Trends, Drivers, and Land Use Strategies for Facility Agricultural Land during the Agricultural Modernization Process: Evidence from Huzhou City, China
Abstract
:1. Introduction
2. Theoretical Framework
2.1. The Evolution of Land Use Policy for Facility Agriculture
2.2. Research Framework
3. Materials and Methods
3.1. Study Area
3.2. Data Source and Processing
3.3. Land Use Center of Gravity Migration Model
3.4. Rate of Expansion of Facility Agricultural Land
3.5. Multilevel Regression
3.6. Potential Explanatory Variables
4. Results
4.1. Spatiotemporal Characteristics of the Expansion of Facility Agricultural Land
4.1.1. Quantitative Characteristics of Facility Agricultural Land Expansion
4.1.2. Spatial Characteristics of the Facility Agricultural Land
4.1.3. Characteristics of Land Use Change in Facility Agriculture
4.2. Multilevel Determinants of the Expansion of Facility Agricultural Land
4.3. Optimized Zoning of Agricultural Facility Land
5. Discussion
5.1. “Situation-Structure-Behavior-Value” Land Optimization System for Facility Agricultural Land
5.2. Land Use Changes to Facility Agricultural Land: Types and Multilevel Determinants
5.3. Policy Implications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, S.; Connie, C. Is small beautiful? Farm size, productivity, and poverty in Asian agriculture. Agric. Econ. 2005, 32, 135–146. [Google Scholar] [CrossRef]
- Verschelde, M.; D’haese, M.; Rayp, G.; Vandamme, E. Challenging Small-Scale Farming: A Non-Parametric Analysis of the (Inverse) Relationship Between Farm Productivity and Farm Size in Burundi. J. Agric. Econ. 2013, 64, 319–342. [Google Scholar] [CrossRef]
- FAOSTAT. FAO Statistical Yearbooks—World Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Powlson, D.; Gregory, P.; Whalley, W.; Quinton, J.; Hopkins, D.; Whitmore, A.; Hirsch, P.; Goulding, K. Soil management in relation to sustainable agriculture and ecosystem services. Food Policy 2011, 36, S72–S87. [Google Scholar] [CrossRef]
- Tuntiwaranuruk, U.; Thepa, S.; Tia, S.; Bhumiratana, S. Modeling of soil temperature and moisture with and without rice husks in an agriculture greenhouse. Renew. Energy 2006, 31, 1934–1949. [Google Scholar] [CrossRef]
- Briassoulis, D.; Waaijenberg, D.; Gratraud, J.; von Eslner, B. Mechanical properties of covering materials for greenhouses: Part 1: General overview. J. Agric. Eng. Res. 1997, 67, 171–217. [Google Scholar] [CrossRef]
- Orgaz, F.; Fernández, M.D.; Bonachela, S.; Gallardo, M.; Fereres, E. Evapotranspiration of horticultural crops in an unheated plastic greenhouse. Agric. Water Manag. 2005, 72, 81–96. [Google Scholar] [CrossRef]
- Enoch, H.Z.; Enoch, Y. The history and geography of the greenhouse. Ecosyst. World 1999, 20, 1–15. [Google Scholar]
- Huang, Y.; Chen, G.; Huang, Y.; Liu, B.; Xiong, L.; Gan, G.; Xie, L. Overview of the Development of Facility Agriculture. Agric. Biotechnol. 2020, 9, 151–154. [Google Scholar]
- Bisbis, M.B.; Gruda, N.; Blanke, M. Potential impacts of climate change on vegetable production and product quality—A review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Ernst, D.; Bolte, J.; Nath, S. AquaFarm: Simulation and decision support for aquaculture facility design and management planning. Aquac. Eng. 2000, 23, 121–179. [Google Scholar] [CrossRef]
- Flegel, T.W. A future vision for disease control in shrimp aquaculture. J. World Aquac. Soc. 2019, 50, 249–266. [Google Scholar] [CrossRef]
- van Rijn, J. Waste treatment in recirculating aquaculture systems. Aquac. Eng. 2013, 53, 49–56. [Google Scholar] [CrossRef]
- Cuce, E.; Harjunowibowo, D.; Cuce, P.M. Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 64, 34–59. [Google Scholar] [CrossRef]
- Van den Muijzenberg, E.W. A History of Greenhouses; Institute of Agricultural Engineering: Wageningen, The Netherlands, 1980. [Google Scholar]
- Critten, D.L.; Bailey, B.J. A review of greenhouse engineering developments during the 1990s. Agric. For. Meteorol. 2002, 112, 1–22. [Google Scholar] [CrossRef]
- Hanan, J.J. Greenhouses: Advanced Technology for Protected Horticulture, 1st ed.; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Sabir, N.; Singh, B. Protected cultivation of vegetables in global arena: A review. Indian J. Agric. Sci. 2013, 83, 123–135. [Google Scholar]
- Fletcher, A.; Lawes, R.; Weeks, C. Crop area increases drive earlier and dry sowing in Western Australia: Implications for farming systems. Crop Pasture Sci. 2016, 67, 1268–1280. [Google Scholar] [CrossRef]
- Albright, L.D. Controlling greenhouse environments. In Proceedings of the International Symposium on Design and Environmental Control of Tropical and Subtropical Greenhouses, Taichung, Taiwan, 15–18 April 2001; p. 578. [Google Scholar]
- Despommier, D. The vertical farm: Controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. J. Verbraucherschutz Leb. 2011, 6, 233–236. [Google Scholar] [CrossRef]
- Nelkin, J.; Caplow, T. Sustainable controlled environment agriculture for urban areas. In Proceedings of the International Symposium on High Technology for Greenhouse System Management: Greensys, Naples, Italy, 4–6 October 2007; p. 801. [Google Scholar]
- Zhou, Y.; Guo, L.; Liu, Y. Land consolidation boosting poverty alleviation in China: Theory and practice. Land Use Policy 2019, 82, 339–348. [Google Scholar] [CrossRef]
- Xu, X.; Hu, Y.; Wang, H. Analysis of the Current Situation of Agricultural Land for Facilities. Land Resour. Inf. 2011, 1, 39+54–56. [Google Scholar]
- Cao, G.; Ma, J. Spatial pattern, mutual relationship and driving forces of China’s urbanization and non-agriculturalization. Geogr. Res. 2016, 35, 2249–2260. [Google Scholar]
- Zhao, X.; Zheng, Y.; Huang, X.; Kwan, M.P.; Zhao, Y. The effect of urbanization and farmland transfer on the spatial patterns of non-grain farmland in China. Sustainability 2017, 9, 1438. [Google Scholar] [CrossRef]
- Du, S.; Yu, M.; Liu, F.; Xiao, L.; Zhang, H.; Tao, J.; Gu, W.; Gu, J.; Chen, X. Effect of facility management regimes on soil bacterial diversity and community structure. Chin. J. Eco-Agric. 2017, 25, 1615–1625. [Google Scholar]
- Gao, X.; Zhang, Y.; Liu, Z.; Jiang, L.; Lin, H.; Shi, J.; Liu, P.; Li, Y. Effects of cultivating years on soil ecological environment in greenhouse of Shouguang City, Shandong Province. Acta Ecol. Sin. 2015, 35, 1452–1459. [Google Scholar]
- Ma, Y.; Liu, Z.-H.; Xi, B.-D.; He, X.-S.; Li, Q.-L.; Qi, Y.-J.; Jin, M.-Y.; Guo, Y. Characteristics of groundwater pollution in a vegetable cultivation area of typical facility agriculture in a developed city. Ecol. Indic. 2019, 105, 709–716. [Google Scholar] [CrossRef]
- Sheng, P.; Guo, Y.; Li, P. Intelligent measurement and control system of facility agriculture based on ZigBee and 3G. Trans. CSAM 2012, 43, 229–233. [Google Scholar]
- Fan, C.; Shi, J. Economic and ecological benefit analysis of greenhouse and open field vegetables planting in Shandong Province. Res. Agric. Mod. 2012, 33, 108–112. [Google Scholar]
- Li, Z.M.; Shen, J.; Wang, Z.; Gao, L.H.; Chen, Q.Y.; Guo, Y.X. Production efficiency analysis of solar greenhouse and plastic big-arch shelter in Beijing. China Veg. 2011, 22, 13–19. [Google Scholar]
- Su, Y.; Qian, K.; Lin, L.; Wang, K.; Guan, T.; Gan, M. Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protection. Land Use Policy 2020, 92, 104435. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, Y. Supply and Demand Situation, Policy Implementation Dilemma and Optimization Strategy of Facility Agricultural Land. Reform 2020, 11, 109–118. [Google Scholar]
- Zhang, Z.; Liu, X. The present situation and countermeasures of facility agriculture development in China. Issues Agric. Econ. 2015, 5, 64–70. [Google Scholar]
- Ouyang, Z.; Deng, X.; Sun, Z. Regional agricultural research in contributing to national economic development. Acta Geogr. Sin. 2020, 75, 2636–2654. [Google Scholar]
- Liu, W.; Dong, J. Remote sensing-based analysis for expansion of construction land and cultivated land cut in recent 20 years. J. Geo-Inf. Sci. 2009, 11, 549–555,534. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, S.; Qu, F. Research on coupling coordination among cultivated land protection, construction land intensive use and urbanization. J. Nat. Resour. 2017, 32, 1002–1015. [Google Scholar]
- Han, H.; Yang, C.; Song, J. Simulation and projection of land-use change in Beijing under different scenarios. Prog. Geogr. 2015, 34, 976–986. [Google Scholar]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G. Spatio-temporal patterns and characteristics of land- use change in China during 2010–2015. Acta Geogr. Sin. 2018, 73, 789–802. [Google Scholar]
- He, F.; Ma, C. Development and Strategy of Facility Agriculture in China. Chin. Agric. Sci. Bull. 2007, 23, 4. [Google Scholar]
- Li, Z.; Wang, G.; Qi, F. Current Situation and Thinking of Development of Protected Agriculture in China. J. Chin. Agric. Mech. 2012, 1, 7–10. [Google Scholar]
- Kaufmann, F.X.; Ostrom, V.; Majone, G. Guidance, Control, and Evaluation in the Public Sector: The Bielefeld Interdisciplinary Project; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Zhou, X.; Shen, D.; Gu, X.; Li, X.; Zhang, S. Comprehensive land consolidation and multifunctional cultivated land in metropolis: The analysis based on the “situation-structure implementation-outcome”. China Land Sci. 2021, 35, 94–104. [Google Scholar]
- Gu, X.-K.; Zhou, X.-P.; Liu, B.-Y.; Zhang, S.-L.; Liu, R. Using “Situation-Structure-Implementation-Outcome” framework to analyze the reduction governance of the inefficient industrial land in Shanghai. J. Nat. Resour. 2022, 37, 1413–1424. [Google Scholar] [CrossRef]
- Guo, W.; Dong, M. The development and contribution of policy mix in governance research: Based on the analysis of bibliometrics. Glob. Sci. Technol. Econ. Outlook 2021, 036, 68–76. [Google Scholar]
- Fu, J.; Gao, Z.; Huang, L.; Zhang, L. The Movement Route of Consumption Gravity Center of Xinjiang from 1965 to 2009 Based on GIS. Procedia Earth Planet. Sci. 2011, 2, 321–326. [Google Scholar] [CrossRef]
- Xu, J.; Yue, W. Evolvement and Comparative Analysis of the Population Center Gravity and the Economy Gravity Center in Recent Twenty Years in China. Sci. Geogr. Sin. 2001, 21, 385–389. [Google Scholar]
- Chan, H.; Chang, C.; Chen, P.; Lee, J. Using multinomial logistic regression for prediction of soil depth in an area of complex topography in Taiwan. Catena 2019, 176, 419–429. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Moran, P.A.P. The Interpretation of Statistical Maps. J. R. Stat. Soc. Ser. B 1948, 2, 243–251. [Google Scholar] [CrossRef]
- Miyamoto, M. Forest conversion to rubber around Sumatran villages in Indonesia: Comparing the impacts of road construction, transmigration projects and population. For. Policy Econ. 2006, 9, 1–12. [Google Scholar] [CrossRef]
- Su, S.; Zhou, X.; Wan, C.; Li, Y.; Kong, W. Land use changes to cash crop plantations: Crop types, multilevel determinants and policy implications. Land Use Policy 2016, 50, 379–389. [Google Scholar] [CrossRef]
- Xiao, R.; Su, S.; Mai, G.; Zhang, Z.; Yang, C. Quantifying determinants of cash crop expansion and their relative effects using logistic regression modeling and variance partitioning. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 258–263. [Google Scholar] [CrossRef]
- Kang, S.; Su, X.; Tong, L.; Zhang, J.; Zhang, L. A warning from an ancient oasis: Intensive human activities are leading to potential ecological and social catastrophe. Int. J. Sustain. Dev. World Ecol. 2008, 15, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.E.; Funk, C.C. Food security under climate change. Science 2008, 319, 580–581. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, W.; Ma, L.; Wu, L.; Shen, J.; Davies, W.J.; Oenema, O.; Zhang, F.; Dou, Z. An analysis of China’s grain production: Looking back and looking forward. Food Energy Secur. 2014, 3, 19–32. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Cline, S.A. Global Food Security: Challenges and Policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhang, N.; Bao, L. Research progress on soil degradation and regulation of facility agriculture in China. Chin. J. Eco-Agric. 2013, 21, 787–794. [Google Scholar] [CrossRef]
- Li, M.; Chen, S.; Liu, F.; Zhao, L.; Xue, Q.; Wang, H.; Chen, M.; Lei, P.; Wen, D.; Sanchez-Molina, J.A.; et al. A risk management system for meteorological disasters of solar greenhouse vegetables. Precis Agric 2017, 18, 997–1010. [Google Scholar] [CrossRef]
- Qi, Z.; Xinyu, Z.; Zaiqiang, Y.; Qinqin, H.; Rangjian, Q. Characteristics of Plastic Greenhouse High-Temperature and High-Humidity Events and Their Impacts on Facility Tomatoes Growth. Front. Earth Sci. 2022, 10, 848924. [Google Scholar]
- Hu, M.; Su, J. Analysis of Facility Agriculture Industry’s Dilemma and Policy Crack Based on SCP Paradigm: Taking the Case of Yanqing County, Beijing. Adv. Mater. Res. 2013, 798, 936–940. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Moulton, A.A.; Popke, J. Greenhouse governmentality: Protected agriculture and the changing biopolitical management of agrarian life in Jamaica. Environ. Plan. D Soc. Space 2016, 35, 714–773. [Google Scholar] [CrossRef]
- Hong, S.W.; Lee, I.B.; Hwang, H.S.; Seo, I.H.; Bitog, J.P.; Yoo, J.I.; Kim, K.-S.; Lee, S.-H.; Kim, K.-W.; Yoon, N.-K. Numerical simulation of ventilation efficiencies of naturally ventilated multi-span greenhouses in Korea. T Asabe 2008, 51, 1417–1432. [Google Scholar] [CrossRef]
- Jeannequin, B.; Dosba, F.; Amiot-Carlin, M.J. Fruits et Légumes: Caractéristiques et Principaux Enjeux; Editions Quae: Versailles, France, 2005. [Google Scholar]
- Fletcher, A.L.; Robertson, M.J.; Abrecht, D.G.; Sharma, D.L.; Holzworth, D.P. Dry sowing increases farm level wheat yields but not production risks in a Mediterranean environment. Agric. Syst. 2015, 136, 114–124. [Google Scholar] [CrossRef]
- Power, B.; Rodriguez, D.; Devoil, P.; Harris, G.; Payero, J. A multi-field bio-economic model of irrigated grain–cotton farming systems. Field Crops Res. 2011, 124, 171–179. [Google Scholar] [CrossRef]
- Castiblanco, C.; Etter, A.; Aide, T.M. Oil palm plantations in Colombia: A model of future expansion. Environ. Sci. Policy 2013, 27, 172–183. [Google Scholar] [CrossRef]
- Reis, S.; Yomralioglu, T. Detection of current and potential hazelnut plantation areas in Tabzon, North East Turkey using GIS and RS. J. Environ. Biol. 2006, 27, 653–659. [Google Scholar] [PubMed]
- Jensen, M.H.; Malter, A.J. Protected Agriculture: A Global Review; World Bank Publications: Washington, DC, USA, 1995. [Google Scholar]
- Xu, H.; Huang, X.; Zhong, T.; Chen, Z.; Yu, J. Chinese land policies and farmers’ adoption of organic fertilizer for saline soils. Land Use Policy 2014, 38, 541–549. [Google Scholar] [CrossRef]
Data Name | Data Description | Data Source |
---|---|---|
Socioeconomic data | Statistical Yearbook of Huzhou; the basic unit is the county | Huzhou Municipal Bureau of Statistics http://tjj.huzhou.gov.cn/ (accessed on 25 August 2022) |
DEM data | Raster, 30 m × 30 m | Geospatial Data Cloud http://www.gscloud.cn/ (accessed on 18 October 2022) |
Land use/cover data | Vector data 1:500,000 m | Huzhou Bureau of Planning and Natural Resources |
Facility agricultural land data | Vector | Huzhou Bureau of Planning and Natural Resources |
Road nets data | Vector | Open Street Map (OSM) |
POI data | Geographic Data | Gaode Open Platform https://lbs.amap.com/ (accessed on 20 February 2023) |
Satellite image | Raster, 1 m | Geospatial Data Cloud http://www.gscloud.cn/ (accessed on 18 October 2022) |
Dimension | Determinants | Implications |
---|---|---|
Topography | Slope (°) | Average slope of each piece of facility agricultural land |
Elevation (m) | Average elevation of each piece of facility agricultural land | |
Proximity | Distance to county road (m) | Distance of the facility agricultural land from the nearest road |
Distance to town center (m) | Distance of the facility agricultural land from the nearest town center | |
Distance to water sources (m) | Distance of the facility agricultural land from the nearest river | |
Economy | Economic benefits (RMB) | Average value of output of different types of agricultural industries in the current year × plot area |
Agricultural resources superiority: whether it is located in the main production area of special agricultural products | Whether it is located in a village with Special Agricultural Products (0/1) | |
Distance to leading agricultural product enterprises | Distance of the facility agricultural land from leading agricultural product enterprises (POI data) | |
Demography | Agricultural population proportion (%) | The population is engaged in agriculture/Rurally employed population |
Technology | Total agricultural machinery power (kw) | Reflecting the level of agricultural mechanization |
Policy | Availability of policy support | Whether major policies were issued in the current year (0/1) |
Type | 2007 | 2014 | 2021 | ||||
---|---|---|---|---|---|---|---|
Expansion Area (km2) | Expansion Rate Value (km2/Year) | Expansion Area (km2) | Expansion Rate Value (km2/Year) | Expansion Area (km2) | Expansion Rate Value (km2/Year) | ||
Planting | Grain | 0.57 | 0.07 | 42.99 | 6.14 | 100.97 | 12.62 |
Tea | 1.34 | 0.17 | 82.22 | 11.75 | 76.56 | 9.57 | |
Vegetable | 0.51 | 0.06 | 22.92 | 3.27 | 43.49 | 5.44 | |
Floriculture and Nursery | 0.54 | 0.07 | 30.90 | 4.41 | 32.96 | 4.12 | |
Fruit | 0.00 | 0.00 | 21.22 | 3.03 | 27.23 | 3.40 | |
Livestock breeding | Live Pigs | 0.00 | 0.00 | 26.78 | 3.83 | 502.23 | 62.78 |
Poultry | 0.75 | 0.09 | 22.87 | 3.27 | 583.19 | 72.90 | |
Hu Sheep | 4.60 | 0.57 | 135.45 | 19.35 | 336.30 | 42.04 | |
Aquaculture | Aquatic Product | 0.00 | 0.00 | 50.70 | 7.24 | 333.94 | 41.74 |
Determinants | Planting | Livestock Breeding | Aquaculture |
---|---|---|---|
Constant | 2.515 * | 1.972 * | 0.431 |
Slope | 0.484 * | −0.079 | −0.426 |
Elevation | 0.999 ** | 1.009 * | −0.121 |
Distance to county road | −0.056 | −0.019 | 0.200 |
Distance to town center | 0.152 | 0.175 | −0.034 |
Distance to river | −0.181 | 0.225 | −0.433 * |
Agricultural resources superiority | 2.216 ** | 0.854 * | 2.086 ** |
Agricultural population proportion | 0.054 ** | 0.793 ** | 0.598 * |
Economic benefits | −3.042 * | −5.653 * | −1.991 * |
Distance to leading agricultural product enterprises | −0.174 | −0.0137 | 0.019 |
Total agricultural machinery power | 0.580 ** | 0.087 ** | 0.265 |
Policy | 0.230 * | 0.426 * | 0.420 * |
PCP (%) | 95.86 | 65.41 | 61.15 |
McFadden R2 | 0.429 | ||
Cox & Snell R2 | 0.590 | ||
Moran’s I for residuals | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wang, Z.; You, K.; Zhu, C.; Wang, K.; Gan, M.; Zhang, J. Trends, Drivers, and Land Use Strategies for Facility Agricultural Land during the Agricultural Modernization Process: Evidence from Huzhou City, China. Land 2024, 13, 543. https://doi.org/10.3390/land13040543
Chen Y, Wang Z, You K, Zhu C, Wang K, Gan M, Zhang J. Trends, Drivers, and Land Use Strategies for Facility Agricultural Land during the Agricultural Modernization Process: Evidence from Huzhou City, China. Land. 2024; 13(4):543. https://doi.org/10.3390/land13040543
Chicago/Turabian StyleChen, Yun, Zhifeng Wang, Kaijiang You, Congmou Zhu, Ke Wang, Muye Gan, and Jing Zhang. 2024. "Trends, Drivers, and Land Use Strategies for Facility Agricultural Land during the Agricultural Modernization Process: Evidence from Huzhou City, China" Land 13, no. 4: 543. https://doi.org/10.3390/land13040543
APA StyleChen, Y., Wang, Z., You, K., Zhu, C., Wang, K., Gan, M., & Zhang, J. (2024). Trends, Drivers, and Land Use Strategies for Facility Agricultural Land during the Agricultural Modernization Process: Evidence from Huzhou City, China. Land, 13(4), 543. https://doi.org/10.3390/land13040543