Promoting Urban Innovation through Smart Cities: Evidence from a Quasi-Natural Experiment in China
Abstract
:1. Introduction
2. Institutional Background and Research Hypotheses
2.1. Institutional Background
2.2. Hypothesis Development
3. Data and Methods
3.1. Variables
3.1.1. Explained Variable
3.1.2. Explanatory Variable
3.1.3. Control Variables
3.1.4. Mediating Variables
3.2. Data
3.3. Empirical Model
4. Results and Discussion
4.1. Baseline Estimated Results
4.2. Parallel Trend Test
4.3. Placebo Test
4.3.1. Time Placebo Test
4.3.2. Urban Placebo Test
4.4. Robustness Test
4.5. Mechanism Analysis
4.5.1. Effect of Informatization Level
4.5.2. Effect of Government Investment in Science and Technology
4.5.3. Effect of Industrial Structural Upgrading
4.6. Heterogeneity Analysis
4.6.1. City Size
4.6.2. City Location
4.6.3. Level of Urban Science and Education
5. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lucas, R.E. On the Mechanics of Economic Development. J. Monet. Econ. 1988, 22, 3–42. [Google Scholar] [CrossRef]
- Romer, P.M. Increasing Returns and Long-Run Growth. J. Polit. Econ. 1986, 94, 1002–1037. [Google Scholar] [CrossRef]
- Arkolakis, C.; Ramondo, N.; Rodríguez-Clare, A.; Yeaple, S. Innovation and Production in the Global Economy. Am. Econ. Rev. 2018, 108, 2128–2173. [Google Scholar] [CrossRef]
- Kogan, L.; Papanikolaou, D.; Seru, A.; Stoffman, N. Technological Innovation, Resource Allocation, and Growth. Q. J. Econ. 2017, 132, 665–712. [Google Scholar] [CrossRef]
- Anttiroiko, A.-V. City-as-a-Platform: The Rise of Participatory Innovation Platforms in Finnish Cities. Sustainability 2016, 8, 922. [Google Scholar] [CrossRef]
- Feldman, M.P.; Audretsch, D.B. Innovation in Cities: Science-Based Diversity, Specialization and Localized Competition. Eur. Econ. Rev. 1999, 43, 409–429. [Google Scholar] [CrossRef]
- Turok, I.; Bailey, D.; Clark, J.; Du, J.; Fratesi, U.; Fritsch, M.; Harrison, J.; Kemeny, T.; Kogler, D.; Lagendijk, A.; et al. (Eds.) Transitions in Regional Economic Development, 1st ed.; Routledge: London, UK, 2018; ISBN 978-1-315-14373-6. [Google Scholar]
- Khan, H.H.; Malik, M.N.; Zafar, R.; Goni, F.A.; Chofreh, A.G.; Klemeš, J.J.; Alotaibi, Y. Challenges for Sustainable Smart City Development: A Conceptual Framework. Sustain. Dev. 2020, 28, 1507–1518. [Google Scholar] [CrossRef]
- Laufs, J.; Borrion, H.; Bradford, B. Security and the Smart City: A Systematic Review. Sustain. Cities Soc. 2020, 55, 102023. [Google Scholar] [CrossRef]
- Duygan, M.; Fischer, M.; Pärli, R.; Ingold, K. Where Do Smart Cities Grow? The Spatial and Socio-Economic Configurations of Smart City Development. Sustain. Cities Soc. 2022, 77, 103578. [Google Scholar] [CrossRef]
- Shamsuzzoha, A.; Nieminen, J.; Piya, S.; Rutledge, K. Smart City for Sustainable Environment: A Comparison of Participatory Strategies from Helsinki, Singapore and London. Cities 2021, 114, 103194. [Google Scholar] [CrossRef]
- Zhu, S.; Li, D.; Feng, H. Is Smart City Resilient? Evidence from China. Sustain. Cities Soc. 2019, 50, 101636. [Google Scholar] [CrossRef]
- Anthopoulos, L.G. Understanding the Smart City Domain: A Literature Review. In Transforming City Governments for Successful Smart Cities; Rodríguez-Bolívar, M.P., Ed.; Public Administration and Information Technology; Springer International Publishing: Cham, Switzerland, 2015; pp. 9–21. ISBN 978-3-319-03167-5. [Google Scholar]
- Dameri, R. Searching for Smart City Definition: A Comprehensive Proposal. Int. J. Comput. Technol. 2013, 11, 2544. [Google Scholar] [CrossRef]
- Zubizarreta, I.; Seravalli, A.; Arrizabalaga, S. Smart City Concept: What It Is and What It Should Be. J. Urban Plan. Dev. 2016, 142, 04015005. [Google Scholar] [CrossRef]
- Nam, T.; Pardo, T.A. Smart City as Urban Innovation: Focusing on Management, Policy, and Context. In Proceedings of the Proceedings of the 5th International Conference on Theory and Practice of Electronic Governance, Tallinn, Estonia, 26–28 September 2011; ACM: Tallinn, Estonia, 2011; pp. 185–194. [Google Scholar]
- Bartelt, V.L.; Urbaczewski, A.; Mueller, A.G.; Sarker, S. Enabling Collaboration and Innovation in Denver’s Smart City through a Living Lab: A Social Capital Perspective. Eur. J. Inf. Syst. 2020, 29, 369–387. [Google Scholar] [CrossRef]
- March, H.; Ribera-Fumaz, R. Smart Contradictions: The Politics of Making Barcelona a Self-Sufficient City. Eur. Urban Reg. Stud. 2016, 23, 816–830. [Google Scholar] [CrossRef]
- Chu, Z.; Cheng, M.; Yu, N.N. A Smart City Is a Less Polluted City. Technol. Forecast. Soc. Chang. 2021, 172, 121037. [Google Scholar] [CrossRef]
- Yeh, H. The Effects of Successful ICT-Based Smart City Services: From Citizens’ Perspectives. Gov. Inf. Q. 2017, 34, 556–565. [Google Scholar] [CrossRef]
- Paskaleva, K.; Cooper, I. Open Innovation and the Evaluation of Internet-Enabled Public Services in Smart Cities. Technovation 2018, 78, 4–14. [Google Scholar] [CrossRef]
- Leite, E. Innovation Networks for Social Impact: An Empirical Study on Multi-Actor Collaboration in Projects for Smart Cities. J. Bus. Res. 2022, 139, 325–337. [Google Scholar] [CrossRef]
- Chatfield, A.T.; Reddick, C.G. Smart City Implementation Through Shared Vision of Social Innovation for Environmental Sustainability: A Case Study of Kitakyushu, Japan. Soc. Sci. Comput. Rev. 2016, 34, 757–773. [Google Scholar] [CrossRef]
- Karvonen, A.; Cugurullo, F.; Caprotti, F. Inside Smart Cities: Place, Politics and Urban Innovation; Routledge: London, UK, 2018; ISBN 978-1-351-16618-8. [Google Scholar]
- Kirimtat, A.; Krejcar, O.; Kertesz, A.; Tasgetiren, M.F. Future Trends and Current State of Smart City Concepts: A Survey. IEEE Access 2020, 8, 86448–86467. [Google Scholar] [CrossRef]
- Zhao, F.; Fashola, O.I.; Olarewaju, T.I.; Onwumere, I. Smart City Research: A Holistic and State-of-the-Art Literature Review. Cities 2021, 119, 103406. [Google Scholar] [CrossRef]
- Abu-Rayash, A.; Dincer, I. Development of Integrated Sustainability Performance Indicators for Better Management of Smart Cities. Sustain. Cities Soc. 2021, 67, 102704. [Google Scholar] [CrossRef]
- Dente, B.; Coletti, P. Measuring Governance in Urban Innovation. Local Gov. Stud. 2011, 37, 43–56. [Google Scholar] [CrossRef]
- Florida, R.; Adler, P.; Mellander, C. The City as Innovation Machine. Reg. Stud. 2017, 51, 86–96. [Google Scholar] [CrossRef]
- Li, D.; Wei, Y.D.; Wang, T. Spatial and Temporal Evolution of Urban Innovation Network in China. Habitat Int. 2015, 49, 484–496. [Google Scholar] [CrossRef]
- Lau, A.K.W.; Lo, W. Regional Innovation System, Absorptive Capacity and Innovation Performance: An Empirical Study. Technol. Forecast. Soc. Chang. 2015, 92, 99–114. [Google Scholar] [CrossRef]
- Gao, K.; Yuan, Y. The Effect of Innovation-Driven Development on Pollution Reduction: Empirical Evidence from a Quasi-Natural Experiment in China. Technol. Forecast. Soc. Chang. 2021, 172, 121047. [Google Scholar] [CrossRef]
- Hou, Y. Agglomeration Spillover, Accessibility by High-Speed Rail, and Urban Innovation in China: A Focus on the Electronic Information Industry. Habitat Int. 2022, 126, 102618. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Degirmenci, K.; Butler, L.; Desouza, K.C. What Are the Key Factors Affecting Smart City Transformation Readiness? Evidence from Australian Cities. Cities 2022, 120, 103434. [Google Scholar] [CrossRef]
- Ferraris, A.; Belyaeva, Z.; Bresciani, S. The Role of Universities in the Smart City Innovation: Multistakeholder Integration and Engagement Perspectives. J. Bus. Res. 2020, 119, 163–171. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, S. Can the Establishment of University Science and Technology Parks Promote Urban Innovation? Evidence from China. Sustainability 2022, 14, 10707. [Google Scholar] [CrossRef]
- Yang, S.; Li, Z.; Li, J. Fiscal Decentralization, Preference for Government Innovation and City Innovation: Evidence from China. Chin. Manag. Stud. 2020, 14, 391–409. [Google Scholar] [CrossRef]
- Zou, C.; Huang, Y.; Wu, S.; Hu, S. Does “Low-Carbon City” Accelerate Urban Innovation? Evidence from China. Sustain. Cities Soc. 2022, 83, 103954. [Google Scholar] [CrossRef]
- Fan, F.; Lian, H.; Liu, X.; Wang, X. Can Environmental Regulation Promote Urban Green Innovation Efficiency? An Empirical Study Based on Chinese Cities. J. Clean. Prod. 2021, 287, 125060. [Google Scholar] [CrossRef]
- Li, J.; Du, Y. Spatial Effect of Environmental Regulation on Green Innovation Efficiency: Evidence from Prefectural-Level Cities in China. J. Clean. Prod. 2021, 286, 125032. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, S. Can the Innovative-City-Pilot Policy Promote Urban Innovation? An Empirical Analysis from China. J. Urban Aff. 2023, 45, 1679–1697. [Google Scholar] [CrossRef]
- Gao, K.; Yuan, Y. Government Intervention, Spillover Effect and Urban Innovation Performance: Empirical Evidence from National Innovative City Pilot Policy in China. Technol. Soc. 2022, 70, 102035. [Google Scholar] [CrossRef]
- Caragliu, A.; Del Bo, C.F. Smart Innovative Cities: The Impact of Smart City Policies on Urban Innovation. Technol. Forecast. Soc. Chang. 2019, 142, 373–383. [Google Scholar] [CrossRef]
- Wang, B.; Loo, B.P.Y.; Huang, G. Becoming Smarter through Smart City Pilot Projects: Experiences and Lessons from China since 2013. J. Urban Technol. 2022, 29, 3–24. [Google Scholar] [CrossRef]
- Beck, T.; Levine, R.; Levkov, A. Big Bad Banks? The Winners and Losers from Bank Deregulation in the United States. J. Financ. 2010, 65, 1637–1667. [Google Scholar] [CrossRef]
- Angelidou, M. The Role of Smart City Characteristics in the Plans of Fifteen Cities. J. Urban Technol. 2017, 24, 3–28. [Google Scholar] [CrossRef]
- Nie, C.; Zhong, Z.; Feng, Y. Can Digital Infrastructure Induce Urban Green Innovation? New Insights from China. Clean Technol. Environ. Policy 2023, 25, 3419–3436. [Google Scholar] [CrossRef]
- Putra, Z.D.W.; van der Knaap, W. Urban Innovation System and the Role of an Open Web-Based Platform: The Case of Amsterdam Smart City. J. Reg. City Plan. 2018, 29, 234–249. [Google Scholar] [CrossRef]
- Lach, S. Do R&D Subsidies Stimulate or Displace Private R&D? Evidence from Israel. J. Ind. Econ. 2002, 50, 369–390. [Google Scholar] [CrossRef]
- Czarnitzki, D.; Ebersberger, B.; Fier, A. The Relationship between R&D Collaboration, Subsidies and R&D Performance: Empirical Evidence from Finland and Germany. J. Appl. Econom. 2007, 22, 1347–1366. [Google Scholar] [CrossRef]
- Pfister, C.; Koomen, M.; Harhoff, D.; Backes-Gellner, U. Regional Innovation Effects of Applied Research Institutions. Res. Policy 2021, 50, 104197. [Google Scholar] [CrossRef]
- Yam, R.C.M.; Lo, W.; Tang, E.P.Y.; Lau, A.K.W. Analysis of Sources of Innovation, Technological Innovation Capabilities, and Performance: An Empirical Study of Hong Kong Manufacturing Industries. Res. Policy 2011, 40, 391–402. [Google Scholar] [CrossRef]
- Gao, D.; Zhou, X.; Mo, X.; Liu, X. Unlocking Sustainable Growth: Exploring the Catalytic Role of Green Finance in Firms’ Green Total Factor Productivity. Environ. Sci. Pollut. Res. 2024, 31, 14762–14774. [Google Scholar] [CrossRef]
- Paunov, C.; Rollo, V. Has the Internet Fostered Inclusive Innovation in the Developing World? World Dev. 2016, 78, 587–609. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, M.; Zhou, Y.; Wang, P.; Sheng, J.; He, K.; Wei, Y.-M.; Xie, R. Exploring the Effect of Industrial Structure Adjustment on Interprovincial Green Development Efficiency in China: A Novel Integrated Approach. Energy Policy 2019, 134, 110946. [Google Scholar] [CrossRef]
- Hao, X.; Li, Y.; Ren, S.; Wu, H.; Hao, Y. The Role of Digitalization on Green Economic Growth: Does Industrial Structure Optimization and Green Innovation Matter? J. Environ. Manag. 2023, 325, 116504. [Google Scholar] [CrossRef]
- Wang, J.; Deng, K. Impact and Mechanism Analysis of Smart City Policy on Urban Innovation: Evidence from China. Econ. Anal. Policy 2022, 73, 574–587. [Google Scholar] [CrossRef]
- Xu, N.; Ding, Y.; Guo, J. Do Smart City Policies Make Cities More Innovative: Evidence from China. J. Asian Public Policy 2022, 15, 1–17. [Google Scholar] [CrossRef]
- Chen, K.; Li, Q.; Shoaib, M.; Ameer, W.; Jiang, T. Does Improved Digital Governance in Government Promote Natural Resource Management? Quasi-Natural Experiments Based on Smart City Pilots. Resour. Policy 2024, 90, 104721. [Google Scholar] [CrossRef]
- Cai, X.; Lu, Y.; Wu, M.; Yu, L. Does Environmental Regulation Drive Away Inbound Foreign Direct Investment? Evidence from a Quasi-Natural Experiment in China. J. Dev. Econ. 2016, 123, 73–85. [Google Scholar] [CrossRef]
- Mehmood, Y.; Ahmad, F.; Yaqoob, I.; Adnane, A.; Imran, M.; Guizani, S. Internet-of-Things-Based Smart Cities: Recent Advances and Challenges. IEEE Commun. Mag. 2017, 55, 16–24. [Google Scholar] [CrossRef]
- Jiang, D. The Construction of Smart City Information System Based on the Internet of Things and Cloud Computing. Comput. Commun. 2020, 150, 158–166. [Google Scholar] [CrossRef]
- Ke, X.; Chen, H.; Hong, Y.; Hsiao, C. Do China’s High-Speed-Rail Projects Promote Local Economy?—New Evidence from a Panel Data Approach. China Econ. Rev. 2017, 44, 203–226. [Google Scholar] [CrossRef]
- Guerzoni, M.; Raiteri, E. Demand-Side vs. Supply-Side Technology Policies: Hidden Treatment and New Empirical Evidence on the Policy Mix. Res. Policy 2015, 44, 726–747. [Google Scholar] [CrossRef]
- Szczygielski, K.; Grabowski, W.; Pamukcu, M.T.; Tandogan, V.S. Does Government Support for Private Innovation Matter? Firm-Level Evidence from Two Catching-up Countries. Res. Policy 2017, 46, 219–237. [Google Scholar] [CrossRef]
- Gao, D.; Tan, L.; Mo, X.; Xiong, R. Blue Sky Defense for Carbon Emission Trading Policies: A Perspective on the Spatial Spillover Effects of Total Factor Carbon Efficiency. Systems 2023, 11, 382. [Google Scholar] [CrossRef]
- Gao, D.; Li, Y.; Tan, L. Can Environmental Regulation Break the Political Resource Curse: Evidence from Heavy Polluting Private Listed Companies in China. J. Environ. Plan. Manag. 2023, 1–27. [Google Scholar] [CrossRef]
Variables | N | Mean | S.D. | Min | Max |
---|---|---|---|---|---|
City Innovation Index | 3332 | 0.555 | 0.272 | 0.02 | 1 |
Infrastructure Level | 3332 | 1.205 | 1.363 | 0.009 | 12.707 |
Foreign Investment Level | 3332 | −3.629 | 2.909 | −13.337 | 8.288 |
Financial Development Level | 3332 | 0.713 | 3.137 | −9.82 | 10.69 |
Population Size | 3332 | 5.912 | 0.613 | 3.85 | 7.413 |
Economic Development Level | 3332 | 14.829 | 2.677 | 4.163 | 19.374 |
Informatization Level | 3332 | 1.608 | 1.239 | 0.001 | 14.074 |
Government Investment | 3332 | 9.889 | 1.539 | 4.205 | 15.529 |
Degree of Advanced Industrial Structure | 3332 | 6.448 | 0.35 | 5.517 | 7.836 |
Rationalization of Industrial Structure | 3332 | −1.704 | 1.06 | −8.321 | 5.332 |
(1) | (2) | (3) | |
---|---|---|---|
smartcity | 0.0436 *** | 0.0527 *** | 0.0307 *** |
(3.5537) | (4.5997) | (4.3235) | |
Infrastructure Level | 0.0163 *** | ||
(7.6541) | |||
Foreign Investment Level | 0.0317 *** | ||
(17.6369) | |||
Financial Development Level | 0.0353 *** | ||
(11.2886) | |||
Population Size | 0.1560 *** | ||
(30.6473) | |||
Economic Development Level | 0.0973 *** | ||
(34.6467) | |||
Constant | 0.5471 *** | 0.5455 *** | −1.7462 *** |
(105.3784) | (125.6951) | (−42.8866) | |
City-fixed effect | No | Yes | Yes |
Time-fixed effect | No | Yes | Yes |
N | 3332 | 3332 | 3332 |
R-squared | 0.0035 | 0.3413 | 0.7498 |
(1) | (2) | |
---|---|---|
smartcityt−3 | 0.0027 | |
(0.4165) | ||
smartcityt+3 | 0.0282 *** | |
(2.7346) | ||
Control variables | Yes | Yes |
City-fixed effect | Yes | Yes |
Time-fixed effect | Yes | Yes |
N | 3332 | 3332 |
R-squared | 0.9006 | 0.7489 |
Sample Adjustment | Replacement of Explained Variables | ||
---|---|---|---|
(1) | (2) | (3) | |
smartcity | 0.0281 *** | 0.0360 *** | 0.0423 *** |
(3.9750) | (4.4447) | (6.3214) | |
Control variables | Yes | Yes | Yes |
City-fixed effect | Yes | Yes | Yes |
Time-fixed effect | Yes | Yes | Yes |
N | 3332 | 3332 | 3332 |
R-squared | 0.7513 | 0.6836 | 0.7729 |
Effect of the Level of Informatization | Effect of Government Science and Technology Investment | Effect of Industrial Structure Upgrading | ||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
smartcity | 0.1610 *** | 0.0259 *** | 0.1240 *** | 0.0204 *** | 0.0138 *** | 0.0278 *** | −0.1192 *** | 0.0276 *** |
(4.4975) | (3.6784) | (3.6614) | (3.1222) | (1.4801) | (4.0701) | (−3.1171) | (3.9149) | |
Informatization Level | 0.0298 *** | |||||||
(8.7037) | ||||||||
Government Investment | 0.0831 *** | |||||||
(24.7348) | ||||||||
Degree of Advanced Industrial Structure | 0.2136 *** | |||||||
(16.7007) | ||||||||
Rationalization of Industrial Structure | −0.0263 *** | |||||||
(−8.2094) | ||||||||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City-fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Time-fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 3332 | 3332 | 3332 | 3332 | 3332 | 3332 | 3332 | 3332 |
R-squared | 0.6938 | 0.7554 | 0.8222 | 0.7890 | 0.7401 | 0.7693 | 0.5225 | 0.7548 |
City Size | City Location | Science and Education Level | ||||||
---|---|---|---|---|---|---|---|---|
Small and Medium-Sized Cities | Large Cities | Supercities | Megacities | East | Midwest | High | Low | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
smartcity | −0.0168 | 0.0278 *** | 0.0297 *** | 0.0212 ** | 0.0436 *** | 0.0159 * | 0.0228 *** | 0.0259 *** |
(−0.6474) | (3.2251) | (2.6405) | (2.0224) | (3.7889) | (1.9286) | (3.0230) | (3.3657) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City-fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Time-fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 68 | 2185 | 969 | 109 | 1274 | 2058 | 490 | 2842 |
R-squared | 0.9227 | 0.7150 | 0.7758 | 0.9554 | 0.7122 | 0.7456 | 0.9258 | 0.7081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, M.; Jin, M.; Chen, L.; Liu, Y.; Tian, Y. Promoting Urban Innovation through Smart Cities: Evidence from a Quasi-Natural Experiment in China. Land 2024, 13, 319. https://doi.org/10.3390/land13030319
Ji M, Jin M, Chen L, Liu Y, Tian Y. Promoting Urban Innovation through Smart Cities: Evidence from a Quasi-Natural Experiment in China. Land. 2024; 13(3):319. https://doi.org/10.3390/land13030319
Chicago/Turabian StyleJi, Mingbo, Mengyun Jin, Lingyun Chen, Yuwei Liu, and Yihao Tian. 2024. "Promoting Urban Innovation through Smart Cities: Evidence from a Quasi-Natural Experiment in China" Land 13, no. 3: 319. https://doi.org/10.3390/land13030319
APA StyleJi, M., Jin, M., Chen, L., Liu, Y., & Tian, Y. (2024). Promoting Urban Innovation through Smart Cities: Evidence from a Quasi-Natural Experiment in China. Land, 13(3), 319. https://doi.org/10.3390/land13030319