Using Adapted and Productive European Beech (Fagus sylvatica L.) Provenances as Future Solutions for Sustainable Forest Management in Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Common Garden Experiments and Tested Provenances
2.2. Measurements of Growth Traits and Site Conditions
2.3. Data Analyses
3. Results
3.1. Stability Performances
3.2. Growth Performances
3.3. Provenances Adaptability (Phenotypic Plasticity)
3.4. Best-Performing Provenances
4. Discussion
4.1. Growth and Stability Performance
4.2. Provenances Adaptability (Phenotypic Plasticity)
4.3. Implications for Assisted Migration and Forest Management
4.4. Study Limitations and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Webb, T., III; Bartlein, P.J. Global changes during the last 3 million years: Climatic controls and biotic responses. Annu. Rev. Ecol. Evol. Syst. 1992, 23, 141–173. [Google Scholar] [CrossRef]
- Malcolm, J.R.; Liu, C.; Neilson, R.P.; Hansen, L.; Hannah, L.E.E. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 2006, 20, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.R. Explaining the global biodiversity gradient: Energy, area, history and natural selection. Basic. Appl. Ecol. 2004, 5, 435–448. [Google Scholar] [CrossRef]
- Tinner, W.; Lotter, A.F. Holocene expansions of Fagus silvatica and Abies alba in Central Europe: Where are we after eight decades of debate? Quat. Sci. Rev. 2006, 25, 526–549. [Google Scholar] [CrossRef]
- Svenning, J.C.; Skov, F. Ice age legacies in the geographical distribution of tree species richness in Europe. Glob. Ecol. Biogeogr. 2007, 16, 234–245. [Google Scholar] [CrossRef]
- Iverson, L.R.; McKenzie, D. Tree-species range shifts in a changing climate: Detecting, modeling, assisting. Landsc. Ecol. 2013, 28, 879–889. [Google Scholar] [CrossRef]
- Şofletea, N.; Curtu, A.L.; Daia, M.L.; Budeanu, M. The dynamics and variability of radial growth in provenance trials of Norway spruce (Picea abies (L.) Karst.) within and beyond the hot margins of its natural range. Not. Bot. Horti Agrobo. 2015, 43, 265–271. [Google Scholar] [CrossRef]
- Aertsen, W.; Janssen, E.; Kint, V.; Bontemps, J.D.; Van Orshoven, J.; Muys, B. Long-term growth changes of common beech (Fagus sylvatica L.) are less pronounced on highly productive sites. For. Ecol. Manag. 2014, 312, 252–259. [Google Scholar] [CrossRef]
- Altman, J.; Fibich, P.; Santruckova, H.; Dolezal, J.; Stepanek, P.; Kopacek, J.; Hunova, I.; Oulehle, F.; Tumajer, J.; Cienciala, E. Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. Sci. Total Environ. 2017, 609, 506–516. [Google Scholar] [CrossRef]
- Braun, S.; Schindler, C.; Rihm, B. Growth trends of beech and Norway spruce in Switzerland: The role of nitrogen deposition, ozone, mineral nutrition and climate. Sci. Total Environ. 2017, 599, 637–646. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Hauck, M.; Kopp, G.; Ruff, M.; Leuschner, C. European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees 2017, 31, 673–686. [Google Scholar] [CrossRef]
- Knutzen, F.; Dulamsuren, C.; Meier, I.C.; Leuschner, C. Recent climate warming-related growth decline impairs European beech in the center of its distribution range. Ecosystems 2017, 20, 1494–1511. [Google Scholar] [CrossRef]
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
- Leuschner, C. Drought response of European beech (Fagus sylvatica L.)—A review. PPEES 2020, 47, 125576. [Google Scholar] [CrossRef]
- Bohn, U.; Gollub, G. Buchenwälder als natürliche Vegetation in Europa. Natur. Und Landschaft. 2007, 82, 391–397. [Google Scholar]
- Peters, R. Beech Forests; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; p. 165. [Google Scholar] [CrossRef]
- Leuschner, C.; Ellenberg, H. Ecology of Central European Non-Forest Vegetation: Coastal to Alpine, Natural to Man-Made Habitats: Vegetation Ecology of Central Europe; Springer: Berlin/Heidelberg, Germany, 2017; p. 1094. [Google Scholar] [CrossRef]
- von Wuehlisch, G. Euforgen Technical Guidelines for Genetic Conservation and Use for European Beech (Fagus sylvatica); Bioversity International: Rome, Italy, 2008; 6p. [Google Scholar]
- Bolte, A.; Czajkowski, T.; Kompa, T. The north-eastern distribution range of European beech—A review. Forestry 2007, 80, 413–429. [Google Scholar] [CrossRef]
- Jump, A.S.; Hunt, J.M.; Penuelas, J. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob. Chang. Biol. 2006, 12, 2163–2174. [Google Scholar] [CrossRef]
- Packham, J.R.; Thomas, P.A.; Atkinson, M.D.; Degen, T. Biological Flora of the British Isles: Fagus sylvatica. J. Ecol. 2012, 100, 1557–1608. [Google Scholar] [CrossRef]
- Willner, W.; Jiménez-Alfaro, B.; Agrillo, E.; Biurrun, I.; Campos, J.A.; Čarni, A.; Casella, L.; Csiky, J.; Cušterevska, R.; Didukh, Y.P.; et al. Classification of European beech forests: A Gordian Knot? Appl. Veg. Sci. 2017, 20, 494–512. [Google Scholar] [CrossRef]
- Dorota, D. Vitality of European Beech (Fagus sylvatica L.) at the Limit of Its Natural Range in Poland. Polish J. Ecol. 2015, 63, 260–272. [Google Scholar] [CrossRef]
- Szwagrzyk, J.; Gratzer, G.; Stępniewska, H.; Szewczyk, J.; Veselinovic, B. High reproductive effort and low recruitment rates of European beech: Is there a limit for the superior competitor? Polish J. Ecol. 2015, 63, 198–212. [Google Scholar] [CrossRef]
- Şofletea, N.; Curtu, L. Dendrologie; Editura Universităţii Transilvania: Brașov, Romania, 2007; 540p. [Google Scholar]
- IFN. Rezultate IFN—Ciclul II. Available online: http://roifn.ro/site/rezultate-ifn-2/ (accessed on 6 April 2023).
- Zimmermann, J.; Hauck, M.; Dulamsuren, C.; Leuschner, C. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems 2015, 18, 560–572. [Google Scholar] [CrossRef]
- NW-FVA. Komplexe Schäden an Rotbuche (Fagus sylvatica) und Auswirkungen des Trockenen und Heißen Sommers 2018 auf Ältere Bestände; Waldschutzinfo Nr. 06/2019; NW-FVA: Göttingen, Germany, 2019. [Google Scholar]
- Walthert, L.; Ganthaler, A.; Mayr, S.; Saurer, M.; Waldner, P.; Walser, M.; Zweifel, R.; von Arx, G. From the comfort zone to crown dieback: Sequence of physiological stress thresholds in mature European beech trees across progressive drought. Sci. Total Environ. 2021, 753, 141792. [Google Scholar] [CrossRef]
- Jump, A.S.; Hunt, J.M.; Martinez-Izquierdo, J.A.; Peñuelas, J. Natural selection and climate change: Temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol. Ecol. 2006, 15, 3469–3480. [Google Scholar] [CrossRef]
- Piovesan, G.; Biondi, F.; Filippo, A.D.; Alessandrini, A.; Maugeri, M. Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob. Chang. Biol. 2008, 14, 1265–1281. [Google Scholar] [CrossRef]
- Lakatos, F.; Molnár, M. Mass mortality of beech (Fagus sylvatica L.) in South-West Hungary. Acta Silv. Lignaria Hung. 2009, 5, 75–82. [Google Scholar]
- Kasper, J.; Leuschner, C.; Walentowski, H.; Petritan, A.M.; Weigel, R. Winners and losers of climate warming: Declining growth in Fagus and Tilia vs. stable growth in three Quercus species in the natural beech–oak forest ecotone (western Romania). For. Ecol. Manag. 2022, 506, 119892. [Google Scholar] [CrossRef]
- Chira, D.; Dănescu, F.; Roşu, C.; Chira, F.; Mihalciuc, V.; Surdu, A.; Nicolescu, N.V. Some recent issues regarding the European beech decline in Romania. Annale ICAS 2003, 46, 167–176. [Google Scholar]
- Budeanu, M.; Petritan, A.M.; Popescu, F.; Vasile, D.; Tudose, N.C. The resistance of European beech (Fagus sylvatica) from the eastern natural limit of species to climate change. Not. Bot. Horti Agrobo. 2016, 44, 625–633. [Google Scholar] [CrossRef]
- Roibu, C.C.; Popa, I.; Kirchhefer, A.J.; Palaghianu, C. Growth responses to climate in a tree-ring network of European beech (Fagus sylvatica L.) from the eastern limit of its natural distribution area. Dendrochronologia 2017, 42, 104–116. [Google Scholar] [CrossRef]
- Roibu, C.C.; Palaghianu, C.; Nagavciuc, V.; Ionita, M.; Sfeclă, V.; Mursa, A.; Crivellaro, A.; Stirbu, M.I.; Cotos, M.G.; Popa, A.; et al. The Response of Beech (Fagus sylvatica L.) Populations to Climate in the Easternmost Sites of Its European Distribution. Plants 2022, 11, 3310. [Google Scholar] [CrossRef] [PubMed]
- Barigah, T.S.; Charrier, O.; Douris, M.; Bonhomme, M.; Herbette, S.; Améglio, T.; Fichot, R.; Brignolas, F.; Cochard, H. Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Ann. Bot. 2013, 112, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Bolte, A.; Czajkowski, T.; Cocozza, C.; Tognetti, R.; De Miguel, M.; Pšidová, E.; Ditmarová, Ĺ.; Dinca, L.; Delzon, S.; Cochard, H.; et al. Desiccation and mortality dynamics in seedlings of different European beech (Fagus sylvatica L.) populations under extreme drought conditions. Front. Plant Sci. 2016, 7, 751. [Google Scholar] [CrossRef] [PubMed]
- Obladen, N.; Dechering, P.; Skiadaresis, G.; Tegel, W.; Keßler, J.; Höllerl, S.; Kaps, S.; Hertel, M.; Dulamsuren, C.; Seifert, T.; et al. Tree mortality of European beech and Norway spruce induced by 2018–2019 hot droughts in central Germany. Agric. For. Meteorol. 2021, 307, 108482. [Google Scholar] [CrossRef]
- Meyer, P.; Spînu, A.P.; Mölder, A.; Bauhus, J. Management alters drought-induced mortality patterns in European beech (Fagus sylvatica L.) forests. Plant Biol. 2022, 24, 1157–1170. [Google Scholar] [CrossRef] [PubMed]
- Peuke, A.D.; Schraml, C.; Hartung, W.; Rennenberg, H. Identification of drought-sensitive beech ecotypes by physiological parameters. New Phytol. 2002, 154, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Pretzsch, H.; Grams, T.; Häberle, K.H.; Pritsch, K.; Bauerle, T.; Rötzer, T. Growth and mortality of Norway spruce and European beech in monospecific and mixed-species stands under natural episodic and experimentally extended drought. Results of the KROOF throughfall exclusion experiment. Trees 2020, 34, 957–970. [Google Scholar] [CrossRef]
- Stojnić, S.; Orlović, S.; Miljković, D.; Galić, Z.; Kebert, M.; von Wuehlisch, G. Provenance plasticity of European beech leaf traits under differing environmental conditions at two Serbian common garden sites. Eur. J. For. Res. 2015, 134, 1109–1125. [Google Scholar] [CrossRef]
- Müller, M.; Kempen, T.; Finkeldey, R.; Gailing, O. Low population differentiation but high phenotypic plasticity of European beech in Germany. Forests 2020, 11, 1354. [Google Scholar] [CrossRef]
- Matyas, C. Climatic adaptation of trees: Rediscovering provenance tests. Euphytica 1996, 92, 45–54. [Google Scholar] [CrossRef]
- Von Wühlisch, G. Series of International Provenance Trials of European Beech. In Proceedings of the 7th International Beech Symposium IUFRO Research Group 1.10.00, Tehran, Iran, 10–20 May 2004; pp. 135–144. [Google Scholar]
- Liesebach, M. International beech provenance trial 1993/95. In Proceedings of the German Russian Conference on Forest Genetics, Ahrensburg, Germany, 21–23 November 2017. [Google Scholar]
- Robson, T.M.; Rasztovits, E.; Aphalo, P.J.; Alia, R.; Aranda, I. Flushing phenology and fitness of European beech (Fagus sylvatica L.) provenances from a trial in La Rioja, Spain, segregate according to their climate of origin. Agric. For. Meteorol. 2013, 180, 76–85. [Google Scholar] [CrossRef]
- Stojnić, S.; Orlović, S.; Ballian, D.; Ivanković, M.; Šijačić-Nikolić, M.; Pilipović, A.; Von Wuehlisch, G. Provenance by site interaction and stability analysis of European beech (Fagus sylvatica L.) provenances grown in common garden experiments. Silvae Genet. 2015, 64, 133. [Google Scholar] [CrossRef]
- Thompson, D. Provenances of beech best suited for Ireland. Coford Connect. 2007, 12, 4. [Google Scholar]
- Bradshaw, A.D. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 1965, 13, 115–155. [Google Scholar] [CrossRef]
- Bradshaw, A.D. Unravelling phenotypic plasticity—Why should we bother? New Phytol. 2006, 170, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Ghalambor, C.K.; McKay, J.K.; Carroll, S.P.; Reznick, D.N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 2007, 21, 394–407. [Google Scholar] [CrossRef]
- Crispo, E. Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J. Evol. Biol. 2008, 21, 1460–1469. [Google Scholar] [CrossRef]
- Nicotra, A.B.; Atkin, O.K.; Bonser, S.P.; Davidson, A.M.; Finnegan, E.J.; Mathesius, U.; Poot, P.; Purugganan, A.D.; Richards, C.L.; Valladares, F.; et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010, 15, 684–692. [Google Scholar] [CrossRef]
- Vitasse, Y.; Bresson, C.C.; Kremer, A.; Michalet, R.; Delzon, S. Quantifying phenological plasticity to temperature in two temperate tree species. Funct. Ecol. 2010, 24, 1211–1218. [Google Scholar] [CrossRef]
- Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araújo, M.B.; Balaguer, L.; Benito-Garzón, M.; Cornwell, M.; Gianoli, E.; van Kleunen, M.; Naya, D.E.; et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 2014, 17, 1351–1364. [Google Scholar] [CrossRef]
- Benito Garzón, M.; Robson, T.M.; Hampe, A. ΔTrait SDMs: Species distribution models that account for local adaptation and phenotypic plasticity. New Phytol. 2019, 222, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- Gárate-Escamilla, H.; Hampe, A.; Vizcaíno-Palomar, N.; Robson, T.M.; Benito Garzón, M. Range-wide variation in local adaptation and phenotypic plasticity of fitness-related traits in Fagus sylvatica and their implications under climate change. Glob. Ecol. Biogeogr. 2019, 28, 1336–1350. [Google Scholar] [CrossRef]
- Von Wuehlisch, G.; Ballian, D.; Bogdan, S.; Forstreuter, M.; Giannini, R.; Götz, B.; Ivanković, M.; Orlović, S.; Pilipović, A.; Šijačić-Nikolić, M. Early results from provenance trials with European beech established 2007. In Proceedings of the COST E52 Evaluation of Beech Genetic Resources for Sustainable Forestry, Final Meeting, Book of Abstracts, Burgos, Spain, 4–6 May 2010; pp. 4–6. [Google Scholar]
- Robson, T.; Garzón, M.; BeechCOSTe52 database consortium. Phenotypic trait variation measured on European genetic trials of Fagus sylvatica L. Sci. Data 2018, 5, 180149. [Google Scholar] [CrossRef]
- Mihai, G. Surse de Seminte Testate Pentru Principalele Specii de Arbori Forestieri din România; Editura Silvica: Bucuresti, Romania, 2008; pp. 99–116. [Google Scholar]
- Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. Chorological data for the main European woody species. Mendeley Data 2023, 16, 662–666. [Google Scholar] [CrossRef]
- Anonymous. Management planning of production unit II Poiana Florilor, forest district Alesd. 2012. [Google Scholar]
- Anonymous. Management planning of production unit III Lespezi, forest district Fantanele. 2018. [Google Scholar]
- B4EST. Available online: http://www.b4est.eu/ (accessed on 15 May 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.r-project.org/ (accessed on 10 February 2023).
- Valladares, F.; Sanchez-Gomez, D.; Zavala, M.A. Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. J. Ecol. 2006, 94, 1103–1116. [Google Scholar] [CrossRef]
- Ameztegui, A. Plasticity: An R Package to Determine Several Plasticity Indices. GitHub Repository. 2017. Available online: https://github.com/ameztegui/Plasticity/ (accessed on 20 April 2023).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. R Package Version 1.1.0. 2023. Available online: https://CRAN.R-project.org/package=dplyr/ (accessed on 20 April 2023).
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2023. Available online: http://qgis.osgeo.org (accessed on 5 June 2023).
- Mátyás, C. Adaptive pattern of phenotypic plasticity and inherent growth reveal the potential for assisted transfer in sessile oak (Quercus petraea L.). For. Ecol. Manag. 2021, 482, 118832. [Google Scholar] [CrossRef]
- von Wuehlisch, G.; Hansen, J.K.; Mertens, P.; Liesebach, M.; Meierjohann, E.; Muhs, H.J.; Teissier du Cros, E.; de Vries, S. Variation among Fagus sylvatica and Fagus orientalis provenances in young international field trials. In Proceedings of the 8th IUFRO International Beech Symposium, Ecology and Silviculture of Beech, Hokkaido, Japan, 8–13 September 2008; pp. 8–13. [Google Scholar]
- Petkova, K.; Molle, E.; Mustafova, A. Survival and growth of Common beech (Fagus sylvatica L.) provenances in North-Eastern Bulgaria. Silva Balc. 2022, 23, 5–17. [Google Scholar] [CrossRef]
- Eilmann, B.; Sterck, F.; Wegner, L.; de Vries, S.M.; Von Arx, G.; Mohren, G.M.; den Ouden, J.; Sass-Klaassen, U. Wood structural differences between northern and southern beech provenances growing at a moderate site. Tree Physiol. 2014, 34, 882–893. [Google Scholar] [CrossRef]
- Bogunović, S.; Bogdan, S.; Lanšćak, M.; Ćelepirović, N.; Ivanković, M. Use of a common garden experiment in selecting adapted beech provenances for artificial stand restoration. SEEFOR 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Müller, M.; Finkeldey, R. Genetic and adaptive trait variation in seedlings of European beech provenances from Northern Germany. Silvae Genet. 2016, 65, 65–73. [Google Scholar] [CrossRef]
- Krajnc, L.; Prislan, P.; Božič, G.; Westergren, M.; Arnič, D.; Mátyás, C.; Gričar, J.; Kraigher, H. A comparison of radial increment and wood density from beech provenance trials in Slovenia and Hungary. Eur. J. For. Res. 2022, 141, 433–446. [Google Scholar] [CrossRef]
- Petkova, K.; Molle, E.; Konnert, M.; Knutzen, F. Comparing German and Bulgarian provenances of European beech (Fagus sylvatica L.) regarding survival, growth and ecodistance. Silva Balc. 2019, 20, 27–48. [Google Scholar] [CrossRef]
- Thiel, D.; Kreyling, J.; Backhaus, S.; Beierkuhnlein, C.; Buhk, C.; Egen, K.; Huber, G.; Konnert, M.; Nagy, L.; Jentsch, A. Different reactions of central and marginal provenances of Fagus sylvatica to experimental drought. Eur. J. For. Res. 2014, 133, 247–260. [Google Scholar] [CrossRef]
- Magri, D. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J. Biogeogr. 2008, 35, 450–463. [Google Scholar] [CrossRef]
- Penuelas, J.; Ogaya, R.; Boada, M.; Jump, A.S. Migration, invasion and decline: Changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 2007, 30, 829–837. [Google Scholar] [CrossRef]
- Kramer, K.; Degen, B.; Buschbom, J.; Hickler, T.; Thuiller, W.; Sykes, M.T.; de Winter, W. Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—Range, abundance, genetic diversity and adaptive response. For. Ecol. Manag. 2010, 259, 2213–2222. [Google Scholar] [CrossRef]
- Mihai, G.; Şofletea, N.; Curtu, L.; Pârnuţă, G.; Ioniţă, L.; Stuparu, E.; Popescu, F.; Teodosiu, M. Evaluation of genetic variation of the main forest tree species in Romania for establishing tested seed sources. Revista Pădurilor 2008, 4, 3–11. [Google Scholar]
- Ballian, D.; Zukić, N. Analysis of the growth of common beech provenances (Fagus sylvatica L.) in the international experiment near Kakanj. Rad. Šumar. fak. Univ. Sarajevu 2011, 41, 75–91. [Google Scholar] [CrossRef]
- Stojnić, S.; Orlović, S.; Trudić, B.; Kesić, L.; Stanković, M.; Šijačić-Nikolić, M. Height and root-collar diameter growth variability of european beech provenances from Southeast Europe. Topola 2016, 197–198, 5–14. [Google Scholar]
- Konnert, M.; Ruetz, W. Genetic variation of beech (Fagus sylvatica L.) provenances in an international beech provenance trial. For. Genet. 2001, 8, 173–184. [Google Scholar]
- Rose, L.; Leuschner, C.; Köckemann, B.; Buschmann, H. Are marginal beech (Fagus sylvatica L.) provenances a source for drought tolerant ecotypes? Eur. J. For. Res. 2009, 128, 335–343. [Google Scholar] [CrossRef]
- Knutzen, F.; Meier, I.C.; Leuschner, C. Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient. Tree Physiol. 2015, 35, 949–963. [Google Scholar] [CrossRef]
- Dounavi, A.; Netzer, F.; Celepirovic, N.; Ivanković, M.; Burger, J.; Figueroa, A.G.; Schön, S.; Simon, J.; Cremer, E.; Fussi, B.; et al. Genetic and physiological differences of European beech provenances (F. sylvatica L.) exposed to drought stress. For. Ecol. Manag. 2016, 361, 226–236. [Google Scholar] [CrossRef]
- Nguyen, Q.N.; Polle, A.; Pena, R. Intraspecific variations in drought response and fitness traits of beech (Fagus sylvatica L.) seedlings from three provenances differing in annual precipitation. Trees 2017, 31, 1215–1225. [Google Scholar] [CrossRef]
- Wang, H.; Lin, S.; Dai, J.; Ge, Q. Modeling the effect of adaptation to future climate change on spring phenological trend of European beech (Fagus sylvatica L.). Sci. Total Environ. 2022, 846, 157540. [Google Scholar] [CrossRef]
- Wortemann, R.; Herbette, S.; Barigah, T.S.; Fumanal, B.; Alia, R.; Ducousso, A.; Gomory, D.; Roeckel-Drevet, P.; Cochard, H. Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiol. 2011, 31, 1175–1182. [Google Scholar] [CrossRef]
- Capdevielle-Vargas, R.; Estrella, N.; Menzel, A. Multiple-year assessment of phenological plasticity within a beech (Fagus sylvatica L.) stand in southern Germany. Agric. For. Meteorol. 2015, 211, 13–22. [Google Scholar] [CrossRef]
- Stojnic, S.; Orlovic, S.; Trudic, B.; Zivkovic, U.; von Wuehlisch, G.; Miljkovic, D. Phenotypic plasticity of European beech (Fagus sylvatica L.) stomatal features under water deficit assessed in provenance trial. Dendrobiology 2015, 73, 163–173. [Google Scholar] [CrossRef]
- Frank, A.; Pluess, A.R.; Howe, G.T.; Sperisen, C.; Heiri, C. Quantitative genetic differentiation and phenotypic plasticity of European beech in a heterogeneous landscape: Indications for past climate adaptation. PPEES 2017, 26, 1–13. [Google Scholar] [CrossRef]
- Sansilvestri, R.; Frascaria-Lacoste, N.; Fernández-Manjarrés, J.F. Reconstructing a deconstructed concept: Policy tools for implementing assisted migration for species and ecosystem management. Environ. Sci. Policy 2015, 51, 192–201. [Google Scholar] [CrossRef]
- Leech, S.M.; Almuedo, P.L.; O’Neill, G. Assisted migration: Adapting forest management to a changing climate. JEM 2011, 12, 18–34. [Google Scholar] [CrossRef]
- Gray, L.K.; Gylander, T.; Mbogga, M.S.; Chen, P.Y.; Hamann, A. Assisted migration to address climate change: Recommendations for aspen reforestation in western Canada. Ecol. Appl. 2011, 21, 1591–1603. [Google Scholar] [CrossRef]
- Pedlar, J.H.; McKenney, D.W.; Aubin, I.; Beardmore, T.; Beaulieu, J.; Iverson, L.; Ste-Marie, C. Placing forestry in the assisted migration debate. BioScience 2012, 62, 835–842. [Google Scholar] [CrossRef]
- Konig, A.O. Provenance research: Evaluating the spatial pattern of genetic variation. In Conservation and Management of Forest Genetic Resources in Europe; Geburek, T., Turok, J., Eds.; Arbora Publishers: Zvolen, Slovakia, 2005; pp. 275–335. [Google Scholar]
- Budeanu, M.; Apostol, E.N.; Besliu, E.; Crișan, V.E.; Petritan, A.M. Phenotypic variability and differences in the drought response of Norway spruce pendula and pyramidalis half-sib families. Forests 2021, 12, 947. [Google Scholar] [CrossRef]
Interactions | Site | S | Th | Dbh |
---|---|---|---|---|
Between provenances | Alesd | 0.000 *** | 0.000 *** | 0.360 |
Fantanele | 0.006 *** | 0.052 | 0.604 | |
Between test sites | 0.000 *** | 0.000 *** | 0.000 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Besliu, E.; Curtu, A.L.; Apostol, E.N.; Budeanu, M. Using Adapted and Productive European Beech (Fagus sylvatica L.) Provenances as Future Solutions for Sustainable Forest Management in Romania. Land 2024, 13, 183. https://doi.org/10.3390/land13020183
Besliu E, Curtu AL, Apostol EN, Budeanu M. Using Adapted and Productive European Beech (Fagus sylvatica L.) Provenances as Future Solutions for Sustainable Forest Management in Romania. Land. 2024; 13(2):183. https://doi.org/10.3390/land13020183
Chicago/Turabian StyleBesliu, Emanuel, Alexandru Lucian Curtu, Ecaterina Nicoleta Apostol, and Marius Budeanu. 2024. "Using Adapted and Productive European Beech (Fagus sylvatica L.) Provenances as Future Solutions for Sustainable Forest Management in Romania" Land 13, no. 2: 183. https://doi.org/10.3390/land13020183
APA StyleBesliu, E., Curtu, A. L., Apostol, E. N., & Budeanu, M. (2024). Using Adapted and Productive European Beech (Fagus sylvatica L.) Provenances as Future Solutions for Sustainable Forest Management in Romania. Land, 13(2), 183. https://doi.org/10.3390/land13020183