
- Cosentino, S.L.; Copani, V.; Scalici, G.; Scordia, D.; Testa, G. Soil Erosion Mitigation by Perennial Species Under Mediterranean Environment. Bioenergy Res. 2015, 8, 1538–1547. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Growing Dedicated Energy Crops on Marginal Lands and Ecosystem Services. Soil Sci. Soc. Am. J. 2016, 80, 845–858. [Google Scholar] [CrossRef]
- Ranney, J.W.; Mann, L.K. Environmental Considerations in Energy Crop Production. Biomass Bioenergy 1994, 6, 211–228. [Google Scholar] [CrossRef]
- Gaines, T.P.; Gaines, S. Soil Texture Effect on Nitrate Leaching in Soil Percolates. Commun. Soil Sci. Plant Anal. 1994, 25, 2561–2570. [Google Scholar]
- PRISM Climate Group PRISM Climate Datasets 2023. Available online: https://prism.oregonstate.edu (accessed on 18 February 2024).
- Mortensen, J.; Hauge Nielsen, K.; Jørgensen, U. Nitrate Leaching during Establishment of Willow (Salix viminalis) on Two Soil Types and at Two Fertilization Levels. Biomass Bioenergy 1998, 15, 457–466. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Yin, X.; Licht, M.A. Soil Carbon and Nitrogen Changes as Influenced by Tillage and Cropping Systems in Some Iowa Soils. Agric. Ecosyst. Environ. 2005, 105, 635–647. [Google Scholar] [CrossRef]
- Follett, R.F.; Vogel, K.P.; Varvel, G.E.; Mitchell, R.B.; Kimble, J. Soil Carbon Sequestration by Switchgrass and No-Till Maize Grown for Bioenergy. Bioenergy Res. 2012, 5, 866–875. [Google Scholar] [CrossRef]
- Martani, E.; Ferrarini, A.; Hastings, A.; Amaducci, S. Soil Organic Carbon Significantly Increases When Perennial Biomass Plantations Are Reverted Back to Annual Arable Crops. Agronomy 2023, 13, 447. [Google Scholar] [CrossRef]
- Socolar, Y.; Goldstein, B.R.; de Valpine, P.; Bowles, T.M. Biophysical and Policy Factors Predict Simplified Crop Rotations in the US Midwest. Environ. Res. Lett. 2021, 16, 054045. [Google Scholar]
- Wightman, J.L.; Ahmed, Z.U.; Volk, T.A.; Castellano, P.J.; Peters, C.J.; DeGloria, S.D.; Duxbury, J.M.; Woodbury, P.B. Assessing Sustainable Bioenergy Feedstock Production Potential by Integrated Geospatial Analysis of Land Use and Land Quality. Bioenergy Res. 2015, 8, 1671–1680. [Google Scholar] [CrossRef]
- Yang, S.; Volk, T.; Fortier, M.-O. Willow Biomass Crops Are a Carbon Negative or Low-Carbon Feedstock Depending on Prior Land Use and Transportation Distances to End Users. Energies 2020, 13, 4251. [Google Scholar] [CrossRef]
- Paraskevopoulos, A.; Singels, A. Integrating Soil Water Monitoring Technology and Weather Based Crop Modelling to Provide Improved Decision Support for Sugarcane Irrigation Management. Comput. Electron. Agric. 2014, 105, 44–53. [Google Scholar]
- Ssegane, H.; Zumpf, C.; Cristina Negri, M.; Campbell, P.; Heavey, J.P.; Volk, T.A. The Economics of Growing Shrub Willow as a Bioenergy Buffer on Agricultural Fields: A Case Study in the Midwest Corn Belt. Biofuels Bioprod. Biorefin. 2016, 10, 776–789. [Google Scholar] [CrossRef]
- Volk, T.A.; Heavey, J.P.; Eisenbies, M.H. Advances in Shrub-willow Crops for Bioenergy, Renewable Products, and Environmental Benefits. Food Energy Secur. 2016, 5, 97–106. [Google Scholar] [CrossRef]
- Eisenbies, M.H.; Volk, T.A.; de Souza, D.P.; Hallen, K.W. Cut-and-chip Harvester Material Capacity and Fuel Performance on Commercial-scale Willow Fields for Varying Ground and Crop Conditions. GCB Bioenergy 2020, 12, 380–395. [Google Scholar] [CrossRef]
- Volk, T.A.; Spinelli, R.; Eisenbies, M.; Clark, R.; Emerson, R.; Frank, J.; Hallen, K.; Therasme, O.; Webb, E. Harvesting Systems for Short Rotation Coppice Crops Influence Cost, Performance, and Biomass Quality. In Handbook of Biorefinery Research and Technology; Bisaria, V., Ed.; Springer: Dordrecht, The Netherlands, 2024; pp. 1–31. ISBN 978-94-007-6724-9. [Google Scholar]
- Tenerelli, P.; Carver, S. Multi-Criteria, Multi-Objective and Uncertainty Analysis for Agro-Energy Spatial Modelling. Appl. Geogr. 2012, 32, 724–736. [Google Scholar] [CrossRef]
- Zambelli, P.; Lora, C.; Spinelli, R.; Tattoni, C.; Vitti, A.; Zatelli, P.; Ciolli, M. A GIS Decision Support System for Regional Forest Management to Assess Biomass Availability for Renewable Energy Production. Environ. Model. Softw. 2012, 38, 203–213. [Google Scholar] [CrossRef]
- Kloster, D.P.; Volk, T.A. Predicted Soil Loss from Shrub Willow Production Systems Across the Production Cycle Using the Revised Universal Soil Loss Equation (RUSLE2). BioEnergy Res. 2022, 16, 912–923. [Google Scholar] [CrossRef]
- Poncet, A.; Fulton, J.; Port, K.; Mcdonald, T.; Pate, G. Optimizing Field Traffic Patterns to Improve Machinery Efficiency: Path Planning Using Guidance Lines. The Ohio State University, College of Food, Agricultural, and Environmental Sciences (CFAES): Ohioline 2016. Available online: https://ohioline.osu.edu/factsheet/fabe-5531 (accessed on 20 July 2024).
- Turhollow, A. The Economics of Energy Crop Production. Biomass Bioenergy 1994, 6, 229–241. [Google Scholar] [CrossRef]
- Griffel, L.M.; Vazhnik, V.; Hartley, D.S.; Hansen, J.K.; Roni, M. Agricultural Field Shape Descriptors as Predictors of Field Efficiency for Perennial Grass Harvesting: An Empirical Proof. Comput. Electron. Agric. 2020, 168, 105088. [Google Scholar] [CrossRef]
- Lee, D.K.; Aberle, E.; Anderson, E.K.; Anderson, W.; Baldwin, B.S.; Baltensperger, D.; Barrett, M.; Blumenthal, J.; Bonos, S.; Bouton, J.; et al. Biomass Production of Herbaceous Energy Crops in the United States: Field Trial Results and Yield Potential Maps from the Multiyear Regional Feedstock Partnership. GCB Bioenergy 2018, 10, 698–716. [Google Scholar] [CrossRef]
- USDA. Building a Resilient Biomass Supply: A Plan to Enable the Bioeconomy in America; U.S. Department of Agriculture: Washington, DC, USA, 2024; p. 48. [Google Scholar]
- Weih, M. Evidence for Increased Sensitivity to Nutrient and Water Stress in a Fast-Growing Hybrid Willow Compared with a Natural Willow Clone. Tree Physiol. 2001, 21, 1141–1148. [Google Scholar] [CrossRef]
- Caslin, B.; Finnan, J.; Johnston, C.; McCracken, A.; Walsh, L. Short Rotation Coppice Willow: Best Practice Guidelines. Teagasc, Crops Research Centre, Oak Park, Carlow, Ireland; Agri-Food and Bioscience Institute, Newforge Lane, Belfast, Northern Ireland. 2015. Available online: https://www.teagasc.ie/media/website/publications/2011/Short_Rotation_Coppice_Best_Practice_Guidelines.pdf (accessed on 17 July 2024).
- Grip, H.; Halldin, S.; Lindroth, A. Water Use by Intensively Cultivated Willow Using Estimated Stomatal Parameter Values. Hydrol. Process. 1989, 3, 51–63. [Google Scholar] [CrossRef]
- Pezeshki, S.R.; Anderson, P.H.; Shields, F.D. Effects of Soil Moisture Regimes on Growth and Survival of Black Willow (Salix nigra) Posts (Cuttings). Wetlands 1998, 18, 460–470. [Google Scholar]
- Liu, B. Biomass Production of Willow Short-Rotation Coppice across Sites and Determinants of Yields for SV1 and SX61. Master’s Thesis, SUNY College of Environmental Science & Forestry, Syracuse, NY, USA, 2013. [Google Scholar]
- Savoie, P.; Hébert, P.-L.; Robert, F.-S.; Sidders, D. Harvest of Short-Rotation Woody Crops in Plantations with a Biobaler. Energy Power Eng. 2013, 5, 39–47. [Google Scholar] [CrossRef]
- Owens, V.N. Sun Grant/DOE Regional Feedstock Partnership: Final Technical Report; South Dakota State Univ.: Brookings, SD, USA, 2018. [Google Scholar]
- Johnson, G.; Volk, T.; Hallen, K.; Shi, S.; Bickell, M.; Heavey, J. Shrub Willow Biomass Production Ranking Across Three Harvests in New York and Minnesota. Bioenergy Res. 2018, 11, 305–315. [Google Scholar] [CrossRef]
- Jug, A.; Makeschin, F.; Rehfuess, K.E.; Hofmann-Schielle, C. Short-Rotation Plantations of Balsam Poplars, Aspen and Willows on Former Arable Land in the Federal Republic of Germany. III. Soil Ecological Effects. For. Ecol. Manag. 1999, 121, 85–99. [Google Scholar] [CrossRef]
- Knight, D.R.; Goldsworthy, M.; Smith, P. Are Biomass Feedstocks Sustainable? A Systematic Review of Three Key Sustainability Metrics. GCB Bioenergy 2024, 16, e13187. [Google Scholar] [CrossRef]
- Lafleur, B.; Labrecque, M.; Arnold, A.; Bélanger, N. Organic Carbon Accumulation in Topsoil Following Afforestation with Willow: Emphasis on Leaf Litter Decomposition and Soil Organic Matter Quality. Forests 2015, 6, 769–793. [Google Scholar] [CrossRef]
- Zan, C.S.; Fyles, J.W.; Girouard, P.; Samson, R.A. Carbon Sequestration in Perennial Bioenergy, Annual Corn and Uncultivated Systems in Southern Quebec. Agric. Ecosyst. Environ. 2001, 86, 135–144. [Google Scholar] [CrossRef]
- Rytter, R.-M. The Potential of Willow and Poplar Plantations as Carbon Sinks in Sweden. Biomass Bioenergy 2012, 36, 86–95. [Google Scholar] [CrossRef]
- Dang, Y.; Ren, W.; Tao, B.; Chen, G.; Lu, C.; Yang, J.; Pan, S.; Wang, G.; Li, S.; Tian, H. Climate and Land Use Controls on Soil Organic Carbon in the Loess Plateau Region of China. PLoS ONE 2014, 9, e95548. [Google Scholar] [CrossRef]
- Laganière, J.; Angers, D.A.; Paré, D. Carbon Accumulation in Agricultural Soils after Afforestation: A Meta-analysis. Glob. Change Biol. 2010, 16, 439–453. [Google Scholar] [CrossRef]
- Rytter, R.-M.; Rytter, L.; Högbom, L. Carbon Sequestration in Willow (Salix spp.) Plantations on Former Arable Land Estimated by Repeated Field Sampling and C Budget Calculation. Biomass Bioenergy 2015, 83, 483–492. [Google Scholar] [CrossRef]
- Amsili, J.; Es, H.; Schindelbeck, R.; Kurtz, K.; Wolfe, D.; Barshad, G. Characterization of Soil Health in New York State: Technical Report; New York Soil Health Initiative, Cornell University: Ithaca, NY, USA, 2020. [Google Scholar]
- Wojnar, Z. Renewable Fuels Roadmap and Sustainable Biomass Feedstock Supply for New York, Annual Update #2; New York State Energy Research & Development Authority (NYSERDA): Albany, NY, USA, 2013; p. 24. [Google Scholar]
- Beier, C.; Johnson, L.; Mahoney, M.; Descrochers, M.; Torres, N.; Morley, M.; Phoenix, D.; Stehman, S.; Bevilacqua, E.; Malmsheimer, R.; et al. New York Forest Carbon Assessment; Climate and Applied Forest Research Institute (CAFRI), SUNY College of Environmental Science and Forestry (ESF): Syracuse, NY, USA, 2023; p. 32. [Google Scholar]
- Henry, R.C.; Engström, K.; Olin, S.; Alexander, P.; Arneth, A.; Rounsevell, M.D.A. Food Supply and Bioenergy Production within the Global Cropland Planetary Boundary. PLoS ONE 2018, 13, e0194695. [Google Scholar] [CrossRef]
- Mauser, W.; Klepper, G.; Zabel, F.; Delzeit, R.; Hank, T.; Putzenlechner, B.; Calzadilla, A. Global Biomass Production Potentials Exceed Expected Future Demand without the Need for Cropland Expansion. Nat. Commun. 2015, 6, 8946. [Google Scholar] [CrossRef]
- Dhondt, A.A.; Wrege, P.H.; Cerretani, J.; Sydenstricker, K.V. Avian Species Richness and Reproduction in Short-Rotation Coppice Habitats in Central and Western New York. Bird Study 2007, 54, 12–22. [Google Scholar] [CrossRef]
- Tumminello, G.; Volk, T.A.; McArt, S.H.; Fierke, M.K. Maximizing Pollinator Diversity in Willow Biomass Plantings: A Comparison between Willow Sexes and among Pedigrees. Biomass Bioenergy 2018, 117, 124–130. [Google Scholar] [CrossRef]
- Müller-Kroehling, S.; Hohmann, G.; Helbig, C.; Liesebach, M.; Lübke-Al Hussein, M.; Al Hussein, I.A.; Burmeister, J.; Jantsch, M.C.; Zehlius-Eckert, W.; Müller, M. Biodiversity Functions of Short Rotation Coppice Stands—Results of a Meta Study on Ground Beetles (Coleoptera: Carabidae). Biomass Bioenergy 2020, 132, 105416. [Google Scholar] [CrossRef]
- Vanbeveren, S.P.P.; Ceulemans, R. Biodiversity in Short-Rotation Coppice. Renew. Sustain. Energy Rev. 2019, 111, 34–43. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.S.; Volk, T.A. Identification of Land and Potential Production of Willow Biomass Crops Using a Multi-Criteria Land Suitability Assessment. Land 2024, 13, 1831. https://doi.org/10.3390/land13111831
Hossain MS, Volk TA. Identification of Land and Potential Production of Willow Biomass Crops Using a Multi-Criteria Land Suitability Assessment. Land. 2024; 13(11):1831. https://doi.org/10.3390/land13111831
Chicago/Turabian StyleHossain, Md Sahadat, and Timothy A. Volk. 2024. "Identification of Land and Potential Production of Willow Biomass Crops Using a Multi-Criteria Land Suitability Assessment" Land 13, no. 11: 1831. https://doi.org/10.3390/land13111831
APA StyleHossain, M. S., & Volk, T. A. (2024). Identification of Land and Potential Production of Willow Biomass Crops Using a Multi-Criteria Land Suitability Assessment. Land, 13(11), 1831. https://doi.org/10.3390/land13111831