Evaluating the Economic Efficiency of Fuel Reduction Treatments in Sagebrush Ecosystems That Vary in Ecological Resilience and Invasion Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dominant Sagebrush Associations
2.2. Treatment Response Groups
2.3. Generalized Treatment Response Models
2.4. Ecological Parameters
2.4.1. Succession Times
2.4.2. Parameterization Regions
2.4.3. Invasion Probabilities
2.4.4. Wildfire Probabilities
2.4.5. Post-Fire Response
2.5. Economic Parameters
2.5.1. Treatment Costs
2.5.2. Wildfire Suppression Costs
2.5.3. Additional Economic Benefits of Intact Sagebrush
2.6. Simulation
3. Results
3.1. Mountain Big Sagebrush
3.1.1. Ecological Outcomes
3.1.2. Economic Outcomes
3.2. Black Sagebrush
3.3. Low Sagebrush
4. Discussion
4.1. Modeling Limitations
4.2. Key Findings
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, J.T.; Allred, B.W.; Boyd, C.S.; Davies, K.W.; Jones, M.O.; Kleinhesselink, A.R.; Maestas, J.D.; Morford, S.L.; Naugle, D.E. The Elevational Ascent and Spread of Exotic Annual Grass Dominance in the Great Basin, USA. Divers. Distrib. 2022, 28, 83–96. [Google Scholar] [CrossRef]
- Miller, R.F.; Tausch, R.J.; McArthur, E.D.; Johnson, D.D.; Sanderson, S.C. Age Structure and Expansion of Piñon-Juniper Woodlands: A Regional Perspective in the Intermountain West; RMRS-RP-69, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2008. [Google Scholar] [CrossRef]
- Miller, R.F.; Chambers, J.C.; Evers, L.; Williams, C.J.; Snyder, K.A.; Roundy, B.A.; Pierson, F.B. The Ecology, History, Ecohydrology, and Management of Pinyon and Juniper Woodlands in the Great Basin and Northern Colorado Plateau of the Western United States; RMRS-GTR-403, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ft. Collins, CO, USA, 2019. [Google Scholar] [CrossRef]
- Doherty, K.E.; Theobald, D.M.; Bradford, J.B.; Wiechman, L.A.; Bedrosian, G.; Boyd, C.S.; Cahill, M.; Coates, P.S.; Creutzburg, M.K.; Crist, M.R.; et al. A Sagebrush Conservation Design to Proactively Restore America’s Sagebrush Biome; Open-File Report 2022-1081; U.S. Geological Survey: Reston, VA, USA, 2022. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; D’Antonio, C.M.; Gómez-Dans, J. Introduced Annual Grass Increases Regional Fire Activity across the Arid Western USA (1980-2009). Glob. Chang. Biol. 2013, 19, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Bradley, B.A.; Curtis, C.A.; Fusco, E.J.; Abatzoglou, J.T.; Balch, J.K.; Dadashi, S.; Tuanmu, M.-N. Cheatgrass (Bromus tectorum) Distribution in the Intermountain Western United States and Its Relationship to Fire Frequency, Seasonality, and Ignitions. Biol. Invasions 2018, 20, 1493–1506. [Google Scholar] [CrossRef]
- Miller, R.F.; Chambers, J.C.; Pyke, D.A.; Pierson, F.B.; Williams, C.J. A Review of Fire Effects on Vegetation and Soils in the Great Basin Region: Response and Ecological Site Characteristics; RMRS-GTR-308, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ft. Collins, CO, USA, 2013. [Google Scholar] [CrossRef]
- Strand, E.K.; Bunting, S.C.; Keefe, R.F. Influence of Wildland Fire Along a Successional Gradient in Sagebrush Steppe and Western Juniper Woodlands. Rangel. Ecol. Manag. 2013, 66, 667–679. [Google Scholar] [CrossRef]
- Williams, C.L.; Ellsworth, L.M.; Strand, E.K.; Reeves, M.C.; Shaff, S.E.; Short, K.C.; Chambers, J.C.; Newingham, B.A.; Tortorelli, C. Fuel Treatments in Shrublands Experiencing Pinyon and Juniper Expansion Result in Trade-Offs between Desired Vegetation and Increased Fire Behavior. Fire Ecol. 2023, 19, 46. [Google Scholar] [CrossRef]
- Briske, D.D.; Bestelmeyer, B.T.; Stringham, T.K.; Shaver, P.L. Recommendations for Development of Resilience-Based State-and-Transition Models. Rangel. Ecol. Manag. 2008, 61, 359–367. [Google Scholar] [CrossRef]
- Chambers, J.C.; Miller, R.F.; Board, D.I.; Pyke, D.A.; Roundy, B.A.; Grace, J.B.; Schupp, E.W.; Tausch, R.J. Resilience and Resistance of Sagebrush Ecosystems: Implications for State and Transition Models and Management Treatments. Rangel. Ecol. Manag. 2014, 67, 440–454. [Google Scholar] [CrossRef]
- Chambers, J.C.; Brooks, M.L.; Germino, M.J.; Maestas, J.D.; Board, D.I.; Jones, M.O.; Allred, B.W. Operationalizing Resilience and Resistance Concepts to Address Invasive Grass-Fire Cycles. Front. Ecol. Evol. 2019, 7, 185. [Google Scholar] [CrossRef]
- Chenoweth, D.A.; Schlaepfer, D.R.; Chambers, J.C.; Brown, J.L.; Urza, A.K.; Hanberry, B.; Board, D.; Crist, M.; Bradford, J.B. Ecologically Relevant Moisture and Temperature Metrics for Assessing Dryland Ecosystem Dynamics. Ecohydrology 2023, 16, e2509. [Google Scholar] [CrossRef]
- Chambers, J.C.; Brown, J.L.; Bradford, J.B.; Board, D.I.; Campbell, S.B.; Clause, K.J.; Hanberry, B.; Schlaepfer, D.R.; Urza, A.K. New Indicators of Ecological Resilience and Invasion Resistance to Support Prioritization and Management in the Sagebrush Biome, United States. Front. Ecol. Evol. 2023, 10, 1009268. [Google Scholar] [CrossRef]
- Ellsworth, L.M.; Newingham, B.A.; Shaff, S.E.; Williams, C.L.; Strand, E.K.; Reeves, M.; Pyke, D.A.; Schupp, E.W.; Chambers, J.C. Fuel Reduction Treatments Reduce Modeled Fire Intensity in the Sagebrush Steppe. Ecosphere 2022, 13, e4064. [Google Scholar] [CrossRef]
- Taylor, M.H.; Rollins, K.; Kobayashi, M.; Tausch, R.J. The Economics of Fuel Management: Wildfire, Invasive Plants, and the Dynamics of Sagebrush Rangelands in the Western United States. J. Environ. Manag. 2013, 126, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.H.; Sanchez Meador, A.J.; Kim, Y.-S.; Rollins, K.; Will, H. The Economics of Ecological Restoration and Hazardous Fuel Reduction Treatments in the Ponderosa Pine Forest Ecosystem. For. Sci. 2015, 61, 988–1008. [Google Scholar] [CrossRef]
- Chambers, J.C.; Brown, J.L.; Reeves, M.C.; Strand, E.K.; Ellsworth, L.M.; Torterelli, C.M.; Urza, A.K.; Short, K.C. Fuel Treatment Response Groups for Fire-Prone Sagebrush Landscapes. Fire Ecol. 2023, 19, 70. [Google Scholar] [CrossRef]
- Chambers, J.C.; Strand, E.K.; Ellsworth, L.M.; Tortorelli, C.M.; Urza, A.K.; Crist, M.R.; Miller, R.F.; Reeves, M.C.; Short, K.C.; Williams, C.L. Review of Fuel Treatment Effects on Fuels, Fire Behavior and Ecological Resilience in Sagebrush (Artemisia spp.) Ecosystems in the Western U.S. Fire Ecol. 2024, 20, 32. [Google Scholar] [CrossRef]
- Chambers, J.C.; Beck, J.L.; Bradford, J.B.; Bybee, J.; Campbell, S.; Carlson, J.; Christiansen, T.J.; Clause, K.J.; Collins, G.; Crist, M.R.; et al. Science Framework for Conservation and Restoration of the Sagebrush Biome: Linking the Department of the Interior’s Integrated Rangeland Fire Management Strategy to Long-Term Strategic Conservation Actions; RMRS-GTR-360, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ft. Collins, CO, USA, 2017. [Google Scholar] [CrossRef]
- Davies, K.W.; Leger, E.A.; Boyd, C.S.; Hallett, L.M. Living with Exotic Annual Grasses in the Sagebrush Ecosystem. J. Environ. Manag. 2021, 288, 112417. [Google Scholar] [CrossRef]
- Boyte, S.P.; Wylie, B.K.; Major, D.J. Cheatgrass Percent Cover Change: Comparing Recent Estimates to Climate Change−Driven Predictions in the Northern Great Basin. Rangel. Ecol. Manag. 2016, 69, 265–279. [Google Scholar] [CrossRef]
- Bradley, B.A.; Curtis, C.A.; Chambers, J.C. Bromus Response to Climate and Projected Changes with Climate Change. In Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US.; Germino, M.J., Chambers, J.C., Brown, C.S., Eds.; Springer: Cham, Switzerland, 2016; pp. 257–274. ISBN 978-3-319-24928-5. [Google Scholar]
- LANDFIRE. Biophysical Setting Description, 11260_6_12_17_18_28, Inter-Mountain Basins Montane Sagebrush Steppe, August 2020. In LANDFIRE Biophysical Setting Models and Descriptions; LANDFIRE, U.S. Department of Agriculture, Forest Service, U.S. Department of the Interior, U.S. Geological Survey: Washington, DC, USA; The Nature Conservancy: Arlington, VA, USA, 2020. Available online: https://www.landfire.gov/sites/default/files/zip/LANDFIRE_CONUS-HI_BpS_Descriptions_Jan2023.zip (accessed on 6 November 2024).
- LANDFIRE. Biophysical Setting Description, 10790_6_9_10_12_16_17_18, Great Basin Xeric Mixed-Sagebrush Shrubland, August 2020. In LANDFIRE Biophysical Setting Models and Descriptions; LANDFIRE, U.S. Department of Agriculture, Forest Service, U.S. Department of the Interior, U.S. Geological Survey: Washington, DC, USA; The Nature Conservancy: Arlington, VA, USA, 2020. Available online: https://www.landfire.gov/sites/default/files/zip/LANDFIRE_CONUS-HI_BpS_Descriptions_Jan2023.zip (accessed on 6 November 2024).
- LANDFIRE. Biophysical Setting Description, 10190_6_7_9_12_16_17_18_19, Great Basin Pinyon-Juniper Woodland, August 2020. In LANDFIRE Biophysical Setting Models and Descriptions; LANDFIRE, U.S. Department of Agriculture, Forest Service, U.S. Department of the Interior, U.S. Geological Survey: Washington, DC, USA; The Nature Conservancy: Arlington, VA, USA, 2020. Available online: https://www.landfire.gov/sites/default/files/zip/LANDFIRE_CONUS-HI_BpS_Descriptions_Jan2023.zip (accessed on 6 November 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Hijmans, R.J. Terra: Spatial Data Analysis. 2023. Available online: https://CRAN.R-project.org/package=terra (accessed on 6 November 2024).
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439. [Google Scholar] [CrossRef]
- LANDFIRE Biophysical Settings (BpS) CONUS, LF 2020. LANDFIRE. LANDFIRE, Earth Resources Observation and Science Center (EROS), U.S. Geological Survey. Available online: https://www.landfire.gov/viewer/ (accessed on 6 November 2024).
- Allred, B.W.; Bestelmeyer, B.T.; Boyd, C.S.; Brown, C.; Davies, K.W.; Duniway, M.C.; Ellsworth, L.M.; Erickson, T.A.; Fuhlendorf, S.D.; Griffiths, T.V.; et al. Improving Landsat Predictions of Rangeland Fractional Cover with Multitask Learning and Uncertainty. Methods Ecol. Evol. 2021, 12, 841–849. [Google Scholar] [CrossRef]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S. A Project for Monitoring Trends in Burn Severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Short, K.C.; Dillon, G.K.; Scott, J.H.; Vogler, K.C.; Jaffe, M.R.; Olszewski, J.H.; Finney, M.A.; Riley, K.L.; Grenfell, I.C.; Jolly, W.M.; et al. Spatial Datasets of Probabilistic Wildfire Risk Components for the Sagebrush Biome (270 m); Forest Service Ressearch Data Archive: Fort Collins, CO, USA, 2023. [Google Scholar] [CrossRef]
- Strand, E.K.; Bunting, S.C. Effects of Pre-Fire Vegetation on the Post-Fire Plant Community Response to Wildfire along a Successional Gradient in Western Juniper Woodlands. Fire 2023, 6, 141. [Google Scholar] [CrossRef]
- Natural Resources Conservation Service (NRCS). Environmental Quality Incentives Program Nevada EQIP 2023 Payment Rates 2023. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-11/Nevada-EQIP-23-payment-rates.pdf (accessed on 6 November 2024).
- Gebert, K.M.; Calkin, D.E.; Yoder, J. Estimating Suppression Expenditures for Individual Large Wildland Fires. West. J. Appl. For. 2007, 22, 188–196. [Google Scholar] [CrossRef]
- U.S. Bureau of Economic Analysis. Government Consumption Expenditures and Gross Investment: Federal: Nondefense (Chain-Type Price Index). FRED. Federal Reserve Bank of St. Louis. Available online: https://fred.stlouisfed.org/series/B825RG3A086NBEA (accessed on 6 November 2024).
- Anderson, H.E. Aids to Determining Fuel Models for Estimating Fire Behavior; INT-GTR-122, U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1982. [Google Scholar] [CrossRef]
- Cornachione, E.C.; Stringham, T.K.; Taylor, M.H. Valuing Ecosystem Services of Rangeland Restoration: A Case Study of Pinyon Juniper Removal in Central Nevada; M.S. Professional Paper; Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno: Reno, NV, USA, 2023; In preparation. [Google Scholar]
- Loomis, J.B. Integrated Public Lands Management: Principles and Applications to National Forests, Parks, Wildlife Refuges, and BLM Lands, 2nd ed.; Columbia University Press: New York, NY, USA, 2002; ISBN 978-0-231-50558-1. [Google Scholar]
- Creutzburg, M.K.; Halofsky, J.S.; Hemstrom, M.A. Using State-and-Transition Models to Project Cheatgrass and Juniper Invasion in Southeastern Oregon Sagebrush Steppe. In Proceedings of the First Landscape State-and-Transition Simulation Modeling Conference, Portland, OR, USA, 14–16 June 2011; PNW-GTR-869. U.S. Department of Agriculture, Forest Service, Pacific Northwets Research Station: Portland, OR, USA, 2012. [Google Scholar] [CrossRef]
- Doherty, K.E.; Boyd, C.S.; Kerby, J.D.; Sitz, A.L.; Foster, L.J.; Cahill, M.C.; Johnson, D.D.; Sparklin, B.D. Threat-Based State and Transition Models Predict Sage-Grouse Occurrence While Promoting Landscape Conservation. Wildl. Soc. Bull. 2021, 45, 473–487. [Google Scholar] [CrossRef]
- Evers, L.B.; Miller, R.F.; Doescher, P.S.; Hemstrom, M.; Neilson, R.P. Simulating Current Successional Trajectories in Sagebrush Ecosystems With Multiple Disturbances Using a State-and-Transition Modeling Framework. Rangel. Ecol. Manag. 2013, 66, 313–329. [Google Scholar] [CrossRef]
- Provencher, L.; Frid, L.; Czembor, C.; Morisette, J.T. State-and-Transition Models: Conceptual Versus Simulation Perspectives, Usefulness and Breadth of Use, and Land Management Applications. In Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US.; Germino, M.J., Chambers, J.C., Brown, C.S., Eds.; Springer: Cham, Switzerland, 2016; pp. 371–407. ISBN 978-3-319-24928-5. [Google Scholar]
- LANDFIRE. Biophysical Setting Description, 11240_10_12_17_18_19_21, Columbia Plateau Low Sagebrush Steppe, August 2020. In LANDFIRE Biophysical Setting Models and Descriptions; LANDFIRE, U.S. Department of Agriculture, Forest Service, U.S. Department of the Interior, U.S. Geological Survey: Washington, DC, USA; The Nature Conservancy: Arlington, VA, USA, 2020. Available online: https://www.landfire.gov/sites/default/files/zip/LANDFIRE_CONUS-HI_BpS_Descriptions_Jan2023.zip (accessed on 6 November 2024).
Treatment Response Group (TRG) | ||||
---|---|---|---|---|
Dominant Sagebrush Association | RSL | RST | Area of TRG Suitable for Treatment in 2020 (sq. km) | Relative Size of Area of TRG Suitable for Treatment in 2020 (%) |
Mountain big sagebrush | M | M | 12,266 | 45.7 |
Mountain big sagebrush | H+MH | H+MH | 6491 | 24.2 |
Mountain big sagebrush | M | ML | 3455 | 12.9 |
Black sagebrush | ML | ML | 1804 | 60.3 |
Black sagebrush | M | ML | 559 | 18.7 |
Black sagebrush | M | M | 418 | 14.0 |
Low sagebrush | M | M | 1521 | 52.7 |
Low sagebrush | ML | ML | 504 | 17.5 |
Low sagebrush | ML | M | 416 | 14.4 |
Treatment Response Group | Low Invasion Succession Times (Years) | ||||||
---|---|---|---|---|---|---|---|
Dominant Sagebrush Association | RSL | RST | S1 to S2 | S2 to P1 | P1 to P2 | P2 to P3 | Mod–High Multiplier |
Mountain big sagebrush | H+MH | H+MH | 20 | 50 | 45 | 51 | 1 |
Mountain big sagebrush | M | M | 12 | 38 | 30 | 45 | 1.5 |
Mountain big sagebrush | M | ML | 15 | 45 | 40 | 51 | 2 |
Black sagebrush | M | M | 24 | 96 | 75 | 50 | 1.5 |
Black sagebrush | M | ML | 29 | 101 | 80 | 55 | 2 |
Black sagebrush | ML | ML | 34 | 106 | 85 | 60 | 2.5 |
Low sagebrush | M | M | 24 | 96 | 75 | 50 | 1.5 |
Low sagebrush | ML | M | 29 | 101 | 80 | 55 | 1.5 |
Low sagebrush | ML | ML | 34 | 106 | 85 | 60 | 2.5 |
Dominant Sagebrush Association | Minimum Shrub Cover for S2 | Minimum Tree Cover for P1 | Minimum Tree Cover for P2 | Minimum Tree Cover for P3 | Minimum Annual Cover for Mod–High Invasion | Minimum Annual Cover for Annual Grass Dominant |
---|---|---|---|---|---|---|
Mountain big sagebrush | 5% | 1% | 10% | 30% | 8% | 50% |
Black sagebrush | 6% | 1% | 10% | 20% | 8% | 30% |
Low sagebrush | 6% | 1% | 10% | 20% | 8% | 30% |
Treatment Response Group | Probability of Annual Grass Invasion by Model Phase | ||||||
---|---|---|---|---|---|---|---|
Dominant Sagebrush Type | RSL | RST | S1 Low | S2 Low | P1 Low | P2 Low | P3 Low |
Mountain big sagebrush | H+MH | H+MH | 0.004 (21,044) | 0.012 (2,568,187) | 0.007 (1,685,481) | 0.002 (175,657) | 0.000 (26,358) |
Mountain big sagebrush | M | M | 0.019 (10,305) | 0.027 (4,114,602) | 0.014 (1,765,492) | 0.002 (464,496) | 0.000 (178,968) |
Mountain big sagebrush | M | ML | 0.018 (6496) | 0.032 (959,098) | 0.017 (605,670) | 0.002 (353,119) | 0.000 (174,754) |
Black sagebrush | M | M | 0.005 (101) | 0.025 (272,357) | 0.007 (143,919) | 0.001 (121,974) | 0.000 (288,977) |
Black sagebrush | M | ML | 0.002 (145) | 0.022 (184,577) | 0.007 (360,624) | 0.001 (272,130) | 0.000 (592,077) |
Black sagebrush | ML | ML | 0.001 (1092) | 0.030 (466,836) | 0.010 (1,064,943) | 0.002 (886,006) | 0.001 (2,538,017) |
Low sagebrush | M | M | 0.010 (224) | 0.026 (3,508,371) | 0.014 (324,123) | 0.005 (63,614) | 0.002 (40,363) |
Low sagebrush | ML | M | 0.004 (249) | 0.033 (859,610) | 0.015 (111,744) | 0.004 (21,270) | 0.002 (15,664) |
Low sagebrush | ML | ML | 0.001 (631) | 0.016 (1,396,097) | 0.009 (138,317) | 0.004 (16,677) | 0.001 (17,822) |
Treatment Response Group | Yearly Burn Probability by Model Phase | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dominant Sagebrush Association | RSL | RST | S1 Low | S2 Low | P1 Low | P2 Low | P3 Low | S1 High | S2 High | P1 High | P2 High | P3 High | AGD |
Mountain big sagebrush | H+MH | H+MH | 0.002 (6576) | 0.009 (637,954) | 0.014 (3,044,988) | 0.014 (152,195) | 0.006 (55,769) | 0.013 (8345) | 0.018 (692,014) | 0.019 (1,794,137) | 0.017 (19,279) | 0.018 (1566) | 0.018 (13,115) |
Mountain big sagebrush | M | M | 0.010 (12,062) | 0.012 (1,016,675) | 0.015 (2,620,086) | 0.011 (296,685) | 0.005 (403,806) | 0.018 (123,998) | 0.018 (3,267,612) | 0.022 (3,501,617) | 0.020 (44,920) | 0.017 (5527) | 0.024 (160,501) |
Mountain big sagebrush | M | ML | 0.008 (8497) | 0.010 (266,122) | 0.014 (592,957) | 0.006 (213,947) | 0.005 (367,142) | 0.019 (107,790) | 0.019 (971,881) | 0.019 (1,208,102) | 0.015 (24,761) | 0.014 (4160) | 0.018 (257,337) |
Black sagebrush | M | M | 0.018 (82) | 0.007 (103,337) | 0.007 (89,363) | 0.005 (15,022) | 0.005 (465,925) | 0.024 (1525) | 0.011 (172,359) | 0.011 (69,847) | 0.009 (1316) | 0.009 (12,170) | 0.019 (1,320,757) |
Black sagebrush | M | ML | 0.010 (230) | 0.006 (58,554) | 0.005 (224,592) | 0.003 (77,636) | 0.005 (919,126) | 0.018 (1056) | 0.011 (73,203) | 0.007 (128,906) | 0.006 (5622) | 0.010 (30,137) | 0.018 (491,922) |
Black sagebrush | ML | ML | 0.017 (2353) | 0.006 (140,552) | 0.005 (650,619) | 0.005 (383,213) | 0.006 (3,323,369) | 0.019 (1363) | 0.009 (146,812) | 0.006 (610,874) | 0.008 (39,776) | 0.010 (95,451) | 0.012 (452,398) |
Low sagebrush | M | M | 0.009 (1417) | 0.005 (1,501,118) | 0.007 (439,902) | 0.006 (19,582) | 0.012 (75,559) | 0.018 (29,329) | 0.008 (2,429,600) | 0.011 (767,550) | 0.012 (3221) | 0.015 (7676) | 0.019 (1,320,757) |
Low sagebrush | ML | M | 0.002 (151) | 0.003 (244,800) | 0.005 (157,516) | 0.004 (10,472) | 0.005 (22,851) | 0.014 (1586) | 0.005 (514,363) | 0.008 (255,869) | 0.005 (1384) | 0.005 (626) | 0.011 (152,977) |
Low sagebrush | ML | ML | 0.000 (1118) | 0.004 (827,868) | 0.004 (203,109) | 0.005 (6543) | 0.006 (21,458) | 0.013 (4615) | 0.006 (667,988) | 0.007 (180,846) | 0.007 (862) | 0.007 (527) | 0.012 (452,398) |
Initial Model Phase | |||||||||
---|---|---|---|---|---|---|---|---|---|
S2 | S2 | S2 | P1 | P1 | P1 | P2 | P2 | P2 | |
RSL/RST | |||||||||
H+MH/ H+MH | M/M | M/ML | H+MH/ H+MH | M/M | M/ML | H+MH/ H+MH | M/M | M/ML | |
No Treat: Proportion of simulation runs ending in low invasion model phases | 0.29 | 0.15 | 0.12 | 0.42 | 0.34 | 0.37 | 0.62 | 0.54 | 0.59 |
No Treat: Proportion of simulation runs ending in mod–high invasion model phases | 0.68 | 0.69 | 0.68 | 0.53 | 0.53 | 0.51 | 0.34 | 0.36 | 0.32 |
No Treat: Proportion of simulation runs ending in annual grass-dominated model phase | 0.04 | 0.16 | 0.20 | 0.05 | 0.13 | 0.13 | 0.04 | 0.10 | 0.08 |
No Treat: Proportion of simulation runs ending in sagebrush model phases | 0.62 | 0.55 | 0.57 | 0.54 | 0.44 | 0.46 | 0.42 | 0.32 | 0.32 |
No Treat: Proportion of simulation runs ending in woodland model phases | 0.34 | 0.29 | 0.23 | 0.41 | 0.43 | 0.41 | 0.54 | 0.58 | 0.59 |
No Treat: Mean total number of wildfires | 1.33 | 1.67 | 1.63 | 1.28 | 1.43 | 1.28 | 1.00 | 1.01 | 0.81 |
Treat: Proportion of simulation runs ending in low invasion model phases | 0.31 | 0.04 | 0.03 | 0.32 | 0.04 | 0.04 | 0.31 | 0.04 | 0.03 |
Treat: Proportion of simulation runs ending in mod–high invasion model phases | 0.65 | 0.76 | 0.75 | 0.65 | 0.76 | 0.74 | 0.65 | 0.76 | 0.75 |
Treat: Proportion of simulation runs ending in annual grass-dominated model phase | 0.03 | 0.20 | 0.22 | 0.03 | 0.20 | 0.22 | 0.03 | 0.20 | 0.22 |
Treat: Proportion of simulation runs ending in sagebrush model phases | 0.81 | 0.63 | 0.68 | 0.81 | 0.62 | 0.68 | 0.81 | 0.62 | 0.68 |
Treat: Proportion of simulation runs ending in woodland model phases | 0.16 | 0.18 | 0.10 | 0.16 | 0.18 | 0.10 | 0.16 | 0.18 | 0.10 |
Treat: Mean total number of wildfires | 0.99 | 1.64 | 1.59 | 1.00 | 1.64 | 1.59 | 1.00 | 1.64 | 1.57 |
Initial Model Phase | |||||||||
---|---|---|---|---|---|---|---|---|---|
S2 | S2 | S2 | P1 | P1 | P1 | P2 | P2 | P2 | |
RSL/RST | |||||||||
H+MH/ H+MH | M/M | M/ML | H+MH/ H+MH | M/M | M/ML | H+MH/ H+MH | M/M | M/ML | |
No Treat: Mean cost of wildfire suppression per hectare (USD; PV) | 268.92 | 341.77 | 305.37 | 357.19 | 376.76 | 320.08 | 319.03 | 280.16 | 200.98 |
Treat: Mean cost of wildfire suppression per hectare (USD; PV) | 121.58 | 225.88 | 190.27 | 130.26 | 231.99 | 193.01 | 129.67 | 226.86 | 191.73 |
Treat: Mean wildfire suppression cost savings per hectare (USD; NPV) | 147.34 | 115.89 | 115.10 | 226.93 | 144.76 | 127.07 | 189.36 | 53.30 | 9.25 |
Treat: Mean PJ removal benefits per hectare (USD) | 98.57 | 72.32 | 59.27 | 257.83 | 199.56 | 201.59 | 270.09 | 208.89 | 215.40 |
Treat: Mean combined benefits per hectare (USD) | 245.91 | 188.21 | 174.38 | 484.76 | 344.33 | 328.66 | 459.45 | 262.19 | 224.65 |
Treat: Mean number of treatments | 1.32 | 1.16 | 1.10 | 1.31 | 1.16 | 1.09 | 1.31 | 1.16 | 1.10 |
Treat: Mean cost of treatment per hectare (USD; PV) | 42.26 | 42.14 | 41.30 | 42.06 | 41.94 | 41.17 | 42.08 | 42.12 | 41.46 |
Treat: Mean benefit–cost ratio (wildfire costs only) | 3.49 | 2.75 | 2.79 | 5.40 | 3.45 | 3.09 | 4.50 | 1.27 | 0.22 |
Treat: Mean benefit–cost ratio (total benefits) | 5.82 | 4.47 | 4.22 | 11.52 | 8.21 | 7.98 | 10.92 | 6.22 | 5.42 |
Initial Model Phase | ||||||
---|---|---|---|---|---|---|
P1 | P1 | P1 | P2 | P2 | P2 | |
RSL/RST | ||||||
M/M | M/ML | ML/ML | M/M | M/ML | ML/ML | |
No Treat: Proportion of simulation runs ending in low invasion model phases | 0.48 | 0.53 | 0.41 | 0.67 | 0.68 | 0.56 |
No Treat: Proportion of simulation runs ending in annual grass-dominated model phase | 0.18 | 0.12 | 0.17 | 0.12 | 0.12 | 0.17 |
Treat: Proportion of simulation runs ending in low invasion model phases | 0.05 | 0.08 | 0.04 | 0.05 | 0.08 | 0.04 |
Treat: Proportion of simulation runs ending in annual grass-dominated model phase | 0.36 | 0.27 | 0.33 | 0.36 | 0.27 | 0.33 |
No Treat: Mean cost of wildfire suppression per hectare (USD; PV) | 216.31 | 147.68 | 170.85 | 178.24 | 155.80 | 203.51 |
Treat: Mean cost of wildfire suppression per hectare (USD; PV) | 192.57 | 161.64 | 156.96 | 187.75 | 162.13 | 157.81 |
Treat: Mean wildfire suppression cost savings per hectare (USD; NPV) | 23.74 | −13.96 | 13.89 | −9.51 | −6.33 | 45.70 |
Treat: Mean benefit–cost ratio (wildfire costs only) | 0.04 | −0.02 | 0.02 | −0.01 | −0.01 | 0.07 |
Initial Model Phase | ||||||
---|---|---|---|---|---|---|
P1 | P1 | P1 | P2 | P2 | P2 | |
RSL/RST | ||||||
M/M | ML/M | ML/ML | M/M | ML/M | ML/ML | |
No Treat: Proportion of simulation runs ending in low invasion model phases | 0.29 | 0.32 | 0.43 | 0.39 | 0.54 | 0.58 |
No Treat: Proportion of simulation runs ending in annual grass-dominated model phase | 0.14 | 0.15 | 0.16 | 0.18 | 0.14 | 0.11 |
Treat: Proportion of simulation runs ending in low invasion model phases | 0.05 | 0.03 | 0.17 | 0.05 | 0.03 | 0.16 |
Treat: Proportion of simulation runs ending in annual grass-dominated model phase | 0.20 | 0.23 | 0.15 | 0.19 | 0.23 | 0.15 |
No Treat: Mean cost of wildfire suppression per hectare (USD; PV) | 237.56 | 156.86 | 148.33 | 295.93 | 156.95 | 187.71 |
Treat: Mean cost of wildfire suppression per hectare (USD; PV) | 142.71 | 92.72 | 95.00 | 139.98 | 91.03 | 91.28 |
Treat: Mean wildfire suppression cost savings per hectare (USD; NPV) | 94.85 | 64.14 | 53.34 | 155.95 | 65.92 | 96.43 |
Treat: Mean benefit–cost ratio (wildfire costs only) | 0.14 | 0.09 | 0.08 | 0.23 | 0.10 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bridges-Lyman, T.A.; Brown, J.L.; Chambers, J.C.; Ellsworth, L.M.; Reeves, M.C.; Short, K.C.; Strand, E.K.; Taylor, M.H. Evaluating the Economic Efficiency of Fuel Reduction Treatments in Sagebrush Ecosystems That Vary in Ecological Resilience and Invasion Resistance. Land 2024, 13, 2131. https://doi.org/10.3390/land13122131
Bridges-Lyman TA, Brown JL, Chambers JC, Ellsworth LM, Reeves MC, Short KC, Strand EK, Taylor MH. Evaluating the Economic Efficiency of Fuel Reduction Treatments in Sagebrush Ecosystems That Vary in Ecological Resilience and Invasion Resistance. Land. 2024; 13(12):2131. https://doi.org/10.3390/land13122131
Chicago/Turabian StyleBridges-Lyman, Thomas A., Jessi L. Brown, Jeanne C. Chambers, Lisa M. Ellsworth, Matthew C. Reeves, Karen C. Short, Eva K. Strand, and Michael H. Taylor. 2024. "Evaluating the Economic Efficiency of Fuel Reduction Treatments in Sagebrush Ecosystems That Vary in Ecological Resilience and Invasion Resistance" Land 13, no. 12: 2131. https://doi.org/10.3390/land13122131
APA StyleBridges-Lyman, T. A., Brown, J. L., Chambers, J. C., Ellsworth, L. M., Reeves, M. C., Short, K. C., Strand, E. K., & Taylor, M. H. (2024). Evaluating the Economic Efficiency of Fuel Reduction Treatments in Sagebrush Ecosystems That Vary in Ecological Resilience and Invasion Resistance. Land, 13(12), 2131. https://doi.org/10.3390/land13122131