Salinity Effects on Soil Structure and Hydraulic Properties: Implications for Pedotransfer Functions in Coastal Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Campaign
2.2. Lab Experiments
2.2.1. Measurements of Soil Properties
2.2.2. Soil Column Infiltration Experiments
2.2.3. Determination of Soil Water-Retention Curves
2.2.4. Construction of Salinity-Based PTFs
3. Results and Discussion
3.1. Impacts of Salinity on Soil Aggregates
3.2. Impacts of Salinity on Soil Hydraulic Properties
3.2.1. Saturated Hydraulic Conductivity
3.2.2. Soil Water-Retention Curves
3.3. Peodotransfer Functions for Saline Soils
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, J.; Kang, Y.; Wan, S.; Hu, W.; Jiang, S.; Zhang, T. Soil Salinity Management with Drip Irrigation and Its Effects on Soil Hydraulic Properties in North China Coastal Saline Soils. Agric. Water Manag. 2012, 115, 10–19. [Google Scholar] [CrossRef]
- Archer, N.A.L.; Bonell, M.; Coles, N.; MacDonald, A.M.; Auton, C.A.; Stevenson, R. Soil Characteristics and Landcover Relationships on Soil Hydraulic Conductivity at a Hillslope Scale: A View towards Local Flood Management. J. Hydrol. 2013, 497, 208–222. [Google Scholar] [CrossRef]
- Feki, M.; Ravazzani, G.; Ceppi, A.; Mancini, M. Influence of Soil Hydraulic Variability on Soil Moisture Simulations and Irrigation Scheduling in a Maize Field. Agric. Water Manag. 2018, 202, 183–194. [Google Scholar] [CrossRef]
- Wang, T.; Zlotnik, V.A.; Wedin, D.; Wally, K.D. Spatial Trends in Saturated Hydraulic Conductivity of Vegetated Dunes in the Nebraska Sand Hills: Effects of Depth and Topography. J. Hydrol. 2008, 349, 88–97. [Google Scholar] [CrossRef]
- Ben-Hur, M.; Yolcu, G.; Uysal, H.; Lado, M.; Paz, A. Soil Structure Changes: Aggregate Size and Soil Texture Effects on Hydraulic Conductivity under Different Saline and Sodic Conditions. Soil Res. 2009, 47, 688–696. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Q.; Werner, A.D.; Li, Y.; Jiang, S.; Tan, Z. Root-Induced Changes of Soil Hydraulic Properties—A Review. J. Hydrol. 2020, 589, 125203. [Google Scholar] [CrossRef]
- Robinson, D.A.; Nemes, A.; Reinsch, S.; Radbourne, A.; Bentley, L.; Keith, A.M. Global Meta-Analysis of Soil Hydraulic Properties on the Same Soils with Differing Land Use. Sci. Total Environ. 2022, 852, 158506. [Google Scholar] [CrossRef]
- Wang, T.; Wedin, D.; Zlotnik, V.A. Field Evidence of a Negative Correlation between Saturated Hydraulic Conductivity and Soil Carbon in a Sandy Soil. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Jarvis, N.; Koestel, J.; Messing, I.; Moeys, J.; Lindahl, A. Influence of Soil, Land Use and Climatic Factors on the Hydraulic Conductivity of Soil. Hydrol. Earth Syst. Sci. 2013, 17, 5185–5195. [Google Scholar] [CrossRef]
- Sullivan, P.L.; Billings, S.A.; Hirmas, D.; Li, L.; Zhang, X.; Ziegler, S.; Murenbeeld, K.; Ajami, H.; Guthrie, A.; Singha, K.; et al. Embracing the Dynamic Nature of Soil Structure: A Paradigm Illuminating the Role of Life in Critical Zones of the Anthropocene. Earth-Sci. Rev. 2022, 225, 103873. [Google Scholar] [CrossRef]
- Hu, W.; Shao, M.; Wang, Q.; Fan, J.; Horton, R. Temporal Changes of Soil Hydraulic Properties under Different Land Uses. Geoderma 2009, 149, 355–366. [Google Scholar] [CrossRef]
- Baranian Kabir, E.; Bashari, H.; Bassiri, M.; Mosaddeghi, M.R. Effects of Land-Use/Cover Change on Soil Hydraulic Properties and Pore Characteristics in a Semi-Arid Region of Central Iran. Soil Tillage Res. 2020, 197, 104478. [Google Scholar] [CrossRef]
- Tang, S.; She, D.; Wang, H. Effect of Salinity on Soil Structure and Soil Hydraulic Characteristics. Can. J. Soil. Sci. 2021, 101, 62–73. [Google Scholar] [CrossRef]
- Hopmans, J.W.; Qureshi, A.S.; Kisekka, I.; Munns, R.; Grattan, S.R.; Rengasamy, P.; Ben-Gal, A.; Assouline, S.; Javaux, M.; Minhas, P.S.; et al. Chapter One—Critical Knowledge Gaps and Research Priorities in Global Soil Salinity. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 169, pp. 1–191. [Google Scholar]
- Pereira, P.; Bogunovic, I.; Muñoz-Rojas, M.; Brevik, E.C. Soil Ecosystem Services, Sustainability, Valuation and Management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Cuevas, J.; Daliakopoulos, I.N.; del Moral, F.; Hueso, J.J.; Tsanis, I.K. A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy 2019, 9, 295. [Google Scholar] [CrossRef]
- Bazihizina, N.; Barrett-Lennard, E.G.; Colmer, T.D. Plant Growth and Physiology under Heterogeneous Salinity. Plant Soil 2012, 354, 1–19. [Google Scholar] [CrossRef]
- Cheeseman, J.M. The Evolution of Halophytes, Glycophytes and Crops, and Its Implications for Food Security under Saline Conditions. New Phytol. 2015, 206, 557–570. [Google Scholar] [CrossRef]
- Ramos, T.B.; Šimůnek, J.; Gonçalves, M.C.; Martins, J.C.; Prazeres, A.; Castanheira, N.L.; Pereira, L.S. Field Evaluation of a Multicomponent Solute Transport Model in Soils Irrigated with Saline Waters. J. Hydrol. 2011, 407, 129–144. [Google Scholar] [CrossRef]
- Lekakis, E.H.; Antonopoulos, V.Z. Modeling the Effects of Different Irrigation Water Salinity on Soil Water Movement, Uptake and Multicomponent Solute Transport. J. Hydrol. 2015, 530, 431–446. [Google Scholar] [CrossRef]
- Mao, W.; Zhu, Y.; Wu, J.; Ye, M.; Yang, J. Modelling the Salt Accumulation and Leaching Processes in Arid Agricultural Areas with a New Mass Balance Model. J. Hydrol. 2020, 591, 125329. [Google Scholar] [CrossRef]
- Crescimanno, G.; Iovino, M.; Provenzano, G. Influence of Salinity and Sodicity on Soil Structural and Hydraulic Characteristics. Soil Sci. Soc. Am. J. 1995, 59, 1701–1708. [Google Scholar] [CrossRef]
- Adeyemo, T.; Kramer, I.; Levy, G.J.; Mau, Y. Salinity and Sodicity Can Cause Hysteresis in Soil Hydraulic Conductivity. Geoderma 2022, 413, 115765. [Google Scholar] [CrossRef]
- Odeh, I.O.A.; Onus, A. Spatial Analysis of Soil Salinity and Soil Structural Stability in a Semiarid Region of New South Wales, Australia. Environ. Manag. 2008, 42, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Sharma, S.; Nisar, S.; Choudhary, O.P. Structural Stability and Organic Matter Stabilization in Soils: Differential Impacts of Soil Salinity and Sodicity. J. Soil Sci. Plant Nutr. 2023, 23, 1751–1773. [Google Scholar] [CrossRef]
- Abbaslou, H.; Hadifard, H.; Ghanizadeh, A.R. Effect of Cations and Anions on Flocculation of Dispersive Clayey Soils. Heliyon 2020, 6, e03462. [Google Scholar] [CrossRef]
- Pihlap, E.; Steffens, M.; Kögel-Knabner, I. Initial Soil Aggregate Formation and Stabilisation in Soils Developed from Calcareous Loess. Geoderma 2021, 385, 114854. [Google Scholar] [CrossRef]
- Xing, X.; Kang, D.; Ma, X. Differences in Loam Water Retention and Shrinkage Behavior: Effects of Various Types and Concentrations of Salt Ions. Soil Tillage Res. 2017, 167, 61–72. [Google Scholar] [CrossRef]
- Rezaei, M.; Shahbazi, K.; Shahidi, R.; Davatgar, N.; Bazargan, K.; Rezaei, H.; Saadat, S.; Seuntjens, P.; Cornelis, W. How to Relevantly Characterize Hydraulic Properties of Saline and Sodic Soils for Water and Solute Transport Simulations. J. Hydrol. 2021, 598, 125777. [Google Scholar] [CrossRef]
- Olorunfemi, I.; Fasinmirin, J.; Ojo, A. Modeling Cation Exchange Capacity and Soil Water Holding Capacity from Basic Soil Properties. EJSS 2016, 5, 266–274. [Google Scholar] [CrossRef]
- Nam, S.; Gutierrez, M.; Diplas, P.; Petrie, J.; Wayllace, A.; Lu, N.; Muñoz, J.J. Comparison of Testing Techniques and Models for Establishing the SWCC of Riverbank Soils. Eng. Geol. 2010, 110, 1–10. [Google Scholar] [CrossRef]
- Assouline, S. What Can We Learn From the Water Retention Characteristic of a Soil Regarding Its Hydrological and Agricultural Functions? Review and Analysis of Actual Knowledge. Water Resour. Res. 2021, 57, e2021WR031026. [Google Scholar] [CrossRef]
- Vereecken, H.; Weynants, M.; Javaux, M.; Pachepsky, Y.; Schaap, M.G.; van Genuchten, M.T. Using Pedotransfer Functions to Estimate the van Genuchten–Mualem Soil Hydraulic Properties: A Review. Vadose Zone J. 2010, 9, 795–820. [Google Scholar] [CrossRef]
- Patil, N.G.; Singh, S.K. Pedotransfer Functions for Estimating Soil Hydraulic Properties: A Review. Pedosphere 2016, 26, 417–430. [Google Scholar] [CrossRef]
- Ezlit, Y.D.; Bennett, J.M.; Raine, S.R.; Smith, R.J. Modification of the McNeal Clay Swelling Model Improves Prediction of Saturated Hydraulic Conductivity as a Function of Applied Water Quality. Soil Sci. Soc. Am. J. 2013, 77, 2149–2156. [Google Scholar] [CrossRef]
- Khataar, M.; Mosaddeghi, M.R.; Amiri Chayjan, R.; Mahboubi, A.A. Prediction of Water Quality Effect on Saturated Hydraulic Conductivity of Soil by Artificial Neural Networks. Paddy Water Env. 2018, 16, 631–641. [Google Scholar] [CrossRef]
- Klopp, H.; Arriaga, F.; Daigh, A.; Bleam, W. Analysis of Pedotransfer Functions to Predict the Effects of Salinity and Sodicity on Saturated Hydraulic Conductivity of Soils. Geoderma 2020, 362, 114078. [Google Scholar] [CrossRef]
- Zhao, H.; Gu, B.; Chen, D.; Tang, J.; Xu, X.; Qiao, Z.; Wang, J. Physicochemical Properties and Salinization Characteristics of Soils in Coastal Land Reclamation Areas: A Case Study of China-Singapore Tianjin Eco-City. Heliyon 2022, 8, e12629. [Google Scholar] [CrossRef]
- Song, Y.; Gao, M.; Xu, Z.; Wang, J.; Bi, M. Temporal and Spatial Characteristics of Soil Salinization and Its Impact on Cultivated Land Productivity in the BOHAI Rim Region. Water 2023, 15, 2368. [Google Scholar] [CrossRef]
- Callesen, I.; Palviainen, M.; Armolaitis, K.; Rasmussen, C.; Kjønaas, O.J. Soil Texture Analysis by Laser Diffraction and Sedimentation and Sieving–Method and Instrument Comparison with a Focus on Nordic and Baltic Forest Soils. Front. For. Glob. Change 2023, 6. [Google Scholar] [CrossRef]
- Michalski, R. Applications of Ion Chromatography for the Determination of Inorganic Cations. Crit. Rev. Anal. Chem. 2009, 39, 230–250. [Google Scholar] [CrossRef]
- HJ8892017; Soil Quality-Determination of Cation Exchange Capacity (CEC)-Hexamminecobalt Trichloride Solution-Spectrophotometric Method. Ministry of Environmental Protection of China: Suzhou, China, 2017.
- HJ6152011; Soil–Determination of Organic Carbon–Potassium Dichromate Oxidation Spectrophotometric Method. Ministry of Environmental Protection of China: Beijing, China, 2011.
- Jury, W.A.; Horton, R. Soil Physics; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 978-0-471-05965-3. [Google Scholar]
- Yoder, R.E. A Direct Method of Aggregate Analysis of Soils and a Study of the Physical Nature of Erosion Losses. Agron. J. 1936, 28, 337–351. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.; Gu, H.; Chen, X.; Zhao, Y.; Wang, H. Influence of Slaking on the Size Distributions of Water-Stable Aggregates. Soil Sci. Soc. Am. J. 2022, 86, 1241–1248. [Google Scholar] [CrossRef]
- McNeal, B.L. Prediction of the Effect of Mixed-Salt Solutions on Soil Hydraulic Conductivity. Soil Sci. Soc. Am. J. 1968, 32, 190–193. [Google Scholar] [CrossRef]
- Horn, R.; Smucker, A. Structure Formation and Its Consequences for Gas and Water Transport in Unsaturated Arable and Forest Soils. Soil Tillage Res. 2005, 82, 5–14. [Google Scholar] [CrossRef]
- Corey, A. Mechanics of Heterogeneous Fluids in Porous Media; Water Resources Publications: Littleton, CO, USA, 1977; ISBN 978-0-918334-17-6. [Google Scholar]
- Bittelli, M.; Flury, M. Errors in Water Retention Curves Determined with Pressure Plates. Soil Sci. Soc. Am. J. 2009, 73, 1453–1460. [Google Scholar] [CrossRef]
- Ding, S.; Zuo, C.; Liu, D.; Li, L.; Chen, J. Soil-Water Characteristics of Unsaturated Residual Soil and Estimation of Matric Suction. J. Yangtze River Sci. Res. Inst. 2016, 33, 98. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Van Genuchten, M.V.; Leij, F.; Yates, S. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; U.S. Environmental Protection Agency: Washington, DC, USA, 1991; EPA/600/2-91/065 (NTIS 92-119668); Available online: https://www.pc-progress.com/Documents/programs/retc.pdf (accessed on 30 November 2024).
- Schaap, M.G.; Leij, F.J. Improved Prediction of Unsaturated Hydraulic Conductivity with the Mualem-van Genuchten Model. Soil Sci. Soc. Am. J. 2000, 64, 843–851. [Google Scholar] [CrossRef]
- Streiner, D.L. Regression in the Service of the Superego: The Do’s and Don’ts of Stepwise Multiple Regression. Can. J. Psychiatry 1994, 39, 191–196. [Google Scholar] [CrossRef]
- Schillaci, C.; Perego, A.; Valkama, E.; Märker, M.; Saia, S.; Veronesi, F.; Lipani, A.; Lombardo, L.; Tadiello, T.; Gamper, H.A.; et al. New Pedotransfer Approaches to Predict Soil Bulk Density Using WoSIS Soil Data and Environmental Covariates in Mediterranean Agro-Ecosystems. Sci. Total Environ. 2021, 780, 146609. [Google Scholar] [CrossRef]
- Yao, R.-J.; Yang, J.-S.; Wu, D.-H.; Li, F.-R.; Gao, P.; Wang, X.-P. Evaluation of Pedotransfer Functions for Estimating Saturated Hydraulic Conductivity in Coastal Salt-Affected Mud Farmland. J. Soils Sediments 2015, 15, 902–916. [Google Scholar] [CrossRef]
- Haile, G.W.; Fetene, M. Assessment of Soil Erosion Hazard in Kilie Catchment, East Shoa, Ethiopia. Land Degrad. Dev. 2012, 23, 293–306. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A History of Research on the Link between (Micro)Aggregates, Soil Biota, and Soil Organic Matter Dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Gartzia-Bengoetxea, N.; González-Arias, A.; Merino, A.; Martínez de Arano, I. Soil Organic Matter in Soil Physical Fractions in Adjacent Semi-Natural and Cultivated Stands in Temperate Atlantic Forests. Soil Biol. Biochem. 2009, 41, 1674–1683. [Google Scholar] [CrossRef]
- Herath, H.M.S.K.; Camps-Arbestain, M.; Hedley, M. Effect of Biochar on Soil Physical Properties in Two Contrasting Soils: An Alfisol and an Andisol. Geoderma 2013, 209–210, 188–197. [Google Scholar] [CrossRef]
- Hillel, D. Introduction to Environmental Soil Physics; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 978-0-08-049577-4. [Google Scholar]
- Deb, S.K.; Shukla, M.K. Variability of Hydraulic Conductivity Due to Multiple Factors. Am. J. Environ. Sci. 2012, 8, 489. [Google Scholar] [CrossRef]
- Seiphoori, A.; Ma, X.; Arratia, P.E.; Jerolmack, D.J. Formation of Stable Aggregates by Fluid-Assembled Solid Bridges. Proc. Natl. Acad. Sci. USA 2020, 117, 3375–3381. [Google Scholar] [CrossRef]
- Bell, F.G.; Maud, R.R. Dispersive Soils: A Review from a South African Perspective. Q. J. Eng. Geol. 1994, 27, 195–210. [Google Scholar] [CrossRef]
- Klopp, H.W.; Daigh, A.L.M. Measured Saline and Sodic Solutions Effects on Soil Saturated Hydraulic Conductivity, Electrical Conductivity and Sodium Adsorption Ratio. Arid Land Res. Manag. 2020, 34, 264–286. [Google Scholar] [CrossRef]
- Gamie, R.; De Smedt, F. Experimental and Statistical Study of Saturated Hydraulic Conductivity and Relations with Other Soil Properties of a Desert Soil. Eur. J. Soil Sci. 2018, 69, 256–264. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, T.; Han, Q.; Kong, Z.; Wang, L.; Li, Y.; Lang, Y. Impacts of Vegetation and Tidal Conditions on Porewater and Salt Transport in Coastal Wetlands: Numerical Simulations and Field Evidence. J. Hydrol. 2024, 636, 131251. [Google Scholar] [CrossRef]
- Behbahani, A.; Ryan, R.J.; McKenzie, E.R. Impacts of Salinity on the Dynamics of Fine Particles and Their Associated Metals during Stormwater Management. Sci. Total Environ. 2021, 777, 146135. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, J.; Zheng, J. Correlation between Soil Water Retention Capability and Soil Salt Content. Pedosphere 2000, 10, 275–280. [Google Scholar]
- Tuli, A.; Kosugi, K.; Hopmans, J.W. Simultaneous Scaling of Soil Water Retention and Unsaturated Hydraulic Conductivity Functions Assuming Lognormal Pore-Size Distribution. Adv. Water Resour. 2001, 24, 677–688. [Google Scholar] [CrossRef]
- Anderson, R.L.; Ratcliffe, I.; Greenwell, H.C.; Williams, P.A.; Cliffe, S.; Coveney, P.V. Clay Swelling—A Challenge in the Oilfield. Earth-Sci. Rev. 2010, 98, 201–216. [Google Scholar] [CrossRef]
- Tao, L.; Xiao-Feng, T.; Yu, Z.; Tao, G. Swelling of K+, Na+ and Ca2+-Montmorillonites and Hydration of Interlayer Cations: A Molecular Dynamics Simulation. Chin. Phys. B 2010, 19, 109101. [Google Scholar] [CrossRef]
- Liu, D.; Edraki, M.; Berry, L. Investigating the Settling Behaviour of Saline Tailing Suspensions Using Kaolinite, Bentonite, and Illite Clay Minerals. Powder Technol. 2018, 326, 228–236. [Google Scholar] [CrossRef]
- Li, Y.; Feng, G.; Tewolde, H.; Zhang, F.; Yan, C.; Yang, M. Soil Aggregation and Water Holding Capacity of Soil Amended with Agro-Industrial Byproducts and Poultry Litter. J. Soils Sediments 2021, 21, 1127–1135. [Google Scholar] [CrossRef]
- Romero, E.; Gens, A.; Lloret, A. Suction Effects on a Compacted Clay under Non-Isothermal Conditions. Géotechnique 2003, 53, 65–81. [Google Scholar] [CrossRef]
- Nie, Y.; Ni, W.; Lü, X.; Tuo, W. Exploring the Mechanical Behavior and Microstructure of Compacted Loess Subjected to Dry-Wet Cycles and Chemical Contamination. J. Rock Mech. Geotech. Eng. 2024, 16, 3673–3695. [Google Scholar] [CrossRef]
- Obi, J.C.; Ogban, P.I.; Ituen, U.J.; Udoh, B.T. Development of Pedotransfer Functions for Coastal Plain Soils Using Terrain Attributes. CATENA 2014, 123, 252–262. [Google Scholar] [CrossRef]
Site | Soil Taxonomy | Soil Texture | EC (dS/m) | pH | Bulk Density (g/cm3) | Ks (cm/h) | Sand (%) | Silt (%) | Clay (%) |
---|---|---|---|---|---|---|---|---|---|
BDG | Typic Salorthids | Silt clay | 7.6 | 8.46 | 1.45 | 0.38 | 3.17 | 56.30 | 40.53 |
BXS | Typic Hapludalfs | Sandy loam | 6.9 | 7.69 | 1.40 | 1.20 | 67.42 | 22.18 | 10.40 |
Texture | NaCl | CaCl2 | ||
---|---|---|---|---|
Content (g/kg) | Ks (mm/h) | Content (g/kg) | Ks (mm/h) | |
Silt clay | 2.21 | 0.62 | 1.98 | 0.63 |
2.37 | 0.64 | 2.26 | 0.61 | |
4.45 | 0.68 | 4.45 | 0.76 | |
4.98 | 0.62 | 4.98 | 0.72 | |
6.44 | 0.73 | 6.44 | 0.83 | |
7.26 | 0.74 | 7.76 | 0.84 | |
9.54 | 0.78 | 9.85 | 0.91 | |
9.84 | 0.73 | 10.49 | 0.87 | |
11.62 | 0.72 | 11.70 | 0.97 | |
12.13 | 0.76 | 12.23 | 0.89 | |
13.44 | 0.66 | 13.38 | 0.79 | |
14.08 | 0.68 | 14.42 | 0.86 | |
Sandy loam | 2.34 | 45.44 | 1.74 | 45.27 |
2.92 | 49.25 | 2.52 | 49.64 | |
4.85 | 54.26 | 4.78 | 62.37 | |
5.30 | 50.2 | 5.20 | 61.4 | |
6.72 | 55.43 | 6.63 | 65.43 | |
8.15 | 48.69 | 8.21 | 68.69 | |
10.42 | 52.12 | 10.20 | 62.06 | |
11.26 | 49.77 | 11.36 | 72.77 | |
12.05 | 55.74 | 12.25 | 69.72 | |
12.48 | 50.4 | 12.68 | 76.98 | |
13.87 | 58.55 | 13.79 | 68.75 | |
14.64 | 52.88 | 14.25 | 78.49 |
Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Training set RMSE (cm3/cm3) | 0.058 | 0.059 | 0.061 | 0.056 | 0.066 | 0.061 | 0.062 | 0.056 | 0.055 | 0.062 |
Validation set RMSE (cm3/cm3) | 0.063 | 0.061 | 0.079 | 0.084 | 0.069 | 0.090 | 0.072 | 0.077 | 0.067 | 0.070 |
Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Training set RMSE (mm/h) | 0.153 | 0.152 | 0.148 | 0.159 | 0.154 | 0.161 | 0.155 | 0.155 | 0.147 | 0.158 |
Validation set RMSE (mm/h) | 0.167 | 0.178 | 0.185 | 0.153 | 0.17 | 0.142 | 0.18 | 0.174 | 0.168 | 0.172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zuo, Y.; Wang, T.; Han, Q. Salinity Effects on Soil Structure and Hydraulic Properties: Implications for Pedotransfer Functions in Coastal Areas. Land 2024, 13, 2077. https://doi.org/10.3390/land13122077
Zhang X, Zuo Y, Wang T, Han Q. Salinity Effects on Soil Structure and Hydraulic Properties: Implications for Pedotransfer Functions in Coastal Areas. Land. 2024; 13(12):2077. https://doi.org/10.3390/land13122077
Chicago/Turabian StyleZhang, Xiao, Yutao Zuo, Tiejun Wang, and Qiong Han. 2024. "Salinity Effects on Soil Structure and Hydraulic Properties: Implications for Pedotransfer Functions in Coastal Areas" Land 13, no. 12: 2077. https://doi.org/10.3390/land13122077
APA StyleZhang, X., Zuo, Y., Wang, T., & Han, Q. (2024). Salinity Effects on Soil Structure and Hydraulic Properties: Implications for Pedotransfer Functions in Coastal Areas. Land, 13(12), 2077. https://doi.org/10.3390/land13122077