Assessing Trends in Tree Cover, Wildfire and Population Growth in Zimbabwe since 2000
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Tree Cover
2.3. Fire
2.4. Population
3. Results
3.1. Trends in Tree Cover
3.2. Trends in Fire
3.3. Trends in Population
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chawanji, S.; Masocha, M.; Dube, T. Spatial Assessment of Ecosystem Service Trade-offs and Synergies in Zimbabwe. Trans. R. Soc. S. Afr. 2018, 73, 172–179. [Google Scholar]
- Nyamadzawo, G.; Gwenzi, W.; Kanda, A.; Kundhlande, A.; Masona, C. Understanding the Causes, Socio-Economic and Environmental Impacts, and Management of Veld Fires in Tropical Zimbabwe. Fire Sci. Rev. 2013, 2, 2. [Google Scholar] [CrossRef]
- Mpakairi, K.S.; Tagwireyi, P.; Ndaimani, H.; Madiri, H.T. Distribution of Wildland Fires and Possible Hotspots for the Zimbabwean Component of Kavango-Zambezi Transfrontier Conservation Area. S. Afr. Geogr. J. 2018, 101, 110–120. [Google Scholar] [CrossRef]
- Timberlake, J.R. Biodiversity Knowledge from the Chimanimani Trans Frontier Conservation Area. TFCA Final. Rep. 2017.
- Burgess, N.; Hales, J.A.; Underwood, E.; Dinerstein, E.; Olson, D.; Itoua, I.; Schipper, J.; Ricketts, T.; Newman, K. Terrestrial Ecoregions of Africa and Madagascar: A Conservation Assessment; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Scholes, R.J.; Archer, S.R. Tree–Grass Interactions in Savannas. Annu. Rev. Ecol. Evol. Syst. 1997, 28, 517–544. [Google Scholar]
- Ryan, C.M.; Pritchard, R.; McNicol, I.; Owen, M.; Fisher, J.A.; Lehmann, C. Ecosystem Services from Southern African Woodlands and their Future Under Global Change. Philos. Trans. R. Soc. B 2015, 371, 20150312. [Google Scholar] [CrossRef]
- Dewees, P.A.; Campbell, B.M.; Katerere, Y.; Sitoe, A.; Cunningham, A.B.; Angelsen, A.; Wunder, S. Managing the Miombo Woodlands of Southern Africa: Policies, Incentives and Options for the Rural Poor. J. Nat. Resour. Pol. Res. 2010, 2, 57–73. [Google Scholar] [CrossRef]
- Macave, O.A.; Ribeiro, N.S.; Ribeiro, A.I.; Chaúque, A.; Bandeira, R.; Branquinho, C.; Washington-Allen, R. Modelling Aboveground Biomass of Miombo Woodlands in Niassa Special Reserve, Northern Mozambique. Forests 2022, 13, 311. [Google Scholar] [CrossRef]
- Byers, B.A.; Cunliffe, R.N.; Hudak, A.T. Linking the Conservation of Culture and Nature: A Case Study of Sacred Forests in Zimbabwe. Hum. Ecol. 2001, 29, 187–218. [Google Scholar] [CrossRef]
- Le Quéré, C.; Moriarty, R.; Andrew, R.M.; Canadell, J.G.; Sitch, S.; Korsbakken, J.I.; Friedlingstein, P.; Peters, G.P.; Andres, R.J.; Boden, T.A.; et al. Global Carbon Budget 2015. Earth Syst. Sci. Data 2015, 7, 349–396. [Google Scholar]
- Mkodzongi, G.; Lawrence, P. The Fast-Track Land Reform and Agrarian Change in Zimbabwe. Rev. Afr. Polit. Econ. 2019, 46, 1–13. [Google Scholar] [CrossRef]
- Chirima, A.; Mundy, P.; Ncube, N.; VanRooyen, A.F. Vegetation Changes in the Miombo Woodlands in Northwestern Zimbabwe: A Case Study of Nkayi District 1990 to 2017. 2018. Available online: https://www.intechopen.com/chapters/58979 (accessed on 1 September 2023).
- Hamandawana, H.; Nkambwe, M.; Chanda, R.; Eckardt, F. Population Driven Changes in Land Use in Zimbabwe’s Gutu District of Masvingo Province: Some Lessons from Recent History. Appl. Geogr. 2013, 25, 248–270. [Google Scholar]
- Jewa, E.K.K.; Dougilla, A.J.; Sallua, S.M.; O’Connell, J.B.; Benton, T.G. Miombo Woodland Under Threat: Consequences for Tree Diversity and Carbon Storage. Forest Ecol. Manag. 2016, 361, 144–153. [Google Scholar]
- Matavire, M.M.; Mbulisi, S.; Dube, T. Assessing the Aftermath of the Fast Track Land Reform Programme in Zimbabwe on Land-Use and Landcover Changes. Trans. R. Soc. S. Afr. 2015, 70, 181–186. [Google Scholar] [CrossRef]
- Andela, N.; van der Werf, G.R. Recent Trends in African Fires Driven by Cropland Expansion and El Niño to La Niña Transition. Nat. Clim. Chang. 2014, 4, 791–795. [Google Scholar]
- Bond, W.J.; Woodward, F.I.; Midgley, G.F. The Global Distribution of Ecosystems in a World Without Fire. New Phytol. 2005, 165, 525–538. [Google Scholar]
- Parr, C.L.; Lehmann, C.E.R.; Bond, W.J.; Hoffmann, W.A.; Andersen, A.N. Tropical grassy biomes: Misunderstood, neglected, and under threat. Ecol. Evol. 2014, 29, 205–213. [Google Scholar]
- Chinamatira, L.; Mtetwa, S.; Nyamadzawo, G. Causes of Wildland Fires, Associated Socio-Economic Impacts and Challenges with Policing, in Chakari Resettlement Area, Kadoma, Zimbabwe. Fire Sci. Rev. 2016, 5, 1. [Google Scholar] [CrossRef]
- Shaffer, L.J. Indigenous Fire Use to Manage Savanna Landscapes in Southern Mozambique. Fire Ecol. 2010, 6, 43–59. [Google Scholar]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A Human-Driven Decline in Global Burned Area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef]
- Kamusoko, C.; Aniya, M. Land Use/Cover Change and Landscape Fragmentation Analysis in the Bindura District, Zimbabwe. Land Degrad. Dev. 2007, 18, 221–233. [Google Scholar]
- Mapedza, E.; Wright, J.; Fawcett, R. An Investigation of Land Cover Changes in Mafungabusi Forest, Zimbabwe Using GIS, Remote Sensing and Participatory Mapping. Appl. Geogr. 2002, 23, 1–21. [Google Scholar]
- Gwitira, I.; Murwira, A.; Shekede, M.D.; Masocha, M.; Chapano, C. Precipitation of the Warmest Quarter and Temperature of the Warmest Month are Key to Understanding the Effect of Climate Change on Plant Species Diversity in Southern African Savannah. Afr. J. Ecol. 2014, 52, 209–216. [Google Scholar]
- Moyo, S. (Ed.) Zimbabwe Environmental Dilemma: Balancing Resource Inequities; Environmental Research Organization: Harare, Zimbabwe, 2000. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar]
- Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R Package Version 1.1-2. 2014. Available online: https://cran.r-project.org/package=rcolorbrewer (accessed on 1 December 2023).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Wilke, C.O. Cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. R Package Version 1.1.1. 2020. Available online: https://cran.rproject.org/package=cowplot (accessed on 1 December 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 1 December 2023).
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation. R Package Version 1.0.7. 2021. Available online: https://cran.r-project.org/package=dplyr (accessed on 1 December 2023).
- Tsela, P.L.; van Helden, P.; Frost, P.; Wessels, K.; Archibald, S. Validation of the MODIS Burned-Area Products Across Different Biomes in South Africa. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010. [Google Scholar] [CrossRef]
- Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating Census Data for Population Mapping using Random Forests with Remotely-Sensed and Ancillary Data. PLoS ONE 2015, 10, e0107042. [Google Scholar]
- Scharsich, V.; Mtata, K.; Hauhs, M.; Lange, H.; Bogner, C. Analysing Land Cover and Land Use Change in the Matobo National Park and Surroundings in Zimbabwe. Remote Sens. Environ. 2017, 194, 278–286. [Google Scholar]
- Kusena, W.; Chemura, A.; Dube, T.; Nicolau, M.D.; Marambanyika, T. Landuse and Landcover Change Asessment in the Upper Runde sub-catchment, Zimbabwe and Possible Impats on Reservoir Sedimentation. Phys. Chem. Earth Parts 2022, 126, 103105. [Google Scholar]
- Pendrill, F.; Gardner, T.A.; Meyfroidt, P.; Persson, U.M.; Adams, J.; Azevedo, T.; Bastos Lima, M.G.; Baumann, M.; Curtis, P.G.; De Sy, V.; et al. Disentangling the Numbers Behind Agriculture-Driven Tropical Deforestation. Science 2022, 377, eabm9267. [Google Scholar] [CrossRef]
- Shekede, M.D.; Gwitira, I.; Mamvura, C. Spatial Modelling of Wildfire Hotspots and Their Key Drivers Across Districts of Zimbabwe, Southern Africa. Geocarto Int. 2021, 36, 874–887. [Google Scholar]
- EMA (Environmental Management Authority). Fire Assessment Report. In Environmental Management Agency; Benaby Printing and Publishing: Harare, Zimbabwe, 2011. [Google Scholar]
- Zhang, Y.; Lim, S.; Sharples, J.J. Modelling Spatial Patterns of Wildfire Occurrence in South-Eastern Australia. Geomat. Nat. Hazards Risk 2016, 7, 1800–1815. [Google Scholar]
- Maponga, R.; Ahmed, F.; Mushore, T.D. Remote Sensing-Based Assessment of Veld Fire Trends in Multiple Interwoven Land Tenure Systems in Zimbabwe. Geocarto Int. 2018, 33, 612–626. [Google Scholar]
- Zisadza-Gandiwa, P.; Gandiwa, E.; Matokwe, T.B.; Gwazani, R.; Mashapa, C.; Muboko, N.; Mudangwe, S. Preliminary assessment of vegetation fires and their impact in Nyanga National Park, Zimbabwe. Greener J. Biol. Sci. 2014, 4, 9–017. [Google Scholar]
- Dorward, N.; Fox, S.; Statham, T.; Wolf, L.J. A Spatial-Demographic Analysis of Africa’s Emerging Urban Geography. Environ. Urban 2023, 35, 310–327. [Google Scholar] [CrossRef]
- Muhoyi, H.; Muhoyi, E. Potential of GIS and Remote Sensing in Mapping Land Degradation: Catchment of the Manyame River, Zimbabwe. Water Pract. Technol. 2023, 18, 455–469. [Google Scholar]
- Dlamini, W.M. A Bayesian Belief Network Analysis of Factors Influencing Wildfire Occurrence in Swaziland. Environ. Model Softw. 2010, 25, 199–208. [Google Scholar]
Data Theme | Years Utilized | Spatial Resolution | Source |
---|---|---|---|
Tree loss | 2000–2018 | 30 m | Hansen et al., 2013 [27]; https://data.globalforestwatch.org/ |
Fire | 2003–2016 | 500 m | https://www.globalfiredata.org/ |
Population | 2000–2018 | 100 m | https://www.worldpop.org/project/categories?id=3 |
Date Theme | 2000–2004 | 2004–2008 | 2008–2012 | 2012–2018 |
---|---|---|---|---|
Rate of tree loss | 2.32% | 3.40% | 3.63% | 2.49% |
Change in population count | 433,444 | 452,248 | 486,183 | 513,392 |
Proportion of area burned | — | 22.46% | 25.06% | 18.36% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Underwood, E.C.; Hollander, A.D.; Hahn, B.A. Assessing Trends in Tree Cover, Wildfire and Population Growth in Zimbabwe since 2000. Land 2024, 13, 160. https://doi.org/10.3390/land13020160
Underwood EC, Hollander AD, Hahn BA. Assessing Trends in Tree Cover, Wildfire and Population Growth in Zimbabwe since 2000. Land. 2024; 13(2):160. https://doi.org/10.3390/land13020160
Chicago/Turabian StyleUnderwood, Emma C., Allan D. Hollander, and Beth A. Hahn. 2024. "Assessing Trends in Tree Cover, Wildfire and Population Growth in Zimbabwe since 2000" Land 13, no. 2: 160. https://doi.org/10.3390/land13020160
APA StyleUnderwood, E. C., Hollander, A. D., & Hahn, B. A. (2024). Assessing Trends in Tree Cover, Wildfire and Population Growth in Zimbabwe since 2000. Land, 13(2), 160. https://doi.org/10.3390/land13020160