Land Management Drifted: Land Use Scenario Modeling of Trancura River Basin, Araucanía, Chile
Abstract
:1. Introduction
1.1. Land, State and Rescaling
1.2. Land Use (Mis) Management in Chile
2. Materials and Methods
2.1. Study Area
2.2. Qualitative Data
2.3. Data and Model Calibration
2.4. Translating Qualitative Data into Models
2.5. Scenario Modeling
3. Results
3.1. Rescaled state Management Dynamics
3.2. Scenario-Narratives
3.2.1. Agroecology
“That is the future bet, and this is the good way of living. I believe that deep down, these are Mapuche cultural concepts. Good living has to do with harmony with the environment, with respect for what we call in Wingka femün biodiversity, while in Mapudungun, we call it Itrofill Mogen”.
3.2.2. Parcelopoly
“Today we are also experiencing a real estate phenomenon where many real estate companies are also arriving lotting of 200 plots, 250 plots in the headwaters of the basin, places where there is primary forest. And this is basically in what we call the Parcelapolis, the Parcelopolis, which are places where there is a large concentration of population without basic services, where there is no electricity, where there is no sewage system, and they are, as I said, practically virgin headwaters of the basin”.
3.2.3. Like in Pucón
“the Pucón municipality, I feel that they destroyed their environment, that is, was heavily exploited, unleashed it, and profited from everything they wanted”.
3.3. Modeling Results
4. Discussion
4.1. Modeling Process
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Land Cover Description
Appendix A.2. Local Actors Questionnaire
Appendix A.3. State Officials Questionnaire
Appendix B. Modeling Parameters
CALIBRATION PARAMETERS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TRANSITION MATRIX | |||||||||||
Change 2004/2050 | Nat. Forest | Built-up | Tree Farms | Shrubland | Grassland | Fruit Farm | Snow/Ice | Bare Land | CONVERSION ELASTICITY | ||
Nat. Forest | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0.2 | ||
Built-up | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
Tree Farms | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0.9 | ||
Shrubland | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0.2 | ||
Grassland | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0.3 | ||
Fruit Farm | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0.6 | ||
Snow/Ice | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.7 | ||
Bare Land | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0.4 | ||
DEMAND | |||||||||||
t0 | 2004 | 116,625 | 468 | 5271 | 22,019 | 10,415 | 408 | 2641 | 8980 | ||
t0<n>1 | 2005–2017 | (…) | (…) | (…) | (…) | (…) | (…) | (…) | (…) | ||
t1 | 2018 | 115,608 | 1096 | 822 | 24,712 | 10,004 | 1564 | 2319 | 10702 | ||
t1<n>2 | 2019–2049 | (…) | (…) | (…) | (…) | (…) | (…) | (…) | (…) | ||
t2 | 2050 | 110,768 | 2492 | 585 | 26,041 | 9823 | 2539 | 1979 | 12,601 | ||
% | 66.4% | 1.5% | 0.4% | 15.6% | 5.9% | 1.5% | 1.2% | 7.6% |
2004/2018 | Native Forest | Built-Up | Tree Farms | Shrubland | Grassland | Fruit Farm | Snow/Ice | Bare Land |
---|---|---|---|---|---|---|---|---|
Native Forest | 88.93% | 0.24% | 0.41% | 8.72% | 1.17% | 0.21% | 0.00% | 0.33% |
Built-up | 12.50% | 12.50% | 12.50% | 12.50% | 12.50% | 12.50% | 12.50% | 12.50% |
Tree Farms | 50.85% | 1.96% | 0.44% | 26.71% | 14.68% | 3.60% | 0.01% | 1.74% |
Shrubland | 22.44% | 1.65% | 0.18% | 50.61% | 13.96% | 2.18% | 0.23% | 8.75% |
Grassland | 14.25% | 6.35% | 0.26% | 26.66% | 41.52% | 9.71% | 0.01% | 1.25% |
Fruit Farm | 10.78% | 8.81% | 0.25% | 19.55% | 36.26% | 23.64% | 0.00% | 0.70% |
Snow/Ice | 0.01% | 0.09% | 0.01% | 0.24% | 0.01% | 0.01% | 54.46% | 45.17% |
Bare Land | 0.19% | 0.59% | 0.04% | 1.32% | 0.13% | 0.05% | 6.46% | 91.23% |
SCENARIO 1. AGROECOLOGY | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TRANSITION MATRIX | ||||||||||||
Change 2004/2050 | Nat. Forest | Built-up | Tree Farms | Shrubland | Grassland | Fruit Farm | Snow/Ice | Bare Land | CONVERSION ELASTICITY | Calibration | ||
Nat. Forest | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0.8 | 0.2 | ||
Built-up | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
Tree Farms | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0.4 | 0.9 | ||
Shrubland | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0.3 | 0.2 | ||
Grassland | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0.7 | 0.3 | ||
Fruit Farm | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0.4 | 0.6 | ||
Snow/Ice | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.7 | 0.7 | ||
Bare Land | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0.4 | 0.4 | ||
DEMAND | ||||||||||||
t0 | 2004 | 116,625 | 468 | 5271 | 22,019 | 10,415 | 408 | 2641 | 8980 | |||
t0<n>1 | 2005–2017 | (…) | (…) | (…) | (…) | (…) | (…) | (…) | (…) | |||
t1 | 2018 | 115,608 | 1096 | 822 | 24,712 | 10,004 | 1564 | 2319 | 10,702 | |||
t1<n>2 | 2019–2049 | (…) | (…) | (…) | (…) | (…) | (…) | (…) | (…) | |||
t2 | 2050 | 127,230 | 2425 | 206 | 10,166 | 11,983 | 371 | 1912 | 12,534 | |||
% | 76.3% | 1.5% | 0.1% | 6.1% | 7.2% | 0.2% | 1.1% | 7.5% |
SCENARIO 2. PARCELOPOLY | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TRANSITION MATRIX | ||||||||||||
Change 2004/2050 | Nat. Forest | Built-up | Tree Farms | Shrubland | Grassland | Fruit Farm | Snow/Ice | Bare Land | CONVERSION ELASTICITY | Calibration | ||
Nat. Forest | 1 | 1006 | 0 | 1006 | 0 | 0 | 0 | 0 | 0.4 | 0.2 | ||
Built-up | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
Tree Farms | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0.5 | 0.9 | ||
Shrubland | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0.4 | 0.2 | ||
Grassland | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0.3 | 0.3 | ||
Fruit Farm | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0.5 | 0.6 | ||
Snow/Ice | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.7 | 0.7 | ||
Bare Land | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.4 | 0.4 | ||
DEMAND | ||||||||||||
t0 | 2004 | 116,625 | 468 | 5271 | 22,019 | 10,415 | 408 | 2641 | 8980 | |||
t0<n>1 | 2005–2017 | (…) | (…) | (…) | (…) | (…) | (…) | (…) | (…) | |||
t1 | 2018 | 115,608 | 1096 | 822 | 24,712 | 10,004 | 1564 | 2319 | 10,702 | |||
t1<n>2 | 2019–2049 | (…) | (…) | (…) | (…) | (…) | (…) | (…) | (…) | |||
t2 | 2050 | 113,855 | 4900 | 824 | 22,345 | 9080 | 1377 | 1912 | 12,534 | |||
% | 68.2% | 2.9% | 0.5% | 13.4% | 5.4% | 0.8% | 1.1% | 7.5% |
SCENARIO 3. LIKE PUCÓN | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TRANSITION MATRIX | ||||||||||||
Change 2004/2050 | Nat. Forest | Built-up | Tree Farms | Shrubland | Grassland | Fruit Farm | Snow/Ice | Bare Land | CONVERSION ELASTICITY | Calibration | ||
Nat. Forest | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0.2 | 0.2 | ||
Built-up | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
Tree Farms | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0.7 | 0.9 | ||
Shrubland | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0.3 | 0.2 | ||
Grassland | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0.4 | 0.3 | ||
Fruit Farm | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0.7 | 0.6 | ||
Snow/Ice | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.7 | 0.7 | ||
Bare Land | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.4 | 0.4 | ||
DEMAND | ||||||||||||
t0 | 2004 | 116,625 | 468 | 5271 | 22,019 | 10,415 | 408 | 2641 | 8980 | |||
t0<n>1 | 2005–2017 | (…) | (…) | (…) | (…) | (…) | (…) | (…) | (…) | |||
t1 | 2018 | 115,608 | 1096 | 822 | 24,712 | 10,004 | 1564 | 2319 | 10702 | |||
t1<n>2 | 2019–2049 | (…) | (…) | (…) | (…) | (…) | (…) | (…) | (…) | |||
t2 | 2050 | 91,759 | 6200 | 5275 | 33,435 | 5676 | 9679 | 1912 | 12,891 | |||
% | 55.0% | 3.7% | 3.2% | 20.0% | 3.4% | 5.8% | 1.1% | 7.7% |
Appendix C. The Absence of Spatial Planning
References
- IPCC. IPCC Summary for Policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Turner, B.; Geoghegan, J.; Lawrence, D.; Radel, C.; Schmook, B.; Vance, C.; Manson, S.; Keys, E.; Foster, D.; Klepeis, P.; et al. Land System Science and the Social–Environmental System: The Case of Southern Yucatán Peninsular Region (SYPR) Project. Curr. Opin. Environ. Sustain. 2016, 19, 18–29. [Google Scholar] [CrossRef]
- Sahin, V.; Hall, M.J. The Effects of Afforestation and Deforestation on Water Yields. J. Hydrol. 1996, 178, 293–309. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.U.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s Sixth Mass Extinction Already Arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Scholes, R.; Montanarella, L.; Brainich, A.; Barger, N.; Brink, B.T.; Cantele, M.; Erasmus, B.; Fisher, J.; Gardner, T.; Holland, T.G. IPBES Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental Science Policy-Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2018; p. 44. [Google Scholar]
- FAO. The State of the World’s Forests 2018—Forest Pathways to Sustainable Development; FAO: Rome, Italy, 2018. [Google Scholar]
- Stephens, L.; Fuller, D.; Boivin, N.; Rick, T.; Gauthier, N.; Kay, A.; Marwick, B.; Armstrong, C.G.; Barton, C.M.; Denham, T.; et al. Archaeological Assessment Reveals Earth’s Early Transformation through Land Use. Science 2019, 365, 897–902. [Google Scholar] [CrossRef]
- Díaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.A.; Baste, I.A.; Brauman, K.A.; et al. Assessing Nature’s Contributions to People. Science 2018, 359, 270–272. [Google Scholar] [CrossRef]
- Pereira, P. Ecosystem Services in a Changing Environment. Sci. Total Environ. 2020, 702, 135008. [Google Scholar] [CrossRef]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future Land-Use Changes and Its Impacts on Terrestrial Ecosystem Services: A Review. Sci. Total Environ. 2021, 781, 146716. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Verburg, P.; Alexander, P.; Evans, T.; Magliocca, N.R.; Malek, Z.; Rounsevell, M.D.; Vliet, J.V. Beyond Land Cover Change: Towards a New Generation of Land Use Models. Curr. Opin. Environ. Sustain. 2019, 38, 77–85. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Swart, R.J.; Raskin, P.; Robinson, J. The Problem of the Future: Sustainability Science and Scenario Analysis. Glob. Environ. Chang. 2004, 14, 137–146. [Google Scholar] [CrossRef]
- Thompson, J.R.; Wiek, A.; Swanson, F.J.; Carpenter, S.R.; Fresco, N.; Hollingsworth, T.; Spies, T.A.; Foster, D.R. Scenario Studies as a Synthetic and Integrative Research Activity for Long-Term Ecological Research. BioScience 2012, 62, 367–376. [Google Scholar] [CrossRef]
- Kok, K.; Bärlund, I.; Flörke, M.; Holman, I.; Gramberger, M.; Sendzimir, J.; Stuch, B.; Zellmer, K. European Participatory Scenario Development: Strengthening the Link between Stories and Models. Clim. Chang. 2015, 128, 187–200. [Google Scholar] [CrossRef]
- Alcamo, J. Chapter Six The SAS Approach: Combining Qualitative and Quantitative Knowledge in Environmental Scenarios. In Developments in Integrated Environmental Assessment; Elsevier: Amsterdam, The Netherlands, 2008; Volume 2, pp. 123–150. ISBN 978-0-444-53293-0. [Google Scholar]
- Mallampalli, V.R.; Mavrommati, G.; Thompson, J.; Duveneck, M.; Meyer, S.; Ligmann-Zielinska, A.; Druschke, C.G.; Hychka, K.; Kenney, M.A.; Kok, K.; et al. Methods for Translating Narrative Scenarios into Quantitative Assessments of Land Use Change. Environ. Model. Softw. 2016, 82, 7–20. [Google Scholar] [CrossRef]
- Verburg, P. DynaCLUE Manual; Center for System Dynamics Research and Development: Bogor, Indonesia, 2006. [Google Scholar]
- Priess, J.A.; Hauck, J. Integrative Scenario Development. Ecol. Soc. 2014, 19, 12. [Google Scholar] [CrossRef]
- Patel, M.; Kok, K.; Rothman, D.S. Participatory Scenario Construction in Land Use Analysis: An Insight into the Experiences Created by Stakeholder Involvement in the Northern Mediterranean. Land Use Policy 2007, 24, 546–561. [Google Scholar] [CrossRef]
- Palacios-Agundez, I.; Casado-Arzuaga, I.; Madariaga, I.; Onaindia, M. The Relevance of Local Participatory Scenario Planning for Ecosystem Management Policies in the Basque Country, Northern Spain. Ecol. Soc. 2013, 18, 7. [Google Scholar] [CrossRef]
- Biggs, R.; Diebel, M.W.; Gilroy, D.; Kamarainen, A.M.; Kornis, M.S.; Preston, N.D.; Schmitz, J.E.; Uejio, C.K.; Van De Bogert, M.C.; Weidel, B.C.; et al. Preparing for the Future: Teaching Scenario Planning at the Graduate Level. Front. Ecol. Environ. 2010, 8, 267–273. [Google Scholar] [CrossRef]
- Priess, J.A.; Hauck, J.; Haines-Young, R.; Alkemade, R.; Mandryk, M.; Veerkamp, C.; Gyorgyi, B.; Dunford, R.; Berry, P.; Harrison, P.; et al. New EU-Scale Environmental Scenarios until 2050—Scenario Process and Initial Scenario Applications. Ecosyst. Serv. 2018, 29, 542–551. [Google Scholar] [CrossRef]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; et al. Land-Use Futures in the Shared Socio-Economic Pathways. Glob. Environ. Chang. 2017, 42, 331–345. [Google Scholar] [CrossRef]
- Doelman, J.C.; Stehfest, E.; Tabeau, A.; Van Meijl, H.; Lassaletta, L.; Gernaat, D.E.H.J.; Hermans, K.; Harmsen, M.; Daioglou, V.; Biemans, H.; et al. Exploring SSP Land-Use Dynamics Using the IMAGE Model: Regional and Gridded Scenarios of Land-Use Change and Land-Based Climate Change Mitigation. Glob. Environ. Chang. 2018, 48, 119–135. [Google Scholar] [CrossRef]
- Corry, O. Nature and the International: Towards a Materialist Understanding of Societal Multiplicity. Globalizations 2020, 17, 419–435. [Google Scholar] [CrossRef]
- Legrand, T.; Froger, G.; Le Coq, J.-F. Institutional Performance of Payments for Environmental Services: An Analysis of the Costa Rican Program. For. Policy Econ. 2013, 37, 115–123. [Google Scholar] [CrossRef]
- Manuschevich, D.; Sarricolea, P.; Galleguillos, M. Integrating Socio-Ecological Dynamics into Land Use Policy Outcomes: A Spatial Scenario Approach for Native Forest Conservation in South-Central Chile. Land Use Policy 2019, 84, 31–42. [Google Scholar] [CrossRef]
- Zhou, J. Naturalizing the State and Symbolizing Power in Russian Agricultural Land Use. Political Geogr. 2022, 93, 102545. [Google Scholar] [CrossRef]
- Parenti, C. The 2013 ANTIPODE AAG Lecture The Environment Making State: Territory, Nature, and Value. Antipode 2015, 47, 829–848. [Google Scholar] [CrossRef]
- Loftus, A. Political Ecology II: Whither the State? Prog. Hum. Geogr. 2020, 44, 139–149. [Google Scholar] [CrossRef]
- Emel, J.; Huber, M.T.; Makene, M.H. Extracting Sovereignty: Capital, Territory, and Gold Mining in Tanzania. Political Geogr. 2011, 30, 70–79. [Google Scholar] [CrossRef]
- Whitehead, M.; Jones, R.; Jones, M. The Nature of the State: Excavating the Political Ecologies of the Modern State; Oxford Geographical and Environmental Studies; Oxford University Press: Oxford, UK; New York, NY, USA , 2007; ISBN 978-0-19-927189-4. [Google Scholar]
- Harris, L.M. Political Ecologies of the State: Recent Interventions and Questions Going Forward. Political Geogr. 2017, 58, 90–92. [Google Scholar] [CrossRef]
- Brenner, N. New Urban Spaces: Urban Theory and the Scale Question; Oxford University Press: Oxford, UK; New York, NY, USA, 2019; ISBN 978-0-19-062718-8. [Google Scholar]
- Weiss, L. The Myth of the Powerless State; Cornell University Press: Itaca, NY, USA, 2018; ISBN 978-1-5017-1173-2. [Google Scholar]
- Brenner, N. New State Spaces: Urban Governance and the Rescaling of Statehood; Oxford University Press: Oxford, UK; New York, NY, USA , 2004; ISBN 978-0-19-927005-7. [Google Scholar]
- Brenner, N. Urban Governance and the Production of New State Spaces in Western Europe, 1960–2000. In The Disoriented State: Shifts in Governmentality, Territoriality and Governance; Arts, B., Lagendijk, A., Houtum, H.V., Eds.; Environment & Policy; Springer: Dordrecht, The Netherlands, 2009; Volume 49, pp. 41–77. ISBN 978-1-4020-9479-8. [Google Scholar]
- Jessop, B. The Future of the Capitalist State; Polity: Cambridge, UK; Blackwell Publishing Inc.: Cambridge, UK; Malden, MA, USA, 2002; ISBN 978-0-7456-2272-9. [Google Scholar]
- Hollingsworth, R.J. Territoriality in Modern Societies: The Spatial and Institutional Nestedness of National Economies. In Territoriality in the Globalizing Society; European and Transatlantic Studies; Immerfall, S., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 17–37. ISBN 978-3-642-63769-8. [Google Scholar]
- Swyngedouw, E. Globalisation or ‘Glocalisation’? Networks, Territories and Rescaling. Camb. Rev. Int. Aff. 2004, 17, 25–48. [Google Scholar] [CrossRef]
- Jessop, B. The State and State-Building. In The Oxford Handbook of Political Institutions; The Oxford Handbooks of Political Science; Goodin, R.E., Rhodes, R.A.W., Binder, S., Rockman, B., Eds.; Oxford University Press: Oxford, UK; New York, NY, USA, 2008; pp. 111–130. ISBN 978-0-19-954846-0. [Google Scholar]
- Sharma, K.; Walters, G.; Metzger, M.J.; Ghazoul, J. Glocal Woodlands—The Rescaling of Forest Governance in Scotland. Land Use Policy 2023, 126, 106524. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. BioScience 2002, 52, 143. [Google Scholar] [CrossRef]
- Primmer, E.; Jokinen, P.; Blicharska, M.; Barton, D.N.; Bugter, R.; Potschin, M. Governance of Ecosystem Services: A Framework for Empirical Analysis. Ecosyst. Serv. 2015, 16, 158–166. [Google Scholar] [CrossRef]
- Hauck, J.; Schleyer, C.; Priess, J.A.; Veerkamp, C.J.; Dunford, R.; Alkemade, R.; Berry, P.; Primmer, E.; Kok, M.; Young, J.; et al. Combining Policy Analyses, Exploratory Scenarios, and Integrated Modelling to Assess Land Use Policy Options. Environ. Sci. Policy 2019, 94, 202–210. [Google Scholar] [CrossRef]
- Assaf, C.; Adams, C.; Ferreira, F.F.; França, H. Land Use and Cover Modeling as a Tool for Analyzing Nature Conservation Policies—A Case Study of Juréia-Itatins. Land Use Policy 2021, 100, 104895. [Google Scholar] [CrossRef]
- OECD. The Governance of Land Use in OECD Countries; OECD: Paris, France, 2017. [Google Scholar]
- Kono, T.; Joshi, K.K. Introduction. In Traffic Congestion and Land Use Regulations; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–19. ISBN 978-0-12-817020-5. [Google Scholar]
- Baker, M. Land-Use Planning. In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 3504–3505. ISBN 978-94-007-0753-5. [Google Scholar]
- Erb, K.; Luyssaert, S.; Meyfroidt, P.; Pongratz, J.; Don, A.; Kloster, S.; Kuemmerle, T.; Fetzel, T.; Fuchs, R.; Herold, M.; et al. Land Management: Data Availability and Process Understanding for Global Change Studies. Glob. Chang. Biol. 2017, 23, 512–533. [Google Scholar] [CrossRef] [PubMed]
- Thiery, W.; Davin, E.L.; Seneviratne, S.I. Land Use, Land Cover and Land Management Change: Definitions, Scenarios, and Role in the Climate System. In Oxford Bibliographies in Environmental Science; Oxford University Press: Oxford, UK, 2018. [Google Scholar] [CrossRef]
- Miranda, M.; Flores, L.; Reyes, S.; Mashini, D.; Misleh, D.; Bettancourt, P. Valorización de los vínculos urbanos, rurales y silvestres en la generación de instrumentos de planificación territorial integrada. In Propuestas Para Chile, Concurso Políticas Públicas; ResearchGate: Berlin, Germany, 2015. [Google Scholar]
- Andrade, B.; Arenas, F.; Guijón, R. Revisión crítica del marco institucional y legal chileno de ordenamiento territorial: El caso de la zona costera. Rev. Geogr. Norte Gd. 2008, 41, 23–48. [Google Scholar] [CrossRef]
- Salazar, O.; Casanova, M.; Fuentes, J.P.; Galleguillos, M.; Nájera, F.; Perez-Quezada, J.F.; Pfeiffer, M.; Renwick, L.L.R.; Seguel, O.; Tapia, Y. Soil Research, Management, and Policy Priorities in Chile. Geoderma Reg. 2022, 29, e00502. [Google Scholar] [CrossRef]
- Márquez, M.; Veloso, E. El Ordenamiento Territorial En Chile: Estado Del Arte. Rev. Estado Gob. Gestión Pública 2020, 35, 139–179. [Google Scholar]
- Precht, A.; Reyes, S.; Salamanca, C. El Ordenamiento Territorial de Chile; Ediciones UC: Santiago, Chile, 2016; ISBN 978-956-14-2008-3. [Google Scholar]
- Henríquez-Dole, L.; Usón, T.J.; Vicuña, S.; Henríquez, C.; Gironás, J.; Meza, F. Integrating Strategic Land Use Planning in the Construction of Future Land Use Scenarios and Its Performance: The Maipo River Basin, Chile. Land Use Policy 2018, 78, 353–366. [Google Scholar] [CrossRef]
- Meyer, W.B.; Turner, B.L. Human Population Growth and Global Land-Use/Cover Change. Annu. Rev. Ecol. Syst. 1992, 23, 39–61. [Google Scholar] [CrossRef]
- Aravena, C.; Carvajal, L.; Castro, J.; Alvaro, E.; Pizarro, S. Establece Ley Marco de Suelos; Senado de la República: Santiago, Chile, 2021. [Google Scholar]
- Quinzacara, E.C.; Delgado, I.V. Evaluación Ambiental Estratégica y Planificación Territorial. Análisis ante su regulación legal, reglamentaria y la jurisprudencia administrativa. Rev. Chil. Derecho 2016, 43, 1031–1056. [Google Scholar] [CrossRef]
- Ministerio del Interior y Seguridad Pública. Decreto 469 de 2021; Ministerio del Interior y Seguridad Pública: Santiago, Chile, 2021. [Google Scholar]
- Manuschevich, D. Land Use as a Socio-Ecological System: Developing a Transdisciplinary Approach to Studies of Land Use Change in South-Central Chile. In Ecological Economic and Socio Ecological Strategies for Forest Conservation; Fuders, F., Donoso, P.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 79–97. ISBN 978-3-030-35378-0. [Google Scholar]
- Márquez, M. El ordenamiento territorial de los espacios rurales en Chile. Rev. Geogr. Norte Gd. 1999, 26, 113–118. [Google Scholar]
- Armijo, Z.G.; Caviedes, B.H. El avance de la urbanización del campo en la región metropolitana de Chile y sus efectos espaciales. In Anales de la Universidad de Chile; Universidad de Chile: Santiago, Chile, 2010. [Google Scholar] [CrossRef]
- Barrena, J.; Nahuelhual, L.; Báez, A.; Schiappacasse, I.; Cerda, C. Valuing Cultural Ecosystem Services: Agricultural Heritage in Chiloé Island, Southern Chile. Ecosyst. Serv. 2014, 7, 66–75. [Google Scholar] [CrossRef]
- Fuenzalida, M.; Quiroz, R. La dimensión espacial de los conflictos ambientales en Chile. Polis Rev. Latinoam. 2012, 11, 157–168. [Google Scholar] [CrossRef]
- Aguayo, M.; Stehr, A.; Link, O. Respuesta hidrológica de una cuenca de meso escala frente a futuros escenarios de expansión forestal. Rev. Geogr. Norte Gd. 2016, 65, 197–214. [Google Scholar] [CrossRef]
- Lizama, C.E. The Territorial Planning Instruments (TPI) and their contribution to the sustainable management of the territory. Tiempo Espac. 2019, 41, 52–72. [Google Scholar]
- Orellana, A.; Arenas, F.; Moreno, D. Ordenamiento territorial en Chile: Nuevo escenario para la gobernanza regional. Rev. Geogr. Norte Gd. 2020, 77, 31–49. [Google Scholar] [CrossRef]
- Maestripieri, N.; Houet, T.; Paegelow, M.; Selleron, G.; Toro Balbontín, D.; Sáez Villalobos, N. Dynamic Simulation of Forest Management Normative Scenarios: The Case of Timber Plantations in the Southern Chile. Futures 2017, 87, 65–77. [Google Scholar] [CrossRef]
- Manuschevich, D.; Beier, C.M. Simulating Land Use Changes under Alternative Policy Scenarios for Conservation of Native Forests in South-Central Chile. Land Use Policy 2016, 51, 350–362. [Google Scholar] [CrossRef]
- Swyngedouw, E. Into the Sea: Desalination as Hydro-Social Fix in Spain. Ann. Assoc. Am. Geogr. 2013, 103, 261–270. [Google Scholar] [CrossRef]
- Andonova, L.B.; Mitchell, R.B. The Rescaling of Global Environmental Politics. Annu. Rev. Environ. Resour. 2010, 35, 255–282. [Google Scholar] [CrossRef]
- Angeles, L.C.; Shah, S.H. Re-Scaling and Re-Contextualizing Agriculture-Industry Synergies for Rural Development: The Case of an Urbanizing Rurality in the Philippines. J. Peasant Stud. 2021, 48, 1033–1053. [Google Scholar] [CrossRef]
- Coulson, H.; Sonnino, R. Re-Scaling the Politics of Food: Place-Based Urban Food Governance in the UK. Geoforum 2019, 98, 170–179. [Google Scholar] [CrossRef]
- Börjeson, L.; Höjer, M.; Dreborg, K.-H.; Ekvall, T.; Finnveden, G. Scenario Types and Techniques: Towards a User’s Guide. Futures 2006, 38, 723–739. [Google Scholar] [CrossRef]
- Jaime, F.; Dufour, G.; Alessandro, M.; Amaya, P. Introducción al Análisis de Políticas Públicas, 1st ed.; Manuales; Universidad Nacional Arturo Jauretche: Florencio Varela, Argentina, 2013; ISBN 978-987-29188-3-5. [Google Scholar]
- DGA. Diagnóstico y Clasificación de Los Cursos y Cuerpos de Agua Según Objetivos de Calidad; Cuenca Del Río Toltén; Dirección General de Aguas, Ministerio de Obras Públicas, Gobierno de Chile: Santiago, Chile, 2004. [Google Scholar]
- DGA. Regionalización de Parámetros en Cálculo de Escorrentía en Cuencas Pluviales; Gobierno de Chile, Ministerio de Obras Públicas, Dirección General de Aguas, División de Estudios y Planificación: Santiago, Chile, 2011; p. 308. [Google Scholar]
- Municipalidad de Curarrehue. Plan de desarrollo Comunal (PLADECO) de Curarrehue 2018–2022; PLADECO: Ambato, Ecuador, 2018. [Google Scholar]
- Crisóstomo Loncopán, L. “Kizugunewayiñ Inchiñ Tayiñ Pu Lof Mew: Wenuntutun Tayiñ Kuyfi Mapun” Reconstrucción Territorial Del Lof Txankura. Master’s Thesis, Universidad Católica de Temuco, Temuco, Chile, 2021. [Google Scholar]
- Huiliñir-Curío, V. Movilidades Mapuches en los Andes del sur de chile: El caso de una comunidad Mapuche de Curarrehue, Región de la Araucanía. Rev. LIDER 2018, 20, 41–66. [Google Scholar]
- Flores, J. La construcción del espacio. Una mirada histórica al territorio cordillerano de la Araucanía. In Fronteras en Movimiento e Imaginarios Geográficos: La Cordillera de Los Andes Como Espacialidad Sociocultural; Núñez, A., Sánchez, R., Arenas, F., Eds.; RIL Editores: Santiago, Chile, 2013; pp. 415–444. ISBN 978-956-01-0011-5. [Google Scholar]
- Montalva, J.D. La pandemia y el teletrabajo produjeron una migración a suburbios que exige una nueva planificación suburbana . Últimas Not. 2022, in press. [Google Scholar]
- Generación, M. Nuevo Retiro del 10% Genera Inesperada Alza de Mercado Inmobiliario en Internet. El Mostrador, 23 November 2020. [Google Scholar]
- Fuentes Acuña, N.R.; Marchant, C. ¿Contribuyen las prácticas agroecológicas a la sustentabilidad en la Agricultura Familiar de Montaña? El caso de Curarrehue, región de la Araucanía, Chile. Cuad. Des. Rural 2016, 13, 35. [Google Scholar] [CrossRef]
- Gutiérrez, G.; Peña-Cortés, F. Estado y Situación Actual de los Planes Reguladores Comunales en la Región de la Araucanía (Chile). Doc. Aportes Adm. Pública Gestión Estatal 2011, 16, 97–119. [Google Scholar] [CrossRef]
- Martínez, P. Los espacios turísticos: Producción, experiencias e imaginarios. El caso de la Araucanía andino-lacustre chilena, 1900–1940. Cuad. Tur. 2019, 44, 219–246. [Google Scholar] [CrossRef]
- Subsecretaría de Turismo Diagnóstico Base, Propuesta de Acuerdo de Porducción Limpia y Plan de Acción ZOIT AMTL. Plan Acción ZOIT Lacustre; Subsecretaría de Turismo, Gobierno de Chile: Santiago, Chile, 2016; p. 42. [Google Scholar]
- Bengoa, J. Mapuche, Colonos y el Estado Nacional; Editorial Catalonia: Santiago, Chile, 2014; ISBN 978-956-324-338-3. [Google Scholar]
- Vergara, J.I.; Foerster, R.; Gundermann, H. Instituciones mediadoras, legislación y movimiento indígena de Dasin a Conadi (1953–1994). Atenea 2005, 491, 71–85. [Google Scholar] [CrossRef]
- Peralta, C. Conflicto Etno-Ambiental En El Marco de La Consulta Indígena: Caso Central Hidroeléctrica Añiherraqui, Curarrehue. Rev. Estud. Políticas Públicas 2017, 3, 161–178. [Google Scholar] [CrossRef]
- Tecklin, D.; Bauer, C.; Prieto, M. Making Environmental Law for the Market: The Emergence, Character, and Implications of Chile’s Environmental Regime. Environ. Politics 2011, 20, 879–898. [Google Scholar] [CrossRef]
- Veldkamp, A.; Fresco, L.O. CLUE-CR: An Integrated Multi-Scale Model to Simulate Land Use Change Scenarios in Costa Rica. Ecol. Model. 1996, 91, 231–248. [Google Scholar] [CrossRef]
- Verburg, P.H.; De Koning, G.H.J.; Kok, K.; Veldkamp, A.; Bouma, J. A Spatial Explicit Allocation Procedure for Modelling the Pattern of Land Use Change Based upon Actual Land Use. Ecol. Model. 1999, 116, 45–61. [Google Scholar] [CrossRef]
- Moulds, S.; Buytaert, W.; Mijic, A. An Open and Extensible Framework for Spatially Explicit Land Use Change Modelling: The Lulcc R Package. Geosci. Model Dev. 2015, 8, 3215–3229. [Google Scholar] [CrossRef]
- Verburg, P.H.; Overmars, K.P. Combining Top-down and Bottom-up Dynamics in Land Use Modeling: Exploring the Future of Abandoned Farmlands in Europe with the Dyna-CLUE Model. Landsc. Ecol. 2009, 24, 1167–1181. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, D.; Yu, L.; Wang, X.; Chen, Y.; Bai, Y.; Hernández, H.J.; Galleguillos, M.; Estades, C.; Biging, G.S.; et al. Detailed Dynamic Land Cover Mapping of Chile: Accuracy Improvement by Integrating Multi-Temporal Data. Remote Sens. Environ. 2016, 183, 170–185. [Google Scholar] [CrossRef]
- Farr, T.G.; Kobrick, M. Shuttle Radar Topography Mission Produces a Wealth of Data. Eos Trans. Am. Geophys. Union 2000, 81, 583–585. [Google Scholar] [CrossRef]
- Gareth, J.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer Texts in Statistics; Springer US: New York, NY, USA, 2021; ISBN 978-1-07-161417-4. [Google Scholar]
- Pontius, R.G.; Schneider, L.C. Land-Cover Change Model Validation by an ROC Method for the Ipswich Watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 239–248. [Google Scholar] [CrossRef]
- Van Vliet, J.; Bregt, A.K.; Hagen-Zanker, A. Revisiting Kappa to Account for Change in the Accuracy Assessment of Land-Use Change Models. Ecol. Model. 2011, 222, 1367–1375. [Google Scholar] [CrossRef]
- Van Vliet, J.; Hagen-Zanker, A.; Hurkens, J.; Van Delden, H. A Fuzzy Set Approach to Assess the Predictive Accuracy of Land Use Simulations. Ecol. Model. 2013, 261–262, 32–42. [Google Scholar] [CrossRef]
- Booth, E.G.; Qiu, J.; Carpenter, S.R.; Schatz, J.; Chen, X.; Kucharik, C.J.; Loheide, S.P.; Motew, M.M.; Seifert, J.M.; Turner, M.G. From Qualitative to Quantitative Environmental Scenarios: Translating Storylines into Biophysical Modeling Inputs at the Watershed Scale. Environ. Model. Softw. 2016, 85, 80–97. [Google Scholar] [CrossRef]
- Palacios-Agundez, I.; Onaindia, M.; Potschin, M.; Tratalos, J.A.; Madariaga, I.; Haines-Young, R. Relevance for Decision Making of Spatially Explicit, Participatory Scenarios for Ecosystem Services in an Area of a High Current Demand. Environ. Sci. Policy 2015, 54, 199–209. [Google Scholar] [CrossRef]
- CONAF; CONAMA; UACH. Catastro de Uso del Suelo y Vegetación, Período 1993–2007: Monitoreo y actualización, Región de la Araucanía; CONAF: Santiago, Chile, 2009. [Google Scholar]
- INE (Instituto Nacional de Estadísticas). VIII Censo Nacional Agropecuario y Forestal: Santiago, Chile 2021. Available online: https://www.ine.gob.cl/censoagropecuario (accessed on 15 February 2022).
- INIA. Potencial Frutícola de la Araucanía: Estado Actual, Oportunidades y Desafíos; Instituto de Investigaciones Agropecuarias (INIA), Ministerio de Agricultura de Chile: Temuco, Chile, 2021; p. 52. [Google Scholar]
- Eastman, J.R. Terrset Manual. In Geospatial Monitoring and Modeling System; Clark University: Worcester, MA, USA, 2016. [Google Scholar]
- El Mostrador. Guardaparques de Torres del Paine Inician Paro Indefinido Tras Nulas Respuestas de Conaf. El Mostrador, 3 November 2022.
- Ministerio de Agricultura. Decreto Ley 3516 de 1980; Biblioteca del Congreso Nacional de Chile: Santiago, Chile, 1980. [Google Scholar]
- SAG. Circular 475 Del 2022; SAG: Santiago, Chile, 2022. [Google Scholar]
- Munita, I. En Medio de Polémica: Los Criterios Instruidos por el SAG para Suspender o Rechazar Parcelaciones Rurales. Emol, 20 July 2022. [Google Scholar]
- Munita, I. Escala Conflicto por Parcelaciones: Gremio Chile Rural Pide Orden de Arresto Contra Ministro Valenzuela y Funcionarios del SAG. Emol, 21 December 2022. [Google Scholar]
- Ezquiaga-Domínguez, J.M. La Nueva Agenda Urbana y la Reinvención de la Planificación Espacial: Del Paradigma a la Práctica. Ciudad Territ. Estud. Territ. 2019, 51, 765–784. [Google Scholar]
- Friedmann, J. Planificación para el siglo XXI: El desafío del posmodernismo. Rev. EURE 1992, 18, 79–89. [Google Scholar]
- Liverman, D.M.; Vilas, S. Neoliberalism and the Environment in Latin America. Annu. Rev. Environ. Resour. 2006, 31, 327–363. [Google Scholar] [CrossRef]
- Bustos Gallardo, B.; Lukas, M.; Stamm, C.; Torre, A. Neoliberalismo y gobernanza territorial: Propuestas y reflexiones a partir del caso de Chile. Rev. Geogr. Norte Gd. 2019, 73, 161–183. [Google Scholar] [CrossRef]
- Fragkou, M.C.; Budds, J. Desalination and the Disarticulation of Water Resources: Stabilising the Neoliberal Model in Chile. Trans. Inst. Br. Geogr. 2020, 45, 448–463. [Google Scholar] [CrossRef]
- Lukas, M.; Fragkou, M.C.; Vásquez, A. Hacia una ecología política de las nuevas periferias urbanas: Suelo, agua y poder en Santiago de Chile. Rev. Geogr. Norte Gd. 2020, 76, 95–119. [Google Scholar] [CrossRef]
- Peck, J. Neoliberalizing States: Thin Policies/Hard Outcomes. Prog. Hum. Geogr. 2001, 25, 445–455. [Google Scholar] [CrossRef]
- Galleguillos, M.; Gimeno, F.; Puelma, C.; Zambrano-Bigiarini, M.; Lara, A.; Rojas, M. Disentangling the Effect of Future Land Use Strategies and Climate Change on Streamflow in a Mediterranean Catchment Dominated by Tree Plantations. J. Hydrol. 2021, 595, 126047. [Google Scholar] [CrossRef]
- Sepúlveda, C.; Moreira, A.; Villarroel, P. Conservación biológica fuera de las áreas silvestres protegidas. Ambiente Desarro. 1997, 13, 48–58. [Google Scholar]
- Vaccaro, I.; Beltran, O. Social and Ecological History of the Pyrenees: State, Market, and Landscape; Vaccaro, I., Beltran, O., Eds.; New Frontiers in Historical Ecology; Left Coast Press: Walnut Creek, CA, 2010; ISBN 978-1-59874-612-9. [Google Scholar]
- Zunino, H.M.; Hidalgo, R. En busca de una utopía verde: Migrantes de amenidad en la Comuna de Pucón, IX región de la Araucanía, Chile. Scr. Nova Rev. Electrón. Geogr. Cienc. Soc. 2010, 14, 75. [Google Scholar]
- Crane, T.A. Of Models and Meanings: Cultural Resilience in Social–Ecological Systems. Ecol. Soc. 2010, 15, 19. [Google Scholar] [CrossRef]
- CONAF; Corporación Parques para Chile; GORE Araucanía; Municipalida de Collipulli; Municipalida de Curacautín; Municipalidad de Lonquimay; Municipalida de Vilcún; Municipalidad de Melipeuco; Municipalidad de Cunco; Municipalidad de Villarrica; et al. Expediente de Propuesta Ampliación Reserva de Biosfera Araucarias; UNESCO: Temuco, Chile, 2009; p. 571. [Google Scholar]
Category | Characterization | Interviews | People | ||
---|---|---|---|---|---|
Interview Local actor | Mapuche community member | 1 | 1 | ||
Mapuche community member/Rural Sanitary Services (SSR) managers | 1 | 1 | |||
Mapuche community member and local farmer | 1 | 1 | |||
Local farmer/Tourism entrepreneur/sustainable logger | 1 | 1 | |||
Rural Sanitary Services (SSR) managers | 1 | 1 | |||
Conservationist NGO representative | 1 | 1 | |||
New entrepreneurs/recently arrived residents | 1 | 3 | |||
Participatory process | Participatory process in the framework of the design of the communal regulatory plan in Catripulli and Reigolil localities. | 2 | |||
Informant | Ministry of National Assets/MBN/Ministerial Cabinet | - | - | ||
Category | Institution | Department | Acronym * | Interviews | People |
Interview state official | Curarrehue Municipality | Mayor’s office | Municipality | 1 | 1 |
Planning Secretary | 1 | 1 | |||
Local Development Unit | 1 | 1 | |||
Regional Government | Regional Planning and Development Division | GORE | 1 | 1 | |
Ministry of Environment | Regional secretary | MMA | 1 | 1 | |
Ministry of Social Dev. | National indigenous development corp. | CONADI | 1 | 2 | |
Ministry of Agriculture | National Forestry Corporation | CONAF | 2 | 3 | |
Agricultural Development Institute | INDAP | 1 | 1 | ||
Agricultural and Livestock Service | SAG | 1 | 1 | ||
Ministry of Economy, Development and Tourism. | Undersecretary of Tourism | SUBTURISMO | 1 | 1 | |
Regional Direction National Tourism Service | SERNATUR | 1 | 1 | ||
Ministry of Health | Regional secretary/Water Unit | MINSAL | 1 | 1 | |
Ministry of Housing and Urbanism | Urban development and infrastructure; Plans and Programs; Rural habitability | MINVU | 1 | 3 | |
Ministry of Public Infrastructure | General Directorate of Water | DGA | 2 | 2 | |
Direction of hydraulic works | DOH | 1 | 1 |
2004/2018 | Nat. Forest | Built-Up | Tree Farms | Shrubland | Grassland | Fruit Farm | Snow/Ice | Bare Land | Total 2004 |
---|---|---|---|---|---|---|---|---|---|
Nat. Forest | 89,199 | 75 | 384 | 4436 | 241 | 61 | 0 | 2 | 94,397 |
Built-up | 0 | 369 | 0 | 0 | 0 | 0 | 0 | 0 | 369 |
Tree Farms | 1959 | 33 | 213 | 1213 | 689 | 156 | 0 | 0 | 4263 |
Shrubland | 2093 | 104 | 19 | 12,685 | 1715 | 160 | 0 | 846 | 17,622 |
Grassland | 528 | 268 | 24 | 1520 | 5354 | 727 | 0 | 2 | 8425 |
Fruit Farm | 14 | 15 | 1 | 8 | 105 | 163 | 0 | 0 | 306 |
Snow/Ice | 0 | 0 | 0 | 0 | 0 | 0 | 1609 | 511 | 2121 |
Bare Land | 2 | 19 | 2 | 51 | 1 | 2 | 247 | 6848 | 7171 |
Total 2018 | 93,795 | 883 | 644 | 19,913 | 8104 | 1268 | 1857 | 8209 | 134,672 |
Explanatory Factor | Native Forest | Built-Up Areas | Tree Farms | Shrubland | Grassland | Fruit Farm | Snow/Ice | Bare Land |
---|---|---|---|---|---|---|---|---|
Elevation (m) | - | - | −2.62 × 10−3 | - | - | - | 5.96 × 10−3 | −1.04 × 10−3 |
Exposition (dummy) | 2.90 × 10−3 | −1.64 × 10−3 | −1.40 × 10−3 | −3.54 × 10−3 | −1.51 × 10−3 | 1.73 × 10−3 | 4.80 × 10−3 | - |
Slope(degrees) | 3.17 × 10−2 | −4.70 × 10−2 | −1.77 × 10−2 | 1.59 × 10−3 | −6.10 × 10−2 | −9.18 × 10−1 | −2.35 × 10−2 | |
Distance to complete road network (m) | 2.28 × 10−4 | −3.49 × 10−3 | - | - | −9.89 × 10−4 | - | −2.56 × 10−5 | - |
Distance to forest industries (m) | - | −1.31 × 10−4 | 9.52 × 10−5 | - | −7.97 × 10−5 | - | - | - |
Distance to watercourses (m) | 3.30 × 10−4 | −1.60 × 10−3 | - | −1.60× 10−4 | 6.75 × 10−4 | - | −1.13 × 10−4 | −1.16 × 10−4 |
Distance to Population Entities (m) | - | - | −4.20 × 10−5 | - | - | - | - | - |
Distance to tourist trails (m) | −3.72 × 10−5 | −4.23 × 10−6 | 5.90 × 10−5 | −7.67 × 10−5 | 1.91 × 10−5 | - | 1.08 × 10−4 | 1.73 × 10−5 |
Distance to indigenous communities (m) | - | - | - | - | - | −1.42 × 10−5 | - | - |
Distance to wetlands (m) | - | - | −1.88 × 10−5 | - | - | - | - | - |
Total land area per parcel (ha) | 6.18 × 10−6 | −2.68 × 10−5 | −6.99 × 10−6 | −3.45 × 10−6 | 1.23 × 10−6 | −1.26 × 10−5 | - | - |
Private conservation initiatives (dummy) | 9.07 × 10−1 | - | −6.48 × 10−1 | - | −1.00 × 100 | - | −1.12 × 10+1 | |
Snow line (dummy) | −1.95 × 100 | 7.97 × 100 | 8.36 × 10−1 | −6.01 × 10−1 | 1.78 × 100 | - | 2.96 × 100 | 2.87 × 100 |
Average apparent density soil depth (g/cm3) | −1.20 × 10+1 | 6.90 × 100 | 1.42 × 100 | 5.21 × 100 | 3.20 × 100 | 7.88 × 100 | 1.14 × 10+1 | 1.46 × 10+1 |
State-managed wilderness areas (dummy) | 2.78 × 10−1 | −7.68 × 10−1 | −6.63 × 10−1 | - | −5.45 × 10−1 | −1.68 × 10+1 | - | 1.81 × 100 |
Distance to international route (m) | - | - | - | - | - | - | - | - |
Distance to consumptive water rights (m) | - | 1.06 × 10−4 | −5.49 × 10−4 | - | - | - | - | - |
Distance to rural sanitation services (m) | - | −1.22 × 10−3 | −6.35 × 10−3 | - | −2.79 × 10−3 | −3.29 × 10−3 | - | - |
Random forest ROC | 0.9439 | 0.9871 | 0.9871 | 0.9078 | 0.9577 | 0.9866 | 0.9501 | 0.9963 |
Random forest % Var explained | 58.26% | 27.14% | 26.78% | 36.93% | 42.61% | 20.09% | 62.34% | 71.24% |
Land Use | Observed 2004 | Observed 2018 | B-A-U 2050 |
---|---|---|---|
Native Forest | 94,466 | 93,642 | 89,668 |
Built-up areas | 379 | 888 | 1964 |
Tree Farms | 4270 | 666 | 420 |
Shrubland | 17,835 | 20,017 | 21,039 |
Grassland | 8436 | 8103 | 7902 |
Fruit Farm | 330 | 1267 | 2002 |
Snow/Ice | 2139 | 1878 | 1549 |
Bare Land | 7274 | 8669 | 10,153 |
2050 Scenarios | Key Component | Management | LULCC | ha | % |
---|---|---|---|---|---|
1. Agroecology | The Municipality remains with the same political stance. INDAP budget and support trigger increment in small-scale farming. SAG, maintain regulation (Circ. 475) and increase monitoring capabilities. CONAF, increase budget and management attributions in the basin. MMA, MINVU, Municipality, MINAGRI and BBNN jointly oversee land use changes as Built-up areas and industrial agriculture. National and Regional tiers support local perspectives. The conception of tourism is local development due to political will. CONADI and Mapuche communities opportunely detain external land use through confrontation. Water project blockage unravels. | Municipality ▬ Tourism ►◄ Water ▲M SAG ▲M INDAP ▲$ CONAF ▲$ ▲M MMA ▲M CONADI ▲M, ≠ BBNN ▲M GORE ►◄ National ►◄ | ↑ Native Forest | 100,995 | 74.33% |
↑ Built-up | 4106 | 3.02% | |||
↓ Tree farms | 167 | 0.12% | |||
↓ Shrubland | 9951 | 7.32% | |||
↑ Grassland | 9641 | 7.10% | |||
↓ Fruit trees | 300 | 0.22% | |||
- Snow/Ice | 1623 | 1.19% | |||
- Bare land | 9089 | 6.69% | |||
2. Parcelopoly | Overall, institution segmentation and management stay the same. The municipality keeps changing its political stance and, in some periods, gives construction permits for all housing construction. INDAP observed a decreasing trend in small farming, losing budget. SAG capabilities remain (Circ. 475), but second housing perseveres. CONAF remains the same, and clearance of forest increases for housing projects. CONADI and indigenous communities are still in conflict. The latter does not raise the alarm of housing projects. National, regional, and tourism institutions stay the same. New inhabitants and NGOs join efforts for conservation purposes. Water project blockage remains. | Municipality ≠ Tourism ▬ Water ▬ SAG ▬ INDAP ▼$ CONAF ▬, ≠ MMA ▬ CONADI ▬, ≠ GORE ▬ BBNN ▬ National ▬ | ↓ Native Forest | 88,076 | 64.82% |
↑ Built-up | 8794 | 6.47% | |||
- Tree farms | 667 | 0.49% | |||
↓ Shrubland | 18,504 | 13.62% | |||
↓ Grassland | 7841 | 5.77% | |||
- Fruit trees | 1277 | 0.94% | |||
- Snow/Ice | 1623 | 1.19% | |||
- Bare land | 9089 | 6.69% | |||
3. Like in Pucón | Overall, institution segmentation and management stay the same. Municipality changes its political orientation to economic development INDAP observed a decreasing trend in small farming, losing budget. SAG attributions diminished, and Circular 475 was revoked, which provoked a real estate projects boom. CONADI does not raise the alarm and conflicts with communities. CONAF remains the same, and informal clearance of native forests increases. National, regional, and tourism institutions promote industrial development. MMA remains the same and in conflict with local communities. The water project blockage is partly solved. | Municipality ◄ ► Tourism ◄ ► Water ▬ SAG ▬ INDAP ▼$ CONAF ▬, ≠ MMA ▬ ≠ CONADI ▬, ≠ GORE ◄ ► BBNN ▬ ▼M National ◄ ► | ↓ Native Forest | 73,515 | 54.11% |
↑ Urban | 8794 | 6.47% | |||
↑ Tree farms | 4273 | 3.14% | |||
↑ Shrubland | 25,300 | 18.62% | |||
↓ Grassland | 5000 | 3.68% | |||
↑ Fruit trees | 8277 | 6.09% | |||
- Snow and Ice | 1623 | 1.19% | |||
- Bare land | 9089 | 6.69% | |||
Management Iconography: ▲M = More attributions; ▼M = Less attributions; ▲$ = More budget; ▼$ = Less budget; ▬ No change; ►◄ = local oriented; ◄ ► = national and global oriented; ≠ = Conflict | |||||
Land use change Iconography: ↑ = increase; ↓ decrease; - No change |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Jara, A.; Manuschevich, D.; Grau, A.; Zambrano-Bigiarini, M. Land Management Drifted: Land Use Scenario Modeling of Trancura River Basin, Araucanía, Chile. Land 2024, 13, 157. https://doi.org/10.3390/land13020157
Díaz-Jara A, Manuschevich D, Grau A, Zambrano-Bigiarini M. Land Management Drifted: Land Use Scenario Modeling of Trancura River Basin, Araucanía, Chile. Land. 2024; 13(2):157. https://doi.org/10.3390/land13020157
Chicago/Turabian StyleDíaz-Jara, Alejandro, Daniela Manuschevich, Aarón Grau, and Mauricio Zambrano-Bigiarini. 2024. "Land Management Drifted: Land Use Scenario Modeling of Trancura River Basin, Araucanía, Chile" Land 13, no. 2: 157. https://doi.org/10.3390/land13020157
APA StyleDíaz-Jara, A., Manuschevich, D., Grau, A., & Zambrano-Bigiarini, M. (2024). Land Management Drifted: Land Use Scenario Modeling of Trancura River Basin, Araucanía, Chile. Land, 13(2), 157. https://doi.org/10.3390/land13020157