Deeper Engagement with Material and Non-Material Aspects of Water in Land System Science: An Introduction to the Special Issue
Abstract
:1. Introduction
2. Holistic Water and Land Systems Studies for Increasing Socioecological Systems (SES) Resilience
2.1. Examples of SES Research and Water Dynamics
2.2. Challenges for Integration
3. The Papers
4. Possible Entry Points for Better Integrating Water in Land System Science (LSS)
4.1. Water Governance and Hydrosocial Territories
4.2. Hydrophilia and the Cultural Geographies of Water
4.3. Water and Agricultural Transitions
4.4. Remote Sensing Innovations for Water
4.5. Participatory Methods and Informal Education in SES of Land and Water
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verburg, P.H.; Erb, K.-H.; Mertz, O.; Espindola, G. Land System Science: Between Global Challenges and Local Realities. Curr. Opin. Environ. Sustain. 2013, 5, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Hallegatte, S. Natural Disasters and Climate Change: An Economic Perspective; Springer International Publishing: Cham, Switzerland, 2014; ISBN 978-3-319-08932-4. [Google Scholar]
- Ringler, C.; McLean, M.; Melnick, R. Water Stresses Are Risking Food Security. Here’s How to Turn This around. Future Earth Blog, 15 January 2020. [Google Scholar]
- Gunn, L. National Security and the Accelerating Risk of Climate Change. Elem. Sci. Anthr. 2017, 5, 30. [Google Scholar] [CrossRef]
- Ghufran, M.; Aldieri, L.; Pyka, A.; Ali, S.; Bimonte, G.; Senatore, L.; Vinci, C.P. Food Security Assessment in the Light of Sustainable Development Goals: A Post-Paris Agreement Era. Environ. Dev. Sustain. 2024, 1–29. [Google Scholar] [CrossRef]
- Williams, E.L.; Funk, C.; Shukla, S. Anthropogenic Climate Change Negatively Impacts Vegetation and Forage Conditions in the Greater Four Corners Region. Earth’s Future 2023, 11, e2022EF002943. [Google Scholar] [CrossRef]
- Howard, M.; Ahmed, S.; Lachapelle, P.; Schure, M.B. Farmer and Rancher Perceptions of Climate Change and Their Relationships with Mental Health. J. Rural Ment. Health 2020, 44, 87–95. [Google Scholar] [CrossRef]
- Charlson, F.; Ali, S.; Benmarhnia, T.; Pearl, M.; Massazza, A.; Augustinavicius, J.; Scott, J.G. Climate Change and Mental Health: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 4486. [Google Scholar] [CrossRef]
- Ramankutty, N.; Mehrabi, Z.; Waha, K.; Jarvis, L.; Kremen, C.; Herrero, M.; Rieseberg, L.H. Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security. Annu. Rev. Plant Biol. 2018, 69, 789–815. [Google Scholar] [CrossRef]
- Kim, Y.; Carvalhaes, T.; Helmrich, A.; Markolf, S.; Hoff, R.; Chester, M.; Li, R.; Ahmad, N. Leveraging SETS Resilience Capabilities for Safe-to-Fail Infrastructure under Climate Change. Curr. Opin. Environ. Sustain. 2022, 54, 101153. [Google Scholar] [CrossRef]
- Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.-H.; Golubiewski, N.; et al. Land System Science and Sustainable Development of the Earth System: A Global Land Project Perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Adger, W.N. Social and Ecological Resilience: Are They Related? Prog. Hum. Geogr. 2000, 24, 347–364. [Google Scholar] [CrossRef]
- Papathoma-Köhle, M.; Promper, C.; Glade, T. A Common Methodology for Risk Assessment and Mapping of Climate Change Related Hazards—Implications for Climate Change Adaptation Policies. Climate 2016, 4, 8. [Google Scholar] [CrossRef]
- UN News Climate Change Recognized as ‘Threat Multiplier’, UN Security Council Debates Its Impact on Peace|UN News. Available online: https://news.un.org/en/story/2019/01/1031322 (accessed on 24 May 2024).
- Morton, T. Hyperobjects: Philosophy and Ecology after the End of the World; University of Minnesota Press: Minneapolis, MN, USA, 2013; ISBN 978-0-8166-8923-1. [Google Scholar]
- Turner, B.L.; Janetos, A.C.; Verburg, P.H.; Murray, A.T. Land System Architecture: Using Land Systems to Adapt and Mitigate Global Environmental Change. Glob. Environ. Chang. 2013, 23, 395–397. [Google Scholar] [CrossRef]
- Schaldach, R.; Priess, J.A. Integrated Models of the Land System: A Review of Modelling Approaches on the Regional to Global Scale. Living Rev. Landsc. Res. 2008, 2, 1–34. [Google Scholar] [CrossRef]
- GLP (Global Land Project) Global Land Project: Science Plan and Implementation Strategy. Available online: https://digital.library.unt.edu/ark:/67531/metadc12009/m1/2/ (accessed on 1 June 2024).
- GLP (Global Land Programme). Global Land Programme Science Plan and Implementation Strategy 2024-2028 (Draft December 2023); GLP: College Park, MD, USA, 2024. [Google Scholar]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation: Tropical Forests Are Disappearing as the Result of Many Pressures, Both Local and Regional, Acting in Various Combinations in Different Geographical Locations. BioScience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- DeFries, R.; Eshleman, K.N. Land-Use Change and Hydrologic Processes: A Major Focus for the Future. Hydrol. Process. 2004, 18, 2183–2186. [Google Scholar] [CrossRef]
- Vadjunec, J.M.; Fagin, T.D.; Straub, A. Incorporating Water into Land System Science: Jevons’ Paradox, Center Pivot Irrigation (CPI), and Socioecological Resilience in a Transboundary Area of the Southern Great Plains (SGP). SSRN 2024. preprint. [Google Scholar] [CrossRef]
- Zou, C.B.; Lambert, L.H.; Everett, J.; Will, R.E. Response of Surface Runoff and Sediment to the Conversion of a Marginal Grassland to a Switchgrass (Panicum virgatum) Bioenergy Feedstock System. Land 2022, 11, 540. [Google Scholar] [CrossRef]
- Marsh, B. Living by the Symbolic River: Landscape Effects of Post-Industrial Water Narratives of the Susquehanna River. Land 2023, 12, 264. [Google Scholar] [CrossRef]
- Madrid, C.; Cabello, V.; Giampietro, M. Water-Use Sustainability in Socioecological Systems: A Multiscale Integrated Approach. BioScience 2013, 63, 14–24. [Google Scholar] [CrossRef]
- Madrid-López, C.; Giampietro, M. The Water Metabolism of Socio-Ecological Systems: Reflections and a Conceptual Framework. J. Ind. Ecol. 2015, 19, 853–865. [Google Scholar] [CrossRef]
- Montenegro, L.; Hack, J. A Socio-Ecological System Analysis of Multilevel Water Governance in Nicaragua. Water 2020, 12, 1676. [Google Scholar] [CrossRef]
- Gomez-Jaramillo, Y.; Berrouet, L.; Villegas-Palacio, C.; Berrio-Giraldo, L. Conceptual Framework for Analyzing the Sustainability of Socio-Ecological Systems with a Focus on Ecosystem Services That Support Water Security. Sustain. Dev. 2024, 32, 2298–2313. [Google Scholar] [CrossRef]
- Tallman, P.S.; Piland, N.C.; Villarmarzo, M.; Victoria-Lacy, L.; Valdés-Velásquez, A. Waterscapes Meet Socio-Ecological Models: A Relational Framework to Examine Water Insecurity and Human Health and Well-Being. People Nat. 2024, 6, 1036–1047. [Google Scholar] [CrossRef]
- Karmaoui, A.; El Jaafari, S.; Chaachouay, H.; Hajji, L. The Socio-Ecological System of the Pre-Sahara Zone of Morocco: A Conceptual Framework to Analyse the Impact of Drought and Desertification. GeoJournal 2022, 87, 4961–4974. [Google Scholar] [CrossRef]
- Vidal-Abarca Gutiérrez, M.R.; Nicolás-Ruiz, N.; Sánchez-Montoya, M.d.M.; Suárez Alonso, M.L. Ecosystem Services Provided by Dry River Socio-Ecological Systems and Their Drivers of Change. Hydrobiologia 2023, 850, 2585–2607. [Google Scholar] [CrossRef]
- Llewellyn, D. Does Global Agriculture Need Another Green Revolution? Engineering 2018, 4, 449–451. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Smil, V. Feeding the World: A Challenge for the Twenty-First Century/Vaclav Smile; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Saiko, T.A.; Zonn, I.S. Irrigation Expansion and Dynamics of Desertification in the Circum-Aral Region of Central Asia. Appl. Geogr. 2000, 20, 349–367. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef]
- Riebsame, W.E. Sustainability of the Great Plains in an Uncertain Climate. J. Nat. Soc. Sci. 1991, 1, 132–151. [Google Scholar]
- L’vovich, M.I.; White, G.F.; Belyaev, A.V.; Kindler, J.; Koronkevic, N.I.; Lee, T.R.; Voropaev, G.V. Use and Transformation of Terrestrial Water Systems. Earth Transform. Hum. Action 1990, 235–252. [Google Scholar]
- Pokhrel, Y.N.; Hanasaki, N.; Wada, Y.; Kim, H. Recent Progresses in Incorporating Human Land–Water Management into Global Land Surface Models toward Their Integration into Earth System Models. WIREs Water 2016, 3, 548–574. [Google Scholar] [CrossRef]
- Shiva, V. Water Wars: Privatization, Pollution, and Profit; North Atlantic Books: Berkeley, CA, USA, 2016; ISBN 1-62317-073-7. [Google Scholar]
- Wenger, K.; Vadjunec, J.M.; Fagin, T. Groundwater Governance and the Growth of Center Pivot Irrigation in Cimarron County, OK and Union County, NM: Implications for Community Vulnerability to Drought. Water 2017, 9, 39. [Google Scholar] [CrossRef]
- Riebsame, W.E. Adjusting Water Resources Management to Climate Change. Clim. Chang. 1988, 13, 69–97. [Google Scholar] [CrossRef]
- Aspinall, R.; Pearson, D. Integrated Geographical Assessment of Environmental Condition in Water Catchments: Linking Landscape Ecology, Environmental Modelling and GIS. J. Environ. Manag. 2000, 59, 299–319. [Google Scholar] [CrossRef]
- Chen, B.; Han, M.; Peng, K.; Zhou, S.; Shao, L.; Wu, X.; Wei, W.; Liu, S.; Li, Z.; Li, J.; et al. Global Land-Water Nexus: Agricultural Land and Freshwater Use Embodied in Worldwide Supply Chains. Sci. Total Environ. 2018, 613–614, 931–943. [Google Scholar] [CrossRef]
- Liu, H.-L.; Willems, P.; Bao, A.-M.; Wang, L.; Chen, X. Effect of Climate Change on the Vulnerability of a Socio-Ecological System in an Arid Area. Glob. Planet. Chang. 2016, 137, 1–9. [Google Scholar] [CrossRef]
- Guzha, A.C.; Rufino, M.C.; Okoth, S.; Jacobs, S.; Nóbrega, R.L.B. Impacts of Land Use and Land Cover Change on Surface Runoff, Discharge and Low Flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2018, 15, 49–67. [Google Scholar] [CrossRef]
- Chemura, A.; Rwasoka, D.; Mutanga, O.; Dube, T.; Mushore, T. The Impact of Land-Use/Land Cover Changes on Water Balance of the Heterogeneous Buzi Sub-Catchment, Zimbabwe. Remote Sens. Appl. Soc. Environ. 2020, 18, 100292. [Google Scholar] [CrossRef]
- Liu, D.; Semenchuk, P.; Essl, F.; Lenzner, B.; Moser, D.; Blackburn, T.M.; Cassey, P.; Biancolini, D.; Capinha, C.; Dawson, W.; et al. The Impact of Land Use on Non-Native Species Incidence and Number in Local Assemblages Worldwide. Nat. Commun. 2023, 14, 2090. [Google Scholar] [CrossRef] [PubMed]
- Sahin, V.; Hall, M.J. The Effects of Afforestation and Deforestation on Water Yields. J. Hydrol. 1996, 178, 293–309. [Google Scholar] [CrossRef]
- Luvuno, L.; Biggs, R.; Stevens, N.; Esler, K. Woody Encroachment as a Social-Ecological Regime Shift. Sustainability 2018, 10, 2221. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. Hydrological Functions of Tropical Forests: Not Seeing the Soil for the Trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, J.; Winrich, A.; Will, R.E.; Zou, C.B. Trade-off of Ecosystem Productivity and Water Use Related to Afforestation in Southcentral USA under Climate Change. Sci. Total Environ. 2024, 915, 170255. [Google Scholar] [CrossRef]
- Wilcox, B.P.; Birt, A.; Archer, S.R.; Fuhlendorf, S.D.; Kreuter, U.P.; Sorice, M.G.; van Leeuwen, W.J.D.; Zou, C.B. Viewing Woody-Plant Encroachment through a Social–Ecological Lens. BioScience 2018, 68, 691–705. [Google Scholar] [CrossRef]
- Wilcox, B.P.; Fuhlendorf, S.D.; Walker, J.W.; Twidwell, D.; Wu, X.B.; Goodman, L.E.; Treadwell, M.; Birt, A. Saving Imperiled Grassland Biomes by Recoupling Fire and Grazing: A Case Study from the Great Plains. Front. Ecol. Environ. 2021, 20, 179–186. [Google Scholar] [CrossRef]
- Cansino-Loeza, B.; Sánchez-Zarco, X.G.; Mora-Jacobo, E.G.; Saggiante-Mauro, F.E.; González-Bravo, R.; Mahlknecht, J.; Ponce-Ortega, J.M. Systematic Approach for Assessing the Water–Energy–Food Nexus for Sustainable Development in Regions with Resource Scarcities. ACS Sustain. Chem. Eng. 2020, 8, 13734–13748. [Google Scholar] [CrossRef]
- D’Odorico, P.; Davis, K.F.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suweis, S.; et al. The Global Food-Energy-Water Nexus. Rev. Geophys. 2018, 56, 456–531. [Google Scholar] [CrossRef]
- Sušnik, J.; Staddon, C. Evaluation of Water-Energy-Food (WEF) Nexus Research: Perspectives, Challenges, and Directions for Future Research. JAWRA J. Am. Water Resour. Assoc. 2022, 58, 1189–1198. [Google Scholar] [CrossRef]
- Beven, K.J. Uniqueness of Place and Process Representations in Hydrological Modelling. Hydrol. Earth Syst. Sci. 2000, 4, 203–213. [Google Scholar] [CrossRef]
- Aspinall, R.; Staiano, M. A Conceptual Model for Land System Dynamics as a Coupled Human–Environment System. Land 2017, 6, 81. [Google Scholar] [CrossRef]
- Vadjunec, J.M.; Frazier, A.E.; Kedron, P.; Fagin, T.; Zhao, Y. A Land Systems Science Framework for Bridging Land System Architecture and Landscape Ecology: A Case Study from the Southern High Plains. Land 2018, 7, 27. [Google Scholar] [CrossRef]
- Daniell, K.A.; Barreteau, O. Water Governance across Competing Scales: Coupling Land and Water Management. J. Hydrol. 2014, 519, 2367–2380. [Google Scholar] [CrossRef]
- Cumming, G.; Cumming, D.H.M.; Redman, C. Scale Mismatches in Social-Ecological Systems: Causes, Consequences, and Solutions. Ecol. Soc. 2006, 11, 14. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of Coupled Human and Natural Systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [PubMed]
- Carrasco Galvan, G.B.; Vadjunec, J.M.; Fagin, T.D. Lessons from the Archives: Understanding Historical Agricultural Change in the Southern Great Plains. Land 2024, 13, 196. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Pedroli, B.; Erb, K.-H.; Gramberger, M.; Busck, A.G.; Haberl, H.; Kristensen, S.; Kuemmerle, T.; Lavorel, S.; Lindner, M.; et al. Challenges for Land System Science. Land Use Policy 2012, 29, 899–910. [Google Scholar] [CrossRef]
- Meyfroidt, P.; de Bremond, A.; Ryan, C.M.; Archer, E.; Aspinall, R.; Chhabra, A.; Camara, G.; Corbera, E.; DeFries, R.; Díaz, S.; et al. Ten Facts about Land Systems for Sustainability. Proc. Natl. Acad. Sci. USA 2022, 119, e2109217118. [Google Scholar] [CrossRef]
- DeFries, R.; Nagendra, H. Ecosystem Management as a Wicked Problem. Science 2017, 356, 265–270. [Google Scholar] [CrossRef]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerström, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; Van Velthuizen, H.; et al. Integrated Analysis of Climate Change, Land-Use, Energy and Water Strategies. Nat. Clim. Chang. 2013, 3, 621–626. [Google Scholar] [CrossRef]
- Sauer, C.O. The Morphology of Landscape (1952). In Land and Life; Leighly, J., Ed.; A Selection from the Writings of Carl Ortwin Sauer; University of California Press: Berkeley, CA, USA, 1963; pp. 315–350. [Google Scholar]
- Khorn, N.; Ismail, M.H.; Nurhidayu, S.; Kamarudin, N.; Sulaiman, M.S. Land Use/Land Cover Changes and Its Impact on Runoff Using SWAT Model in the Upper Prek Thnot Watershed in Cambodia. Environ. Earth Sci. 2022, 81, 466. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Liu, D.L.; Zhang, M.; Leslie, L.M.; Yu, Q. Using an Improved SWAT Model to Simulate Hydrological Responses to Land Use Change: A Case Study of a Catchment in Tropical Australia. J. Hydrol. 2020, 585, 124822. [Google Scholar] [CrossRef]
- Kayitesi, N.M.; Guzha, A.C.; Mariethoz, G. Impacts of Land Use Land Cover Change and Climate Change on River Hydro-Morphology- a Review of Research Studies in Tropical Regions. J. Hydrol. 2022, 615, 128702. [Google Scholar] [CrossRef]
- Qiao, L.; Zou, C.B.; Stebler, E.; Will, R.E. Woody Plant Encroachment Reduces Annual Runoff and Shifts Runoff Mechanisms in the Tallgrass Prairie, USA. Water Resour. Res. 2017, 53, 4838–4849. [Google Scholar] [CrossRef]
- Reed, B.C.; Xian, G.Z.; Thornton, P.E.; Chini, L.; East, A.E.; Field, J.L.; Hoover, C.M.; Poulter, B.; Reed, S.C.; Wang, G.; et al. Land Cover and Land-Use Change; U.S. Global Change Research Program: Washington, DC, USA, 2023.
- Wang, X.; Liu, L. The Impacts of Climate Change on the Hydrological Cycle and Water Resource Management. Water 2023, 15, 2342. [Google Scholar] [CrossRef]
- Moran, E.; Ostrom, E. Seeing the Forest and the Trees; The MIT Press: Cambridge, MA, USA, 2005; ISBN 978-0-262-63312-3. [Google Scholar]
- Hardin, G. The Tragedy of the Commons. Science 1968, 162, 1243–1248. [Google Scholar] [CrossRef]
- Gibson, C.C.; Ostrom, E.; Ahn, T.K. The Concept of Scale and the Human Dimensions of Global Change: A Survey. Ecol. Econ. 2000, 32, 217–239. [Google Scholar] [CrossRef]
- Gray, D.; Sadoff, C.; Connors, G. Effective Cooperation on Transboundary Waters: A Practical Perspective; SIDALC: Turrialba, Costa Rica, 2016. [Google Scholar] [CrossRef]
- Olson, M. The Logic of Collective Action: Public Goods and the Theory of Groups, With a New Preface and Appendix; Harvard University Press: Cambridge, MA, USA, 1965; ISBN 978-0-674-53751-4. [Google Scholar]
- Ophuls, W. The Return of Leviathan. Bull. At. Sci. 1973, 29, 50–52. [Google Scholar] [CrossRef]
- Ophuls, W. Ecology and the Politics of Scarcity: Prologue to a Political Theory of the Steady State; W. H. Freeman: New York, NY, USA, 1977; ISBN 978-0-7167-0482-9. [Google Scholar]
- Terborgh, J. Requiem for Nature; Island Press: Washington, DC, USA, 1999; ISBN 978-1-55963-587-5. [Google Scholar]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Political Economy of Institutions and Decisions; Cambridge University Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Dietz, T.; Dolšak, N.; Ostrom, E. The Drama of the Commons; National Academies Press: Washington, DC, USA, 2002; ISBN 978-0-309-08250-1. [Google Scholar]
- Vadjunec, J.M. Extracting a Livelihood: Institutional and Social Dimensions of Deforestation in the Chico Mendes Extractive Reserve, Acre, Brazil. J. Lat. Am. Geogr. 2011, 10, 151–174. [Google Scholar] [CrossRef]
- Mckean, M. Common Property: What Is It, What Is It Good For, and What Makes It Work? In People and Forests: Communities, Institutions, and Governance; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Ostrom, E. Understanding Institutional Diversity; Princeton University Press: Princeton, NJ, USA, 2005; ISBN 978-0-691-12238-0. [Google Scholar]
- Pahl-Wostl, C. Water Governance in the Face of Global Change: From Understanding to Transformation; Water Governance—Concepts, Methods, and Practice; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-21854-0. [Google Scholar]
- Varady, R.G.; Juniga-Teran, A.A.; Gerlak, A.K.; Megdal, S.B. Modes and Approaches of Groundwater Governance: A Survey of Lessons Learned from Selected Cases across the Globe. Water 2016, 8, 417. [Google Scholar] [CrossRef]
- Jepson, W.; Millington, A. Chapter 1—The Changing Countryside. In Land Change Science in the Tropics: Changing Agricultural Landscapes; Millington, A., Jepson, W., Eds.; Springer: New York, NY, USA, 2008; Volume 1, pp. 1–10. ISBN 978-0-387-78863-0. [Google Scholar]
- Closas, A.; Villholth, K.G. Groundwater Governance: Addressing Core Concepts and Challenges. WIREs Water 2020, 7, e1392. [Google Scholar] [CrossRef]
- Rodríguez-Labajos, B.; Martínez-Alier, J. Political Ecology of Water Conflicts. WIREs Water 2015, 2, 537–558. [Google Scholar] [CrossRef]
- Boelens, R.; Hoogesteger, J.; Swyngedouw, E.; Vos, J.; Wester, P. Hydrosocial Territories: A Political Ecology Perspective. Water Int. 2016, 41, 1–14. [Google Scholar] [CrossRef]
- Wilson, N.J. Indigenous Water Governance: Insights from the Hydrosocial Relations of the Koyukon Athabascan Village of Ruby, Alaska. Geoforum 2014, 57, 1–11. [Google Scholar] [CrossRef]
- Chief, K.; Meadow, A.; Whyte, K. Engaging Southwestern Tribes in Sustainable Water Resources Topics and Management. Water 2016, 8, 350. [Google Scholar] [CrossRef]
- Satz, D.; Gould, R.K.; Chan, K.M.A.; Guerry, A.; Norton, B.; Satterfield, T.; Halpern, B.S.; Levine, J.; Woodside, U.; Hannahs, N.; et al. The Challenges of Incorporating Cultural Ecosystem Services into Environmental Assessment. Ambio 2013, 42, 675–684. [Google Scholar] [CrossRef]
- Asprooth, L.; Norton, M.; Galt, R. The Adoption of Conservation Practices in the Corn Belt: The Role of One Formal Farmer Network, Practical Farmers of Iowa. Agric. Hum. Values 2023, 40, 1559–1580. [Google Scholar] [CrossRef]
- De Boon, A.; Sandström, C.; Rose, D.C. Perceived Legitimacy of Agricultural Transitions and Implications for Governance. Lessons Learned from England’s Post-Brexit Agricultural Transition. Land Use Policy 2022, 116, 106067. [Google Scholar] [CrossRef]
- Thompson, J.A. Intersectionality and Water: How Social Relations Intersect with Ecological Difference. Gend. Place Cult. 2016, 23, 1286–1301. [Google Scholar] [CrossRef]
- Cole, S. Water Worries: An Intersectional Feminist Political Ecology of Tourism and Water in Labuan Bajo, Indonesia. Ann. Tour. Res. 2017, 67, 14–24. [Google Scholar] [CrossRef]
- Sultana, F. Water, Culture, and Gender: An Analysis from Bangladesh. In Water, Cultural Diversity, and Global Environmental Change: Emerging Trends, Sustainable Futures? Johnston, B.R., Hiwasaki, L., Klaver, I.J., Ramos Castillo, A., Strang, V., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 237–252. ISBN 978-94-007-1774-9. [Google Scholar]
- Stojanovic, T.; McNae, H.; Tett, P.; Potts, T.; Reis, J.; Smith, H.; Dillingham, I. The “Social” Aspect of Social-Ecological Systems: A Critique of Analytical Frameworks and Findings from a Multisite Study of Coastal Sustainability. Ecol. Soc. 2016, 21, 15. [Google Scholar] [CrossRef]
- Small, A.; Owen, A.; Paavola, J. Organizational Use of Ecosystem Service Approaches: A Critique from a Systems Theory Perspective. Bus. Strategy Environ. 2021, 31, 284–296. [Google Scholar] [CrossRef]
- Tuan, Y.-F. Topophilia: A Study of Environmental Perceptions, Attitudes, and Values; Columbia University Press: New York, NY, USA, 1974; 260p, ISBN 978-0-231-07395-0. [Google Scholar]
- Krause, F.; Strang, V. Thinking Relationships Through Water. Soc. Nat. Resour. 2016, 29, 633–638. [Google Scholar] [CrossRef]
- Gibbs, L.M. Water Places: Cultural, Social and More-Than-Human Geographies of Nature. Scott. Geogr. J. 2009, 125, 361–369. [Google Scholar] [CrossRef]
- Karpouzoglou, T.; Vij, S. Waterscape: A Perspective for Understanding the Contested Geography of Water. WIREs Water 2017, 4, e1210. [Google Scholar] [CrossRef]
- Strang, V. Substantial Connections: Water and Identity in an English Cultural Landscape. Worldviews Glob. Relig. Cult. Ecol. 2006, 10, 155–177. [Google Scholar] [CrossRef]
- Wade, M.T.; Julian, J.P.; Jeffery, K.S.; Davidson, S.M. A Participatory Approach to Assess Social Demand and Value of Urban Waterscapes: A Case Study in San Marcos, Texas, USA. Land 2023, 12, 1137. [Google Scholar] [CrossRef]
- Tilley, C.; Cameron-Daum, K. An Anthropology of Landscape: The Extraordinary in the Ordinary; UCL Press: London, UK, 2017; ISBN 978-1-911307-46-4. [Google Scholar]
- Wilson, G.D.; Barnaby, M.L. The Enduring Salience of Primordial Ties in Tar Creek. Midwest. Q. 2018, 60, 44–48. [Google Scholar]
- EPA. EPA Fact Sheet: Tar Creek Superfund Site Ottawa County, Oklahoma. Environ. Prot. Agency 2008. Available online: https://semspub.epa.gov/work/06/825845.pdf (accessed on 2 November 2024).
- Vadjunec, J.M.; Boardman, A.L.; Fagin, T.D.; Larson, M.P.; Kedron, P.; Birchler, B. Footprints from the Dust Bowl: Using Historical Geographic Information Systems to Explore Land and Resource Access, Use, and Survivability in “No Man’s Land”, Cimarron County, Oklahoma. Ann. Am. Assoc. Geogr. 2021, 111, 1906–1930. [Google Scholar] [CrossRef]
- Schoderer, M.; Ott, M. Contested Water- and Miningscapes – Explaining the High Intensity of Water and Mining Conflicts in a Meta-Study. World Dev. 2022, 154, 105888. [Google Scholar] [CrossRef]
- Sullivan, D.; Young, I.F. Place Attachment Style as a Predictor of Responses to the Environmental Threat of Water Contamination. Environ. Behav. 2020, 52, 3–32. [Google Scholar] [CrossRef]
- Drenthen, M. Ecological Restoration and Place Attachment: Emplacing Non-Places? Environ. Values 2009, 18, 285–312. [Google Scholar] [CrossRef]
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The Challenge of Feeding the World. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef]
- World Bank Water In Agriculture. Available online: https://www.worldbank.org/en/topic/water-in-agriculture (accessed on 2 November 2024).
- Butsic, V.; Carah, J.K.; Baumann, M.; Stephens, C.; Brenner, J.C. The Emergence of Cannabis Agriculture Frontiers as Environmental Threats. Environ. Res. Lett. 2018, 13, 124017. [Google Scholar] [CrossRef]
- Canavan, S.; Brym, Z.T.; Brundu, G.; Dehnen-Schmutz, K.; Lieurance, D.; Petri, T.; Wadlington, W.H.; Wilson, J.R.U.; Flory, S.L. Cannabis De-Domestication and Invasion Risk. Biol. Conserv. 2022, 274, 109709. [Google Scholar] [CrossRef]
- Dillis, C.; McIntee, C.; Butsic, V.; Le, L.; Grady, K.; Grantham, T. Water Storage and Irrigation Practices for Cannabis Drive Seasonal Patterns of Water Extraction and Use in Northern California. J. Environ. Manag. 2020, 272, 110955. [Google Scholar] [CrossRef]
- Klassen, M.; Anthony, B.P. Legalization of Cannabis and Agricultural Frontier Expansion. Environ. Manag. 2022, 69, 333–352. [Google Scholar] [CrossRef]
- Gasteyer, S.P. Agricultural Transitions in the Context of Growing Environmental Pressure over Water. Agric. Hum. Values 2008, 25, 469–486. [Google Scholar] [CrossRef]
- Hinrichs, C.C. Transitions to Sustainability: A Change in Thinking about Food Systems Change? Agric. Hum. Values 2014, 31, 143–155. [Google Scholar] [CrossRef]
- Ingram, J. Agricultural Transition: Niche and Regime Knowledge Systems’ Boundary Dynamics. Environ. Innov. Soc. Transit. 2018, 26, 117–135. [Google Scholar] [CrossRef]
- Razzaq, A.; Kaur, P.; Akhter, N.; Wani, S.H.; Saleem, F. Next-Generation Breeding Strategies for Climate-Ready Crops. Front. Plant Sci. 2021, 12, 620420. [Google Scholar] [CrossRef] [PubMed]
- Zwartkruis, J.V.; Berg, H.; Hof, A.F.; Kok, M.T.J. Agricultural Nature Conservation in the Netherlands: Three Lenses on Transition Pathways. Technol. Forecast. Soc. Chang. 2020, 151, 119235. [Google Scholar] [CrossRef]
- Vicente-Vicente, J.L.; Quintas-Soriano, C.; López-Rodríguez, M.D. A Transformative (r)Evolution of the Research on Agriculture through Fostering Human-Nature Connectedness—A Special Issue Editorial. Agriculture 2022, 12, 522. [Google Scholar] [CrossRef]
- Zu Ermgassen, E.K.H.J.; Godar, J.; Lathuillière, M.J.; Löfgren, P.; Gardner, T.; Vasconcelos, A.; Meyfroidt, P. The Origin, Supply Chain, and Deforestation Risk of Brazil’s Beef Exports. Proc. Natl. Acad. Sci. USA 2020, 117, 31770–31779. [Google Scholar] [CrossRef]
- Galvan-Miyoshi, Y.; Simmons, C.; Walker, R.; Aranda Osorio, G.; Martinez Hernandez, P.; Maldonado-Simán, E.; Warf, B.; Astier, M.; Waylen, M. Globalized Supply Chains: Emergent Telecouplings in Mexico’s Beef Economy and Environmental Leakages. Glob. Environ. Chang. 2022, 74, 102486. [Google Scholar] [CrossRef]
- Mehrabi, S.; Perez-Mesa, J.C.; Giagnocavo, C. The Role of Consumer-Citizens and Connectedness to Nature in the Sustainable Transition to Agroecological Food Systems: The Mediation of Innovative Business Models and a Multi-Level Perspective. Agriculture 2022, 12, 203. [Google Scholar] [CrossRef]
- Peel, D.; Doye, D.; Ahearn, M. Drivers of Agricultural Transition. Choices 2013, 28, 1–6. [Google Scholar]
- Giagnocavo, C.; de Cara-García, M.; González, M.; Juan, M.; Marín-Guirao, J.I.; Mehrabi, S.; Rodríguez, E.; van der Blom, J.; Crisol-Martínez, E. Reconnecting Farmers with Nature through Agroecological Transitions: Interacting Niches and Experimentation and the Role of Agricultural Knowledge and Innovation Systems. Agriculture 2022, 12, 137. [Google Scholar] [CrossRef]
- Johnson, K. Rural America Lost Population Over the Past Decade for the First Time in History|Carsey School of Public Policy. Available online: https://carsey.unh.edu/publication/rural-america-lost-population-over-past-decade-first-time-history (accessed on 25 October 2024).
- World Cities Report 2016: Urbanization and Development—Emerging Futures|UN-Habitat. Available online: https://unhabitat.org/world-cities-report-2016 (accessed on 16 September 2024).
- Flörke, M.; Schneider, C.; McDonald, R.I. Water Competition between Cities and Agriculture Driven by Climate Change and Urban Growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munroe, D.K.; Olah, B.; Simon, D. Urban Land Teleconnections and Sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef] [PubMed]
- Cumming, G.S.; Buerkert, A.; Hoffmann, E.M.; Schlecht, E.; von Cramon-Taubadel, S.; Tscharntke, T. Implications of Agricultural Transitions and Urbanization for Ecosystem Services. Nature 2014, 515, 50–57. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Erb, K.; Meyfroidt, P.; Müller, D.; Verburg, P.H.; Estel, S.; Haberl, H.; Hostert, P.; Jepsen, M.R.; Kastner, T.; et al. Challenges and Opportunities in Mapping Land Use Intensity Globally. Curr. Opin. Environ. Sustain. 2013, 5, 484–493. [Google Scholar] [CrossRef]
- Zhu, Z.; Qiu, S.; Ye, S. Remote Sensing of Land Change: A Multifaceted Perspective. Remote Sens. Environ. 2022, 282, 113266. [Google Scholar] [CrossRef]
- Volk, J.M.; Huntington, J.L.; Melton, F.S.; Allen, R.; Anderson, M.; Fisher, J.B.; Kilic, A.; Ruhoff, A.; Senay, G.B.; Minor, B.; et al. Assessing the Accuracy of OpenET Satellite-Based Evapotranspiration Data to Support Water Resource and Land Management Applications. Nat. Water 2024, 2, 193–205. [Google Scholar] [CrossRef]
- Mashala, M.J.; Dube, T.; Mudereri, B.T.; Ayisi, K.K.; Ramudzuli, M.R. A Systematic Review on Advancements in Remote Sensing for Assessing and Monitoring Land Use and Land Cover Changes Impacts on Surface Water Resources in Semi-Arid Tropical Environments. Remote Sens. 2023, 15, 3926. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Ibrahim, A.; Wayayok, A.; Shafri, H.Z.M.; Toridi, N.M. Remote Sensing Technologies for Unlocking New Groundwater Insights: A Comprehensive Review. J. Hydrol. X 2024, 23, 100175. [Google Scholar] [CrossRef]
- WHO Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020: Five Years into the SDGs. Available online: https://www.who.int/publications/i/item/9789240030848 (accessed on 29 July 2024).
- Richey, A.S.; Thomas, B.F.; Lo, M.-H.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying Renewable Groundwater Stress with GRACE. Water Resour. Res. 2015, 51, 5217–5238. [Google Scholar] [CrossRef] [PubMed]
- Basara, J.B.; Maybourn, J.N.; Peirano, C.M.; Tate, J.E.; Brown, P.J.; Hoey, J.D.; Smith, B.R. Drought and Associated Impacts in the Great Plains of the United States—A Review. Int. J. Geosci. 2013, 4, 72–81. [Google Scholar] [CrossRef]
- NRDC Flooding Facts, Causes, and Prevention. Available online: https://www.nrdc.org/stories/flooding-and-climate-change-everything-you-need-know (accessed on 29 July 2024).
- Zamrsky, D.; Oude Essink, G.H.P.; Bierkens, M.F.P. Global Impact of Sea Level Rise on Coastal Fresh Groundwater Resources. Earth’s Future 2024, 12, e2023EF003581. [Google Scholar] [CrossRef]
- Adams, K.H.; Reager, J.T.; Rosen, P.; Wiese, D.N.; Farr, T.G.; Rao, S.; Haines, B.J.; Argus, D.F.; Liu, Z.; Smith, R.; et al. Remote Sensing of Groundwater: Current Capabilities and Future Directions. Water Resour. Res. 2022, 58, e2022WR032219. [Google Scholar] [CrossRef]
- Cooley, D.; Maxwell, R.M.; Smith, S.M. Center Pivot Irrigation Systems and Where to Find Them: A Deep Learning Approach to Provide Inputs to Hydrologic and Economic Models. Front. Water 2021, 3, 786016. [Google Scholar] [CrossRef]
- Fagin, T.D.; Wikle, T.A.; Mathews, A.J. Emerging Geospatial Technologies in Instruction and Research: An Assessment of U.S. and Canadian Geography Departments and Programs. Prof. Geogr. 2020, 72, 631–643. [Google Scholar] [CrossRef]
- Fagin, T.D.; Vadjunec, J.M.; Boardman, A.L.; Hinsdale, L.M. Use of Participatory sUAS in Resilient Socioecological Systems (SES) Research: A Review and Case Study from the Southern Great Plains, USA. Drones 2024, 8, 223. [Google Scholar] [CrossRef]
- Yua, E.; Raymond-Yakoubian, J.; Daniel, R.A.; Behe, C. A Framework for Co-Production of Knowledge in the Context of Arctic Research. Ecol. Soc. 2022, 27, 34. [Google Scholar] [CrossRef]
- Krupnik, I. Negotiating Co-Production: Climbing the Learning Curve. In Resilience Through Knowledge Co-Production: Indigenous Knowledge, Science, and Global Environmental Change; Roué, M.M., Nakashima, D., Krupnik, I., Eds.; Local & Indigenous Knowledge 3; Cambridge University Press: Cambridge, MA, USA; UNESCO: Paris, France, 2022. [Google Scholar]
- Schuttenberg, H.Z.; Guth, H.K. Seeking Our Shared Wisdom: A Framework for Understanding Knowledge Coproduction and Coproductive Capacities. Ecol. Soc. 2015, 20, 15. [Google Scholar] [CrossRef]
- Iwaniec, D.M.; Cook, E.M.; Davidson, M.J.; Berbés-Blázquez, M.; Georgescu, M.; Krayenhoff, E.S.; Middel, A.; Sampson, D.A.; Grimm, N.B. The Co-Production of Sustainable Future Scenarios. Landsc. Urban Plan. 2020, 197, 103744. [Google Scholar] [CrossRef]
- Jackson, S.D.; Mohr, J.J.; Kindahl, A.M. Intersectional Experiences: A Mixed Methods Experience Sampling Approach to Studying an Elusive Phenomenon. J. Couns. Psychol. 2021, 68, 299. [Google Scholar] [CrossRef] [PubMed]
- Gerlack, A.K.; Louder, E.; Ingram, H. Viewpoint: An Intersectional Approach to Water Equity in the US. Water Altern. 2022, 15, 1–12. [Google Scholar]
- Wilder, M.O.; Ingram, H. Knowing Equity When We See It. In The Oxford Handbook of Water Politics and Policy; Oxford University Press: Oxford, UK, 2018; pp. 49–75. ISBN 978-0-19-933508-4. [Google Scholar]
- Latulippe, N.; Klenk, N. Making Room and Moving over: Knowledge Co-Production, Indigenous Knowledge Sovereignty and the Politics of Global Environmental Change Decision-Making. Curr. Opin. Environ. Sustain. 2020, 42, 7–14. [Google Scholar] [CrossRef]
- Vadjunec, J.M.; Colston, N.M.; Fagin, T.D.; Boardman, A.L.; Birchler, B. Fostering Resilience and Adaptation to Drought in the Southern High Plains: Using Participatory Methods for More Robust Citizen Science. Sustainability 2022, 14, 1813. [Google Scholar] [CrossRef]
- Olvermann, M.; Hornung, J.; Kauffeld, S. “We Could Be Much Further Ahead” -Multidimensional Drivers and Barriers for Agricultural Transition. J. Rural Stud. 2023, 97, 153–166. [Google Scholar] [CrossRef]
- Tran, T.A.; Touch, V. How Agricultural Extension Responds to Amplified Agrarian Transitions in Mainland Southeast Asia: Experts’ Reflections. Agric. Hum. Values 2024. preprint. [Google Scholar] [CrossRef]
- Vaughn, L.M.; Jacquez, F. Participatory Research Methods—Choice Points in the Research Process. J. Particip. Res. Methods 2020, 1. [Google Scholar] [CrossRef]
- Macaulay, A.C.; Jagosh, J.; Seller, R.; Henderson, J.; Cargo, M.; Greenhalgh, T.; Wong, G.; Salsberg, J.; Green, L.W.; Herbert, C.P.; et al. Assessing the Benefits of Participatory Research: A Rationale for a Realist Review. Glob. Health Promot. 2011, 18, 45–48. [Google Scholar] [CrossRef]
- Fontaine, S.J. Integrating Community-Based Participatory Research into the Curriculum. J. High. Educ. Outreach Engagem. 2006, 11, 45–56. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadjunec, J.M.; Fagin, T.D.; Hinsdale, L.M.; Carrasco Galvan, G.B.; Baum, K.A. Deeper Engagement with Material and Non-Material Aspects of Water in Land System Science: An Introduction to the Special Issue. Land 2024, 13, 2095. https://doi.org/10.3390/land13122095
Vadjunec JM, Fagin TD, Hinsdale LM, Carrasco Galvan GB, Baum KA. Deeper Engagement with Material and Non-Material Aspects of Water in Land System Science: An Introduction to the Special Issue. Land. 2024; 13(12):2095. https://doi.org/10.3390/land13122095
Chicago/Turabian StyleVadjunec, Jacqueline M., Todd D. Fagin, Lanah M. Hinsdale, Georgina Belem Carrasco Galvan, and Kristen A. Baum. 2024. "Deeper Engagement with Material and Non-Material Aspects of Water in Land System Science: An Introduction to the Special Issue" Land 13, no. 12: 2095. https://doi.org/10.3390/land13122095
APA StyleVadjunec, J. M., Fagin, T. D., Hinsdale, L. M., Carrasco Galvan, G. B., & Baum, K. A. (2024). Deeper Engagement with Material and Non-Material Aspects of Water in Land System Science: An Introduction to the Special Issue. Land, 13(12), 2095. https://doi.org/10.3390/land13122095