The Effects of Implementing Three Climate-Smart Practices with an Integrated Landscape Approach on Functional Connectivity and Carbon Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Tree Cover Map: Current Scenario and Future Trends
2.3. Landscape Structure and Functional Connectivity
2.4. Carbon Storage and Sequestration
2.5. Simulated Climate-Smart Actions to Improve Functional Connectivity and Carbon Storage
3. Results
3.1. Landscape Structure and Functional Connectivity
3.2. Carbon Storage and Sequestration
3.3. Simulated Climate-Smart Practices to Increase Functional Connectivity and Carbon Storage
4. Discussion
4.1. Main Contributors to Landscape Connectivity and Storage of Carbon
4.2. Methodological Caveats
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Land Use in Agriculture According to the Numbers. 2020. Available online: https://www.fao.org/sustainability/news/detail/es/c/1279267/#:~:text=La%20superficie%20de%20tierra%20destinada,y%20pastizales%20para%20el%20pastoreo (accessed on 11 June 2023).
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services. 2019. Available online: https://www.ipbes.net/global-assessment (accessed on 21 July 2023).
- Mititelu-Ionuș, O.; Simulescu, D.; Popescu, S.M. Environmental assessment of agricultural activities and groundwater nitrate pollution susceptibility: A regional case study (Southwestern Romania). Environ. Monit. Assess. 2019, 191, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, D.; Huang, R.A. Review of Climate-Smart Agriculture: Recent Advancements, Challenges, and Future Directions. Sustainability 2023, 15, 3404. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Change 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Dissanayaka, D.M.N.S.; Dissanayake, D.K.R.P.L.; Udumann, S.S.; Nuwarapaksha, T.D.; Atapattu, A.J. Agroforestry—A key tool in the climate-smart agriculture context: A review on coconut cultivation in Sri Lanka. Front. Agron. 2023, 5, 1162750. [Google Scholar] [CrossRef]
- Scherr, S.J.; Shames, S.; Friedman, R. From climate-smart agriculture to climate-smart landscapes. Agric. Food Secur. 2012, 1, 1–15. [Google Scholar] [CrossRef]
- Muschler, R.G. Agroforestry: Essential for Sustainable and Climate-Smart Land Use? In Tropical Forestry Handbook, 1st ed.; Pancel, L., Köhl, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 2, pp. 2013–2116. [Google Scholar] [CrossRef]
- Harvey, C.A.; Chacon, M.; Donatti, C.I.; Garen, E.; Hannah, L.; Andrade, A.; Bede, L.; Brown, D.; Calle, A.; Chará, J.; et al. Climate-smart landscapes: Opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conserv. Lett. 2014, 7, 77–90. [Google Scholar] [CrossRef]
- Travers, E.; Härdtle, W.; Matthies, D. Corridors as a tool for linking habitats–Shortcomings and perspectives for plant conservation. J. Nat. Conserv. 2021, 60, 125974. [Google Scholar] [CrossRef]
- INECC-FONNOR. Plan de Acción para el Manejo Integral de Cuencas Hídricas Región Vallarta. Proyecto: Conservación de Cuencas Costeras en el Contexto del Cambio Climático. 2018. Available online: https://www.gob.mx/inecc/acciones-y-programas/conservacion-de-cuencas-costeras-en-el-contexto-de-cambio-climatico-c6 (accessed on 1 April 2023).
- INECC-FGM. Plan de Acción para el Manejo Integral de Cuencas Hídricas: Cuenca del río Jamapa. 2018. Available online: https://datos.abiertos.inecc.gob.mx/Datos_abiertos_INECC/CGACC/PAMICs/PAMIC_rio_Jamapa.pdf (accessed on 18 January 2024).
- Hirayama, H.; Sharma, R.C.; Tomita, M.; Hara, K. Evaluating multiple classifier system for the reduction of salt-and-pepper noise in the classification of very-high-resolution satellite images. Int. J. Remote Sens. 2019, 40, 2542–2557. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC/Taylor & Francis: Boca Raton, FL, USA, 2009; p. 178. [Google Scholar]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. Available online: https://www.fragstats.org/ (accessed on 18 January 2024).
- Lu, D.; Qiu, L.; Jiao, M.; Feng, Z.; Wang, Z.A. Quantitative analysis of the spatial diversity of Moraceae in China. Front. Ecol. Evol. 2023, 11, 1110018. [Google Scholar] [CrossRef]
- Alonso, A.M.; Finegan, B.; Brenes, C.; Günter, S.; Palomeque, X. Evaluation of structural and functional connectivity in the Podocarpus-Yacuambi conservation corridor, Ecuador. Caldasia 2017, 39, 140–156. [Google Scholar] [CrossRef]
- Foltête, J.C.; Vuidel, G.; Savary, P.; Clauzel, C.; Sahraoui, Y.; Girardet, X.; Bourgeois, M.A. Graphab: An application for modeling and managing ecological habitat networks. Softw. Impacts 2021, 8, 100065. [Google Scholar] [CrossRef]
- Almazán-Núñez, R.C.; Mariano-Rendón, A.; Rodríguez-Godínez, R.; Méndez-Bahena, A.; Pineda-López, R. Las aves frugívoras y su papel en la restauración pasiva del bosque tropical caducifolio del sur de México: Un caso de estudio con la cactácea Pachycereus weberi. In Manejo y Conservación de Fauna Nativa en Ambientes Antropizados, 1st ed.; Mercado, S.N., Val de Gortari, E., Eds.; REFAMA/UAQ: Querétaro, México, 2021; pp. 61–83. [Google Scholar]
- Galindo-González, J.; Sosa, V.J. Frugivorous bats in isolated trees and riparian vegetation associated with human-made pastures in a fragmented tropical landscape. Southwest Nat. 2003, 48, 579–589. [Google Scholar] [CrossRef]
- Beck, D.D.; Lowe, C.H. Ecology of the beaded lizard, Heloderma horridum, in a tropical dry forest in Jalisco, Mexico. J. Herpetol. 1991, 25, 395–406. [Google Scholar] [CrossRef]
- Castellanos, Y.D.; López, F.P.; González, G.C. Uso de hábitat de los roedores arborícolas en Chamela, Jalisco. Rev. Mex. Mastozoo. 2007, 11, 21–33. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- GPM-INECC. Valoración de Servicios Ecosistémicos Clave en Cuencas de México: Reporte Final. Banco Mundial, Instituto Nacional de Ecología y Cambio Climático (INECC), México. 2022. Available online: https://www.gob.mx/cms/uploads/attachment/file/805434/02_Informe_Final_GPS_Mexico_2022_.pdf (accessed on 3 May 2023).
- Zahawi, R.A.; Holl, K.D.; Cole, R.J.; Reid, J.L. Testing applied nucleation as a strategy to facilitate tropical forest recovery. J. Appl. Ecol. 2013, 50, 88–96. [Google Scholar] [CrossRef]
- Guzmán-Luna, A.; Martínez-Garza, C. Performance of 15 tropical tree species recruited or transplanted on restoration settings. Bot. Sci. 2016, 94, 757–773. [Google Scholar] [CrossRef]
- INEGI. Simulador de Flujos de Agua de Cuencas Hidrográficas. 2023. Available online: https://antares.inegi.org.mx/analisis/red_hidro/siatl/ (accessed on 1 May 2023).
- CONAGUA. Ley de Aguas Nacionales. 1992. Available online: https://www.diputados.gob.mx/LeyesBiblio/pdf/LAN.pdf (accessed on 1 April 2023).
- Gutiérrez-Granados, G.; León-Villegas, R.I.; Rodríguez-Moreno, A.; Coates, R. Loss of connectivity in a highly fragmented tropical landscape: Use of ecological processes as functional indicators of biodiversity decline. Biodivers. Int. J. 2018, 2, 48–56. [Google Scholar] [CrossRef]
- Arroyo-Rodríguez, V.; Fahrig, L.; Tabarelli, M.; Watling, J.I.; Tischendorf, L.; Benchimol, M.; Tscharntke, T. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 2020, 23, 1404–1420. [Google Scholar] [CrossRef]
- Galán-Acedo, C.; Arroyo-Rodríguez, V.; Estrada, A.; Ramos-Fernández, G. Forest cover and matrix functionality drive the abundance and reproductive success of an endangered primate in two fragmented rainforests. Landsc. Ecol. 2019, 34, 147–158. [Google Scholar] [CrossRef]
- Fahrig, L. Rethinking patch size and isolation effects: The habitat amount hypothesis. J. Biogeogr. 2013, 40, 1649–1663. [Google Scholar] [CrossRef]
- Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 1–23. [Google Scholar] [CrossRef]
- Domínguez-Vega, H.; Balderas-Valdivia, C.J.; Manjarrez, J.; Monroy-Vilchis, O. Conociendo al lagarto escorpión: Leyendas, realidad y potencial de una rareza biológica. CIENCIA Ergo-Sum 2018, 25, 1–9. [Google Scholar] [CrossRef]
- Proesmans, W.; Bonte, D.; Smagghe, G.; Meeus, I.; Decocq, G.; Spicher, F.; Kolb, A.; Lemke, I.; Diekmann, M.; Henrik, B.H.; et al. Small forest patches as pollinator habitat: Oases in an agricultural desert? Landsc. Ecol. 2019, 34, 487–501. [Google Scholar] [CrossRef]
- Sonesson, J.; Ring, E.; Högbom, L.; Lämås, T.; Widenfalk, O.; Mohtashami, S.; Holmström, H. Costs and benefits of seven alternatives for riparian forest buffer management. Scand. J. For. Res. 2021, 36, 135–143. [Google Scholar] [CrossRef]
- Cole, L.J.; Stockan, J.; Helliwell, R. Managing riparian buffer strips to optimise ecosystem services: A review. Agric. Ecosyst. Environ. 2020, 296, 106891. [Google Scholar] [CrossRef]
- Von Thaden, J.J.; Laborde, J.; Guevara, S.; Mokondoko-Delgadillo, P. Dinámica de los cambios en el uso del suelo y cobertura vegetal en la Reserva de la Biosfera Los Tuxtlas (2006–2016). Rev. Mex. Biodivers. 2016, 91, e913190. [Google Scholar] [CrossRef]
- Rodríguez, L.R.; Jiménez, P.J.; Aguirre, C.A.; Treviño, G.E.J. Estimación del carbono almacenado en un bosque de niebla en Tamaulipas, México. Ciencia UANL 2006, 9, 179–188. Available online: http://eprints.uanl.mx/id/eprint/1750 (accessed on 2 February 2024).
- Cargua, F.E.; Rodríguez, M.V.; Recalde, C.G.; Vinueza, L.M. Cuantificación del contenido de carbono en una plantación de pino insigne (Pinus radiata) y en estrato de páramo de ozogoche bajo, Parque Nacional Sangay, Ecuador. Inform. Tecnol. 2014, 25, 83–92. [Google Scholar] [CrossRef]
- Paz-Pellat, F.; Salas-Aguilar, V.M.; Sánchez-Sánchez, C.D.; Libert-Amico, A.; Bolaños-González, M.A. Caracterización de los almacenes de carbono, estructura y diversidad de los cafetales bajo sombra y vegetación natural en la Sierra Madre de Chiapas, México. Elem. Polít. Públicas 2022, 6, 101–122. Available online: https://www.elementospolipub.org/ojs/index.php/epp/article/view/46/45 (accessed on 2 February 2024).
- Benítez, G.; Ruelas-Monjardín, L.C.; Von Thaden, J.; Acosta-Rosado, I.; Alvarado-Castillo, G.; Equihua, M. Carbon Storage in a Peri-urban Neotropical Forest: Assessing its potential and patterns of change over half a century. Urban For. Urban Green. 2023, 86, 128009. [Google Scholar] [CrossRef]
- Cao, S.; Ma, H.; Yuan, W.; Wang, X. Interaction of ecological and social factors affects vegetation recovery in China. Biol. Conserv. 2014, 180, 270–277. [Google Scholar] [CrossRef]
- Ameray, A.; Bergeron, Y.; Valeria, O.; Montoro Girona, M.; Cavard, X. Forest carbon management: A review of silvicultural practices and management strategies across boreal, temperate and tropical forests. Curr. For. Rep. 2021, 7, 245–266. [Google Scholar] [CrossRef]
- Uezu, A.; Metzger, J.P.; Vielliard, J.M. Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol. Conserv. 2005, 123, 507–519. [Google Scholar] [CrossRef]
Ameca–Mascota | ||||||
5% (59 parcels) Sup; ha–tons/yr | 10% (118 parcels) Sup; ha–tons/yr | 25 (294 parcels) Sup; ha–tons/yr | 50% (589 parcels) Sup; ha–tons/yr | 75% (883 parcels) Sup; ha–tons/yr | 100% (1177 parcels) Sup; ha–tons/yr | |
Isolated tree | 0.46–72.20 | 0.92–144.41 | 2.25–353.67 | 4.60–720.80 | 6.89–1080.59 | 9.19–1440.38 |
Tree riparian | 6.92–1085.12 | 15.62–2447.06 | 29.44–4611.753 | 65.75–10,297.64 | 95.29–14,924.16 | 115.88–18,148.10 |
Living fences | 49.42–7740.17 | 100.02–15,664.23 | 233.50–36,568.87 | 429.33–67,238.55 | 590.13–92,421.05 | 709.38–111,096.88 |
“Integrated” scenario | 56.81–8897.50 | 116.56–18,255.70 | 265.20–41,534.30 | 499.69–78,256.99 | 692.33–108,425.81 | 834.46–130,685.37 |
Jamapa | ||||||
5% (59 parcels) Sup; ha–tons/yr | 10% (118 parcels) Sup; ha–tons/yr | 25 (294 parcels) Sup; ha–tons/yr | 50% (589 parcels) Sup; ha–tons/yr | 75% (883 parcels) Sup; ha–tons/yr | 100% (1177 parcels) Sup; ha–tons/yr | |
Isolated tree | 1.08–263.36 | 2.53–615.81 | 4.84–1173.57 | 10.85–2631.12 | 16.27–3946.89 | 21.70–5262.67 |
Tree riparian | 8.44–2048.25 | 13.67–3314.67 | 31.04–7526.67 | 81.53–19,770.89 | 149.09–36,150.49 | 149.09–36,150.49 |
Living fences | 88.11–21,366.06 | 183.95–44,603.23 | 411.31–99,732.23 | 845.05–204,899.28 | 1161.71–281,681.30 | 1431.75–347,156.99 |
“Integrated” scenario | 97.65–23,677.68 | 200.16–48,533.72 | 447.19–108,432.48 | 937.44–227,301.30 | 1327.08–321,778.69 | 1602.54–388,570.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Von Thaden, J.J.; Lithgow, D.; Revollo-Fernández, D.A.; Salazar-Vargas, M.d.P.; Rodríguez de los Santos, A. The Effects of Implementing Three Climate-Smart Practices with an Integrated Landscape Approach on Functional Connectivity and Carbon Storage. Land 2024, 13, 389. https://doi.org/10.3390/land13030389
Von Thaden JJ, Lithgow D, Revollo-Fernández DA, Salazar-Vargas MdP, Rodríguez de los Santos A. The Effects of Implementing Three Climate-Smart Practices with an Integrated Landscape Approach on Functional Connectivity and Carbon Storage. Land. 2024; 13(3):389. https://doi.org/10.3390/land13030389
Chicago/Turabian StyleVon Thaden, Juan José, Debora Lithgow, Daniel A. Revollo-Fernández, María del Pilar Salazar-Vargas, and Aram Rodríguez de los Santos. 2024. "The Effects of Implementing Three Climate-Smart Practices with an Integrated Landscape Approach on Functional Connectivity and Carbon Storage" Land 13, no. 3: 389. https://doi.org/10.3390/land13030389
APA StyleVon Thaden, J. J., Lithgow, D., Revollo-Fernández, D. A., Salazar-Vargas, M. d. P., & Rodríguez de los Santos, A. (2024). The Effects of Implementing Three Climate-Smart Practices with an Integrated Landscape Approach on Functional Connectivity and Carbon Storage. Land, 13(3), 389. https://doi.org/10.3390/land13030389