Exploring the Factors Affecting Farmers’ Willingness to Cultivate Eco-Agriculture in the Qilian Mountain National Park Based on an Extended TPB Model
Abstract
:1. Introduction
2. Literature Review and Research Hypotheses
2.1. Literature Review
2.2. Research Hypotheses
2.2.1. Impact of the TPB Variables on Farmers’ AEW
2.2.2. ATT’s Mediating Impact
2.2.3. EVs and Their Moderating Impact
3. Study Design
3.1. Study Area
3.2. Data Sources
3.3. Measures
3.4. Research Method
3.5. Statistical Description
3.5.1. Personal Demographic Information
3.5.2. Study Variable Information
4. Results
4.1. Reliability and Validity Tests
4.2. Goodness-of-Fit Test
4.3. Analysis of Path Relationship Test
4.4. Analysis of the Mediating Effect
4.5. Analysis of Moderating Mediation Effects
4.5.1. The Moderating Effect of EVs
4.5.2. The Moderating Mediation Effect of EVs
5. Discussion
5.1. Research Implications
5.2. Managerial Implications
6. Conclusions
7. Limitations and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Priyadarshini, P.; Abhilash, P.C. Policy recommendations for enabling transition towards sustainable agriculture in India. Land Use Policy 2020, 96, 104718. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, S.; Jiang, D. A modular method of developing an eco-product family considering the reusability and recyclability of customer products. J. Clean. Prod. 2014, 64, 254–265. [Google Scholar] [CrossRef]
- Granstedt, A.; Thomsson, O. Sustainable agriculture and self-sufficiency in Sweden—Calculation of climate impact and acreage need based on ecological recycling agriculture farms. Sustainability 2022, 14, 5834. [Google Scholar] [CrossRef]
- Lu, C. Organic and ecological foods and China’s third agricultural revolution. J. Ethn. Cult. 2022, 14, 69–76. [Google Scholar]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Zhou, M.; Sun, L. The theory research and demonstration about Chinese eco-agriculture. Stud. Sci. Sci. 2005, 2, 208–212. [Google Scholar] [CrossRef]
- Srinivasa, R.C.; Kareemulla, K.; Krishnan, P.; Murthy, G.R.K.; Ramesh, P.; Ananthan, P.S.; Joshi, P.K. Agro-ecosystem based sustainability indicators for climate resilient agriculture in India: A conceptual framework. Ecol. Indic. 2019, 105, 621–633. [Google Scholar] [CrossRef]
- Ferdous, Z.; Zulfiqar, F.; Datta, A.; Hasan, A.K.; Sarker, A. Potential and challenges of organic agriculture in Bangladesh: A review. J. Crop. Improv. 2021, 35, 403–426. [Google Scholar] [CrossRef]
- Vivithkeyoonvong, S.; Jourdain, D. Willingness to pay for ecosystem services provided by irrigated agriculture in North-east Thailand. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 14–26. [Google Scholar] [CrossRef]
- Grandi, C.; Triantafyllidis, A. Organic Agriculture in Protected Areas the Italian Experience. Natural Resources Management and Environment Department; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Guo, A.; Wei, X.; Zhong, F.; Wang, P.; Song, X. Does cognition of resources and the environment affect farmers’ production efficiency? Study of oasis agriculture in China. Agriculture 2022, 12, 592. [Google Scholar] [CrossRef]
- Mier Y Terán Giménez Cacho, M.; Giraldo, O.F.; Aldasoro, M.; Morales, H.; Ferguson, B.G.; Rosset, P.; Khadse, A.; Campos, C. Bringing agroecology to scale: Key drivers and emblematic cases. Agroecol. Sustain. Food 2018, 42, 637–665. [Google Scholar] [CrossRef]
- Qi, D.; Si, Z.; Scott, S. Can We Be More Collaborative? Top-Down Policies and Urban-Rural Divides in the Ecological Agri-culture Sector in Nanjing, China. Soc. Nat. Resour. 2021, 34, 208–226. [Google Scholar] [CrossRef]
- Siegner, A.B.; Acey, C.; Sowerwine, J. Producing urban agroecology in the East Bay: From soil health to community empowerment. Agroecol. Sustain. Food 2020, 44, 566–593. [Google Scholar] [CrossRef]
- Tama, R.A.Z.; Ying, L.; Yu, M.; Hoque, M.M.; Adnan, K.M.; Sarker, S.A. Assessing farmers’ intention towards conservation agriculture by using the Extended Theory of Planned Behavior. J. Environ. Manag. 2021, 280, 111654. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, X.; Deng, X. Modeling farmers’ adoption of low-carbon agricultural technology in Jianghan Plain, China: An examination of the theory of planned behavior. Technol. Forecast. Soc. 2022, 180, 121726. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, J.; Wang, H.H.; Zhang, L.; He, K. The impact of psychological factors on farmers’ intentions to reuse agri-cultural biomass waste for carbon emission abatement. J. Clean. Prod. 2018, 189, 797–804. [Google Scholar] [CrossRef]
- Liao, X.; Nguyen, T.P.L.; Sasaki, N. Use of the knowledge, attitude, and practice (KAP) model to examine sustainable agri-culture in Thailand. Reg. Sustain. 2022, 3, 41–52. [Google Scholar] [CrossRef]
- Chuang, J.; Wang, J.; Liou, Y. Farmers’ knowledge, attitude, and adoption of smart agriculture technology in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 7236. [Google Scholar] [CrossRef] [PubMed]
- Phamova, M.; Banout, J.; Verner, V.; Ivanova, T.; Mazancova, J. Can ecological farming systems positively affect household income from agriculture? A case study of the Suburban Area of Hanoi, Vietnam. Sustainability 2022, 14, 1466. [Google Scholar] [CrossRef]
- Wang, Y.; Chung, T.; Lai, P.C. Go sustainability—Willingness to pay for eco–agricultural innovation: Understanding Chi-nese traditional cultural values and label trust using a VAB hierarchy model. Sustainability 2023, 15, 751. [Google Scholar] [CrossRef]
- Meng, L.; Si, W. Pro-environmental behavior: Examining the role of ecological value cognition, environmental attitude, and place attachment among rural farmers in China. Int. J. Environ. Res. Public Health 2022, 19, 17011. [Google Scholar] [CrossRef]
- Cheng, H.; Dong, S.; Li, F.; Yang, Y.; Li, Y.; Li, Z. A circular economy system for breaking the development dilemma of ‘ecological Fragility–Economic poverty’ vicious circle: A CEEPS-SD analysis. J. Clean. Prod. 2019, 212, 381–392. [Google Scholar] [CrossRef]
- Peters, J. Transforming the integrated conservation and development project (ICDP) approach: Observations from the Ranomafana National Park Project, Madagascar. J. Agric. Environ. Ethics 1998, 11, 17–47. [Google Scholar] [CrossRef]
- Scott, S.; Si, Z.; Schumilas, T.; Aijuan, C. Contradictions in state- and civil society-driven developments in China’s ecological agriculture sector. Food Policy 2014, 45, 158–166. [Google Scholar] [CrossRef]
- Lazaridou, D.; Michailidis, A.; Trigkas, M. Farmers’ attitudes toward recycled water use in irrigated agriculture. KnE Soc. Sci. 2018, 2018, 157–165. [Google Scholar] [CrossRef]
- Meijer, S.S.; Catacutan, D.; Ajayi, O.C.; Sileshi, G.W.; Nieuwenhuis, M. The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa. Int. J. Agric. Sustain. 2015, 13, 40–54. [Google Scholar] [CrossRef]
- Jin, S.; Bluemling, B.; Mol, A.P.J. Information, trust and pesticide overuse: Interactions between retailers and cotton farmers in China. NJAS Wagening. J. Life Sci. 2015, 72–73, 23–32. [Google Scholar] [CrossRef]
- Jiao, X.; Wang, S.; Qiao, Y. A study on influencing factors of green development of ecological farm—Based on the survey data of 119 ecological farms. Econ. Res. J. 2021, 10, 104–113. [Google Scholar]
- Zhang, Y.; Long, H.; Li, Y.; Ge, D.; Tu, S. How does off-farm work affect chemical fertilizer application? Evidence from China’s mountainous and plain areas. Land Use Policy 2020, 99, 104848. [Google Scholar] [CrossRef]
- Lv, J.; Liu, H.; Xue, Y.; Han, X. Study on risk aversion, social network, and farmers’ overuse of chemical fertilizer—Based on survey data from maize farmers in three provinces of northeast China. J. Agrotech. Econ. 2021, 7, 4–17. [Google Scholar]
- Khan, M.; Damalas, C.A. Factors preventing the adoption of alternatives to chemical pest control among Pakistani cotton farmers. Int. J. Pest. Manag. 2015, 61, 9–16. [Google Scholar] [CrossRef]
- Ashrit, R.R.; Thakur, M.K. Is awareness a defining factor in the adoption of sustainable agricultural practices? Evidence from small holder farmers in a southern state of India. SN Soc. Sci. 2021, 1, 218. [Google Scholar] [CrossRef]
- Hijbeek, R.; Pronk, A.A.; Van Ittersum, M.K.; Verhagen, A.; Ruysschaert, G.; Bijttebier, J.; Zavattaro, L.; Bechini, L.; Schlatter, N.; ten Berge, H.F.M. Use of organic inputs by arable farmers in six agro-ecological zones across Europe: Drivers and barriers. Agric. Ecosyst. Environ. 2019, 275, 42–53. [Google Scholar] [CrossRef]
- Wu, Y.; Xi, X.; Tang, X.; Luo, D.; Gu, B.; Lam, S.K.; Vitousek, P.M.; Chen, D. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [PubMed]
- Clara, I.N.; Miguel, A.A. Pathways for the amplification of agroecology. Agroecol. Sustain. Food Syst. 2018, 42, 1170–1193. [Google Scholar] [CrossRef]
- Hu, Y.; Li, B.B.; Zhang, Z.H.; Wang, J. Farm size and agricultural technology progress: Evidence from China. J. Rural Stud. 2022, 93, 417–429. [Google Scholar] [CrossRef]
- He, K.; Zhang, J.B.; Zeng, Y.M. Households’ willingness to pay for energy utilization of crop straw in rural China: Based on an improved UTAUT model. Energy Policy 2020, 140, 111373. [Google Scholar] [CrossRef]
- Schiller, K.; Godek, W.; Klerkx, L.; Poortvliet, P.M. Nicaragua’s agroecological transition: Transformation or reconfiguration of the agri-food regime? Agroecol. Sustain. Food Syst. 2020, 44, 611–628. [Google Scholar] [CrossRef]
- Nguyen, N.; Drakou, E.G. Farmers intention to adopt sustainable agriculture hinges on climate awareness: The case of Vi-etnamese coffee. J. Clean. Prod. 2021, 303, 126828. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Belief, attitude, intention, and behavior: An introduction to theory and research. Philos. Rhetor. 1977, 10, 244–245. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Herath, C.S. Motivation as a potential variable to explain farmers’ behavioral change in agricultural technology adoption decisions. E+ M Ekon. A Manag. 2010, 13, 62–70. [Google Scholar]
- Adnan, N.; Nordin, S.M.; Bahruddin, M.A.; Tareq, A.H. A state-of-the-art review on facilitating sustainable agriculture through green fertilizer technology adoption: Assessing farmers behavior. Trends Food Sci. Technol. 2019, 86, 439–452. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Zhang, Z. Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Senger, I.; Borges, J.A.R.; Machado, J.A.D. Using the theory of planned behavior to understand the intention of small farmers in diversifying their agricultural production. J. Rural Stud. 2017, 49, 32–40. [Google Scholar] [CrossRef]
- Ataei, P.; Gholamrezai, S.; Movahedi, R.; Aliabadi, V. An analysis of farmers’ intention to use green pesticides: The application of the extended theory of planned behavior and health belief model. J. Rural Stud. 2021, 81, 374–384. [Google Scholar] [CrossRef]
- Pan, Y.; Ren, Y.; Luning, P.A. Factors influencing Chinese farmers’ proper pesticide application in agricultural products—A review. Food Control 2021, 122, 107788. [Google Scholar] [CrossRef]
- Aliabadi, V.; Gholamrezai, S.; Ataei, P. Rural people’s intention to adopt sustainable water management by rainwater har-vesting practices: Application of TPB and HBM models. Water Supply 2020, 20, 1847–1861. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef]
- Li, Q.; Wu, M. Rationality or morality? A comparative study of pro-environmental intentions of local and nonlocal visitors in nature-based destinations. J. Destin. Mark. Manag. 2019, 11, 130–139. [Google Scholar] [CrossRef]
- Childers, T.L.; Rao, A.R. The influence of familial and peer-based reference groups on consumer decisions. J. Consum. Res. 1992, 19, 198–211. [Google Scholar] [CrossRef]
- Kormos, C.; Gifford, R.; Brown, E. The influence of descriptive social norm information on sustainable transportation behavior: A field experiment. Environ. Behav. 2015, 47, 479–501. [Google Scholar] [CrossRef]
- Farrow, K.; Grolleau, G.; Ibanez, L. Social norms and pro-environmental behavior: A review of the evidence. Ecol. Econ. 2017, 140, 1–13. [Google Scholar] [CrossRef]
- Cui, G.; Liu, Z. The impact of environmental regulations and social norms on farmers’ chemical fertilizer reduction behaviors: An investigation of citrus farmers in Southern China. Sustainability 2022, 14, 8157. [Google Scholar] [CrossRef]
- Hunecke, C.; Engler, A.; Jara-Rojas, R.; Poortvliet, P.M. Understanding the role of social capital in adoption decisions: An application to irrigation technology. Agric. Syst. 2017, 153, 221–231. [Google Scholar] [CrossRef]
- Yadav, R.; Pathak, G.S. Determinants of Consumers’ Green Purchase Behavior in a Developing Nation: Applying and Extending the Theory of Planned Behavior. Ecol. Econ. 2017, 134, 114–122. [Google Scholar] [CrossRef]
- Cialdini, R.B.; Goldstein, N.J. Social influence: Compliance and conformity. Annu. Rev. Psychol. 2004, 55, 591–621. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Al-Ansi, A.; Chua, B.-L.; Tariq, B.; Radic, A.; Park, S.-H. The Post-Coronavirus World in the International Tourism Industry: Application of the Theory of Planned Behavior to Safer Destination Choices in the Case of US Outbound Tourism. Int. J. Environ. Res. Public Health 2020, 17, 6485. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Dubinsky, A.J. The theory of planned behavior in e-commerce: Making a case for interdependencies between salient beliefs. Psychol. Mark. 2005, 22, 833–855. [Google Scholar] [CrossRef]
- Cao, J.; Qiu, H.; Morrison, A.M.; Wei, W. The Role of Social Capital in Predicting Tourists’ Waste Sorting Intentions in Rural Destinations: Extending the Theory of Planned Behavior. Int. J. Environ. Res. Public Health 2022, 19, 12789. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Ma, Y.; Sun, Y. The behavioral intention of enhancing effective participation by members for the directors of farmers’ cooperatives. J. Agrotechn. Econ. 2021, 11, 130–144. [Google Scholar]
- Jun, J.; Kang, J.; Arendt, S.W. The effects of health value on healthful food selection intention at restaurants: Considering the role of attitudes toward taste and healthfulness of healthful foods. Int. J. Hosp. Manag. 2014, 42, 85–91. [Google Scholar] [CrossRef]
- Rokeach, M. The Nature of Human Values; Free Press: New York, NY, USA, 1973. [Google Scholar]
- Fu, X. A novel perspective to enhance the role of TPB in predicting green travel: The moderation of affective-cognitive con-gruence of attitudes. Transportation 2021, 48, 3013–3035. [Google Scholar] [CrossRef]
- Dunlap, R.E.; Van Liere, K.D.; Mertig, A.G.; Jones, R.E. New trends in measuring environmental attitudes: Measuring en-dorsement of the new ecological paradigm: A revised NEP scale. J. Soc. Issues 2000, 56, 425–442. [Google Scholar] [CrossRef]
- Bramwell, B.; Lane, B. Getting from here to there: Systems change, behavioural change and sustainable tourism. J. Sustain. Tour. 2013, 21, 1–4. [Google Scholar] [CrossRef]
- Goh, E.; Ritchie, B.; Wang, J. Non-compliance in national parks: An extension of the theory of planned behaviour model with pro-environmental values. Tourism Manag. 2017, 59, 123–127. [Google Scholar] [CrossRef]
- Do Paco, A.; Shiel, C.; Alves, H. A new model for testing green consumer behaviour. J. Clean. Prod. 2019, 207, 998–1006. [Google Scholar] [CrossRef]
- Kahle, L.R. Stimulus condition self-selection by males in the interaction of locus of control and skill–chance situations. J. Personal. Soc. Psychol. 1980, 38, 50–56. [Google Scholar] [CrossRef]
- Corraliza, J.A.; Berenguer, J. Environmental values, beliefs, and actions: A situational approach. Environ. Behav. 2000, 32, 832–848. [Google Scholar] [CrossRef]
- Stern, P.C.; Dietz, T. The value basis of environmental concern. J. Soc. Issues 1994, 50, 65–84. [Google Scholar] [CrossRef]
- Akehurst, G.; Afonso, C.; Gonçalves, H.M. Re-examining green purchase behaviour and the green consumer profile: New evidences. Manag. Decis. 2012, 50, 972–988. [Google Scholar] [CrossRef]
- Stern, P.C.; Dietz, T.; Guagnano, G.A. The new ecological paradigm in social-psychological context. Environ. Behav. 1995, 27, 723–743. [Google Scholar] [CrossRef]
- De Groot, J.I.M.; Steg, L.; Keizer, M.; Farsang, A.; Watt, A. Environmental values in post-socialist Hungary: Is it useful to distinguish egoistic, altruistic and biospheric values? Czech Sociol. Rev. 2012, 48, 421–440. [Google Scholar] [CrossRef]
- Feldman, S. Structure and consistency in public opinion: The role of core beliefs and values. Am. J. Political Sci. 1988, 32, 416–440. [Google Scholar] [CrossRef]
- Vaske, J.J.; Donnelly, M.P. A value-attitude-behavior model predicting wildland preservation voting intentions. Soc. Nat. Resour. 1999, 12, 523–537. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Lobo, A.; Greenland, S. Pro-environmental purchase behaviour: The role of consumers’ biospheric values. J. Retail. Consum. Serv. 2016, 33, 98–108. [Google Scholar] [CrossRef]
- Kautish, P.; Paul, J.; Sharma, R. The moderating influence of environmental consciousness and recycling intentions on green purchase behavior. J. Clean. Prod. 2019, 228, 1425–1436. [Google Scholar] [CrossRef]
- Taherdoost, H. Determining Sample Size; How to Calculate Survey Sample Size. Int. J. Econ. Manag. 2017, 2, 237–239. [Google Scholar]
- Nunnally, J.C. An overview of psychological measurement. In Clinical Diagnosis of Mental Disorders; Springer: Berlin/Heidelberg, Germany, 1978; pp. 97–146. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Market Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Voorhees, C.M.; Brady, M.K.; Calantone, R.; Ramirez, E. Discriminant validity testing in marketing: An analysis, causes for concern, and proposed remedies. J. Acad. Market Sci. 2016, 44, 119–134. [Google Scholar] [CrossRef]
- Shrout, P.E.; Bolger, N. Mediation in Experimental and Nonexperimental Studies: New Procedures and Recommendations. Psychol. Methods 2022, 7, 422–445. [Google Scholar] [CrossRef]
- Edwards, J.R.; Lambert, L.S. Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis. Psychol. Methods 2007, 12, 1–22. [Google Scholar] [CrossRef]
- Watson, J.E.M.; Dudley, N.; Segan, D.B.; Hockings, M. The performance and potential of protected areas. Nature 2014, 515, 67–73. [Google Scholar] [CrossRef]
- Singh, M.; Griaud, C.; Collins, C.M. An evaluation of the effectiveness of protected areas in Thailand. Ecol. Indic. 2021, 125, 107536. [Google Scholar] [CrossRef]
- Despotović, J.; Rodić, V.; Caracciolo, F. Factors affecting farmers’ adoption of integrated pest management in Serbia: An application of the theory of planned behavior. J. Clean. Prod. 2019, 228, 1196–1205. [Google Scholar] [CrossRef]
- Uddin, M.T.; Dhar, A.R.; Islam, M.M. Adoption of conservation agriculture practice in Bangladesh: Impact on crop profitability and productivity. J. Bangladesh Agric. Univ. 2016, 14, 101–112. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, Y.; Li, F.; Jiao, J.; Lebailly, P.; Zhang, Y.; Yin, C. Driving mechanism for farmers’ participation in improving farmland ecosystem: Evidence from China. J. Clean. Prod. 2022, 380, 134895. [Google Scholar] [CrossRef]
- Wilson, R.S.; Schlea, D.A.; Boles, C.M.W.; Redder, T.M. Using models of farmer behavior to inform eutrophication policy in the Great Lakes. Water Res. 2018, 139, 38–46. [Google Scholar] [CrossRef]
- Zhang, X.; Geng, G.; Sun, P. Determinants and implications of citizens’ environmental complaint in China: Integrating theory of planned behavior and norm activation model. J. Clean. Prod. 2017, 166, 148–156. [Google Scholar] [CrossRef]
- Mariano, M.J.; Villano, R.; Fleming, E. Factors influencing farmers’ adoption of modern rice technologies and good man-agement practices in the Philippines. Agric. Syst. 2012, 110, 41–53. [Google Scholar] [CrossRef]
- Nguyen, T.P.L.; Doan, X.H.; Nguyen, T.T.; Nguyen, T.M. Factors affecting Vietnamese farmers’ intention toward organic agricultural production. Int. J. Soc. Econ. 2021, 48, 1213–1228. [Google Scholar] [CrossRef]
- Fielding, K.S.; Terry, D.J.; Masser, B.M.; Hogg, M.A. Integrating social identity theory and the theory of planned behavior to explain decisions to engage in sustainable agricultural practices. Br. J. Soc. Psychol. 2008, 47, 23–48. [Google Scholar] [CrossRef] [PubMed]
- Burton, R.J.F. The influence of farmer demographic characteristics on environmental behaviour: A review. J. Environ. Manag. 2014, 135, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Martinovska Stojcheska, A.; Kotevska, A.; Bogdanov, N.; Nikolić, A. How do farmers respond to rural development policy challenges? Evidence from Macedonia, Serbia and Bosnia and Herzegovina. Land Use Policy 2016, 59, 71–83. [Google Scholar] [CrossRef]
- Emery, S.B.; Franks, J.R. The potential for collaborative agri-environment schemes in England: Can a well-designed collab-orative approach address farmers’ concerns with current schemes? J. Rural Stud. 2012, 28, 218–231. [Google Scholar] [CrossRef]
- Wang, B.; Dong, F.; Chen, M.; Zhu, J.; Tan, J.; Fu, X.; Wang, Y.; Chen, S. Advances in Recycling and Utilization of Agricultur-al Wastes in China: Based on Environmental Risk, Crucial Pathways, Influencing Factors, Policy Mechanism. Procedia Environ. Sci. 2016, 31, 12–17. [Google Scholar] [CrossRef]
- Wang, W.; Li, K.; Liu, Y.; Lian, J.; Hong, S. A system dynamics model analysis for policy impacts on green agriculture de-velopment: A case of the Sichuan Tibetan Area. J. Clean. Prod. 2022, 371, 133562. [Google Scholar] [CrossRef]
- Chen, Z.; Sarkar, A.; Hasan, A.K.; Li, X.; Xia, X. Evaluation of Farmers’ Ecological Cognition in Responses to Specialty Or-chard Fruit Planting Behavior: Evidence in Shaanxi and Ningxia, China. Agriculture 2021, 11, 1056. [Google Scholar] [CrossRef]
- Lalani, B.; Dorward, P.; Holloway, G.; Wauters, E. Smallholder farmers’ motivations for using Conservation Agriculture and the roles of yield, labor and soil fertility in decision making. Agric. Syst. 2016, 146, 80–90. [Google Scholar] [CrossRef]
- Cui, S.; Li, Y.; Jiao, X.; Zhang, D. Hierarchical Linkage between the Basic Characteristics of Smallholders and Technology Awareness Determines Small-Holders’ Willingness to Adopt Green Production Technology. Agriculture 2022, 12, 1275. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, L.; Kong, N.; Campy, K.S.; Wang, S.; Qu, S. Predicting behavioral intentions to children vaccination among Chinese parents: An extended TPB model. Hum. Vaccines Immunother. 2018, 14, 2748–2754. [Google Scholar] [CrossRef]
- Wang, L.H.; Yeh, S.S.; Chen, K.Y.; Huan, T.C. Tourists’ travel intention: Revisiting the TPB model with age and perceived risk as moderator and attitude as mediator. Tour. Rev. 2022, 77, 877–896. [Google Scholar] [CrossRef]
- Price, J.C.; Leviston, Z. Predicting pro-environmental agricultural practices: The social, psychological and contextual influ-ences on land management. J. Rural Stud. 2014, 34, 65–78. [Google Scholar] [CrossRef]
- Ozaki, R. Adopting sustainable innovation: What makes consumers sign up to green electricity? Bus. Strategy Environ. 2011, 20, 1–17. [Google Scholar] [CrossRef]
- Chaihanchanchai, P.; Anantachart, S. Encouraging green product purchase: Green value and environmental knowledge as moderators of attitude and behavior relationship. Bus. Strategy Environ. 2023, 32, 289–303. [Google Scholar] [CrossRef]
- Antonetti, P.; Maklan, S. Feelings that make a difference: How guilt and pride convince consumers of the effectiveness of sustainable consumption choices. J. Bus Eth. 2014, 124, 117–134. [Google Scholar] [CrossRef]
Variable | Description | Number | Percentage (%) |
---|---|---|---|
Number of Respondents | 409 | 100 | |
Gender | Male | 297 | 72.6 |
Female | 112 | 27.4 | |
Age | 21–30 | 18 | 4.4 |
31–40 | 63 | 15.4 | |
41–50 | 109 | 26.7 | |
51–60 | 173 | 42.3 | |
>60 | 46 | 11.2 | |
Education level | Elementary school and lower | 231 | 56.5 |
Junior high school | 138 | 33.7 | |
High school or secondary vocational school | 27 | 6.6 | |
University or tertiary vocational school | 13 | 3.2 | |
Master’s and above | 0 | 0 |
Dimension | Measurement Indicator | Code | Mean | Standard Deviation | Factor Loading | Cronbach’s α | CR | AVE |
---|---|---|---|---|---|---|---|---|
AEW | I will reduce my use of pesticides. | AEW1 | 3.29 | 1.176 | 0.892 | 0.849 | 0.852 | 0.600 |
I will reduce my use of chemical fertilizers. | AEW2 | 3.31 | 1.145 | 0.920 | – | – | – | |
I will reduce my use of herbicides. | AEW3 | 3.56 | 1.106 | 0.694 | – | – | – | |
I will recover and reuse agricultural waste. | AEW4 | 3.66 | 0.874 | 0.527 | – | – | – | |
PBC | It is easy to obtain organic fertilizers from nearby sources. | PBC1 | 3.57 | 0.963 | 0.747 | 0.728 | 0.737 | 0.485 |
It is easy to recover agricultural waste. | PBC2 | 3.61 | 0.766 | 0.731 | – | – | – | |
It is easy to learn and adopt new technologies related to agroecology. | PBC3 | 3.44 | 0.911 | 0.602 | – | – | – | |
ATT | Agroecology can generate higher income. | ATT1 | 3.67 | 0.904 | 0.715 | 0.807 | 0.812 | 0.519 |
Agroecology can reduce environmental pollution. | ATT2 | 4.11 | 0.753 | 0.714 | – | – | – | |
Agroecological products are better for human health. | ATT3 | 4.47 | 0.686 | 0.722 | – | – | – | |
Participation in agroecology can improve one’s own skills. | ATT4 | 3.79 | 0.847 | 0.730 | – | – | – | |
SNs | I will consider the opinions of my family when deciding whether to participate in agroecological cultivation. | SNs1 | 3.82 | 0.889 | 0.770 | 0.800 | 0.801 | 0.505 |
I will consider the opinions of my neighbors when deciding whether to participate in agroecological cultivation. | SNs2 | 3.70 | 0.860 | 0.807 | – | – | – | |
I will consider the extent of government subsidies when deciding whether to participate in agroecological cultivation. | SNs3 | 4.05 | 0.772 | 0.667 | – | – | – | |
I will consider the intensity of government supervision of the ecological environment when deciding whether to participate in agroecological cultivation. | SNs4 | 3.79 | 0.768 | 0.576 | – | – | – | |
EVs | Ecology is more important than economics. | EV1 | 3.79 | 0.758 | 0.643 | 0.776 | 0.781 | 0.545 |
A good ecological environment is the basis of economic income. | EV2 | 3.84 | 0.695 | 0.810 | – | – | – | |
Protection should be the prerequisite for development in the QMNP. | EV3 | 3.79 | 0.758 | 0.752 | – | – | – |
EVs | AEW | SNs | ATT | PBC | |
---|---|---|---|---|---|
EVs | 0.738 | – | – | – | – |
AEW | 0.663 | 0.775 | – | – | – |
SNs | 0.587 | 0.581 | 0.711 | – | – |
ATT | 0.696 | 0.624 | 0.595 | 0.720 | – |
PBC | 0.609 | 0.586 | 0.546 | 0.613 | 0.696 |
EVs | AEW | SNs | ATT | PBC | |
---|---|---|---|---|---|
EVs | 1.000 | 0.688 | 0.582 | 0.683 | 0.616 |
AEW | 0.688 | 1.000 | 0.600 | 0.678 | 0.621 |
SNs | 0.582 | 0.600 | 1.000 | 0.611 | 0.530 |
ATT | 0.683 | 0.678 | 0.611 | 1.000 | 0.610 |
PBC | 0.616 | 0.621 | 0.530 | 0.610 | 1.000 |
Factor A | Factor B | HTMT | BootMean | BootSE | BootLLCI | BootULCI |
---|---|---|---|---|---|---|
EVs | AEW | 0.688 | 0.686 | 0.041 | 0.602 | 0.761 |
EVs | SNs | 0.582 | 0.582 | 0.056 | 0.468 | 0.686 |
EVs | ATT | 0.683 | 0.682 | 0.041 | 0.595 | 0.759 |
EVs | PBC | 0.616 | 0.617 | 0.053 | 0.514 | 0.720 |
AEW | SNs | 0.600 | 0.599 | 0.047 | 0.501 | 0.687 |
AEW | ATT | 0.678 | 0.677 | 0.039 | 0.596 | 0.748 |
AEW | PBC | 0.621 | 0.621 | 0.046 | 0.528 | 0.711 |
SNs | ATT | 0.611 | 0.609 | 0.049 | 0.508 | 0.695 |
SNs | PBC | 0.530 | 0.528 | 0.056 | 0.417 | 0.631 |
ATT | PBC | 0.610 | 0.609 | 0.052 | 0.501 | 0.700 |
Index | c2/df | SRMR | RMSEA | GFI | AGFI | IFI | CFI | TLI |
---|---|---|---|---|---|---|---|---|
Reference value | ≤3 | <0.08 | <0.08 | >0.9 | >0.9 | >0.9 | >0.9 | >0.9 |
AEW test value | 2.842 | 0.0524 | 0.067 | 0.927 | 0.895 | 0.942 | 0.942 | 0.927 |
Model evaluation | Ideal | Ideal | Ideal | Ideal | Relatively ideal | Ideal | Ideal | Ideal |
Hypothesis | Path | Non-Normalized Coefficient | Standard Error (SE) | Z-Value | Significance Level | Normalized Coefficient | Hypothesis Result |
---|---|---|---|---|---|---|---|
H1 | PBC→AEW | 0.164 | 0.042 | 3.892 | *** | 0.280 | Support |
H2 | SNs→AEW | 0.235 | 0.069 | 3.422 | *** | 0.234 | Support |
H3 | ATT→AEW | 0.245 | 0.057 | 4.267 | *** | 0.318 | Support |
Path | Point Estimate | Product of Coefficient | Bootstrap 1000 Times 95% CI | ||||
---|---|---|---|---|---|---|---|
Bias-Corrected | Percentile | ||||||
SE | Z-Value | Lower | Upper | Lower | Upper | ||
Indirect effect | |||||||
PBC→ATT→AEW | 0.072 | 0.022 | 3.273 | 0.037 | 0.130 | 0.033 | 0.124 |
SNs→ATT→AEW | 0.121 | 0.038 | 3.184 | 0.062 | 0.217 | 0.056 | 0.207 |
Direct effect | |||||||
PBC→AEW | 0.164 | 0.042 | 3.905 | 0.077 | 0.252 | 0.079 | 0.253 |
SNs→AEW | 0.235 | 0.066 | 3.561 | 0.114 | 0.373 | 0.111 | 0.372 |
Total effect | |||||||
PBC→AEW | 0.236 | 0.045 | 5.244 | 0.154 | 0.338 | 0.148 | 0.333 |
SNs→AEW | 0.356 | 0.062 | 5.742 | 0.245 | 0.486 | 0.244 | 0.482 |
Coefficient | p-Value | Lower-Limit CI (LLCI) | Upper-Limit CI (ULCI) | Coefficient | p-Value | LLCI | ULCI | |
---|---|---|---|---|---|---|---|---|
Variable | Mediator (ATT) | Dependent variable (AEW) | ||||||
Constant term | 0.054 | 0.209 | −0.031 | 0.139 | 0.000 | 1.000 | −0.077 | 0.077 |
PBC | 0.270 | 0.000 | 0.181 | 0.360 | 0.306 | 0.000 | 0.218 | 0.394 |
EVs | 0.358 | 0.000 | 0.267 | 0.448 | – | – | – | – |
Interaction term | −0.115 | 0.001 | −0.184 | −0.047 | – | – | – | – |
ATT | – | – | – | – | 0.404 | 0.000 | 0.316 | 0.491 |
R2 = 0.354 F (3405) = 74.048 p < 0.001 | R2 = 0.373 F (2406) = 120.562 p < 0.001 |
Coefficient | p-Value | LLCI | ULCI | Coefficient | p-Value | LLCI | ULCI | |
---|---|---|---|---|---|---|---|---|
Variable | Mediator (ATT) | Dependent variable (AEW) | ||||||
Constant term | 0.032 | 0.450 | −0.051 | 0.115 | 0.000 | 1.000 | −0.078 | 0.078 |
SNs | 0.319 | 0.000 | 0.230 | 0.408 | 0.291 | 0.000 | 0.200 | 0.381 |
EVs | 0.337 | 0.000 | 0.246 | 0.429 | – | – | – | – |
Interaction term | −0.070 | 0.037 | −0.135 | −0.004 | – | – | – | – |
ATT | – | – | – | – | 0.401 | 0.000 | 0.310 | 0.491 |
R2 = 0.369 F (3405) = 78.939 p < 0.001 | R2 = 0.362 F (2406) = 115.377 p < 0.001 |
Dimension | Independent Variable | Result Type | Mediation Variable (EVs) | Effect Value | SE | Bootstrap 95% CI | ||
---|---|---|---|---|---|---|---|---|
Bootstrap LLCI | Bootstrap ULCI | |||||||
The first half of the indirect effect path | PBC | Moderated mediation effect | Low EVs (mean − 1SD) | −1.000 | 0.156 | 0.029 | 0.098 | 0.211 |
High EVs (mean + 1SD) | 1.000 | 0.062 | 0.025 | 0.015 | 0.112 | |||
Difference | −0.093 | 0.035 | −0.156 | −0.018 | ||||
SNs | Moderated mediation effect | Low EVs (mean − 1SD) | −1.000 | 0.156 | 0.027 | 0.103 | 0.206 | |
High EVs (mean + 1SD) | 1.000 | 0.100 | 0.026 | 0.051 | 0.154 | |||
Difference | −0.056 | 0.030 | −0.113 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Wang, H. Exploring the Factors Affecting Farmers’ Willingness to Cultivate Eco-Agriculture in the Qilian Mountain National Park Based on an Extended TPB Model. Land 2024, 13, 334. https://doi.org/10.3390/land13030334
Zhang M, Wang H. Exploring the Factors Affecting Farmers’ Willingness to Cultivate Eco-Agriculture in the Qilian Mountain National Park Based on an Extended TPB Model. Land. 2024; 13(3):334. https://doi.org/10.3390/land13030334
Chicago/Turabian StyleZhang, Mengtian, and Huiling Wang. 2024. "Exploring the Factors Affecting Farmers’ Willingness to Cultivate Eco-Agriculture in the Qilian Mountain National Park Based on an Extended TPB Model" Land 13, no. 3: 334. https://doi.org/10.3390/land13030334
APA StyleZhang, M., & Wang, H. (2024). Exploring the Factors Affecting Farmers’ Willingness to Cultivate Eco-Agriculture in the Qilian Mountain National Park Based on an Extended TPB Model. Land, 13(3), 334. https://doi.org/10.3390/land13030334