Temporal Variation in Soil Resistance to Rill Erosion in Cropland of the Dry—Hot Valley Region, Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Design of Field Plots
2.3. Measurement of Soil Detachment
2.4. Calculation of Rill Erodibility and Critical Shear Stress
2.5. Measurement of Soil Properties
2.6. Statistical Analysis
3. Results
3.1. Surface Soil Properties for Different Treatments
3.2. Variation in Soil Detachment Rate under Different Treatments
3.3. Variations in the Erosion Resistance Indexes under Different Treatments
3.4. Factors Influencing Soil Resistance
4. Discussion
4.1. The Effect of Natural Dry—Wet Alternation on Soil Erosion Resistance
4.2. Tillage Effect on Soil Erosion Resistance under Dry—Wet Alternating Conditions
4.3. The Effect of Crop Growth on Soil Erosion Resistance
4.4. The Response of Critical Shear Stress
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biggelaar, C.; Lal, R.; Wiebe, K.; Eswaran, H.; Breneman, V.; Reich, P. The global impact of soil erosion on productivity II: Effects on crop yields and production over time. Adv. Agron. 2004, 81, 49–95. [Google Scholar]
- Nearing, M.A.; Foster, G.R.; Lane, L.J.; Finkner, S.C. A processbased soil erosion model for USDA-water erosion prediction project technology. Trans. ASAE 1989, 32, 1587–1593. [Google Scholar] [CrossRef]
- Knapen, A.; Poesen, J.; Govers, G.; Gyssels, G.; Nachtergaele, J. Resistance of soils to concentrated flow erosion: A review. Earth Sci. Rev. 2007, 80, 75–109. [Google Scholar] [CrossRef]
- Foltz, R.B.; Rhee, H.; Elliot, W.J. Modeling changes in rill erodibility and critical shear stress on native surface roads. Hydrol. Process. 2008, 22, 4783–4788. [Google Scholar] [CrossRef]
- Zhang, G.H.; Tang, M.K.; Zhang, X.C. Temporal variation in soil detachment under different land uses in the Loess Plateau of China. Earth Surf. Proc. Landf. 2009, 34, 1302–1309. [Google Scholar] [CrossRef]
- Laflen, J.M.; Elliot, W.J.; Simanton, R.; Holzhey, S.; Kohl, K.D. WEPP soil erodibility experiments for rangeland and crop land soils. J. Soil Water Conserv. 1991, 46, 39–44. [Google Scholar]
- Elliot, W.J.; Flanagan, D.C. Estimating WEPP cropland erodibility values from soil properties. J. ASABE 2023, 66, 329–351. [Google Scholar] [CrossRef]
- Bryan, R.B. Soil erodibility and processes of water erosion on hillslope. Geomorphology 2000, 32, 385–415. [Google Scholar] [CrossRef]
- Shen, N.; Wang, Z.L.; Guo, Q.; Zhang, Q.W.; Wu, B.; Liu, J.; Ma, C.Y.; Claudio, O.D.L.; Zhang, F.B. Soil detachment capacity by rill flow for five typical loess soils on the Loess Plateau of China. Soil Tillage Res. 2021, 213, 105159. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, L.X.; Fan, J.B.; Lu, H.Z.; Zhu, Y.Y.; Gu, Y.L.; Sun, B.; Liang, Y. Modelling soil detachment of different management practices in the red soil region of China. Land Degrad. Dev. 2017, 28, 1496–1505. [Google Scholar] [CrossRef]
- Jiang, F.S.; He, K.W.; Huang, M.Y.; Zhang, L.T.; Lin, G.G.; Zhan, Z.Z.; Li, H.; Lin, J.S.; Ge, H.L.; Huang, Y.H. Impacts of near soil surface factors on soil detachment process in Benggang alluvial fans. J. Hydrol. 2021, 590, 125274. [Google Scholar] [CrossRef]
- Alberts, E.E.; Nearing, M.A.; Weltz, M.A.; Risse, L.M.; Pierson, F.B.; Zhang, X.C.; Laflen, J.M.; Simanton, J.R. Soil Component. USDA-Water Erosion Prediction Project. Hillslope Profile and Watershed Model Documentation; NSERL Report; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1995; p. 10. [Google Scholar]
- Elliot, W.J.; Laflen, J.M.; Kohl, K.D. Effect of Soil Properties on Soil Erodibility, Paper No. 892150; ASAE: St. Joseph, MI, USA, 1989. [Google Scholar]
- Zhang, S.; Xiong, D.H.; Liang, X.; Dan, Y.; Zhang, B.J.; Wu, H. Influence of dry-wet cycling on soil properties. Chin. J. Soil Sci. 2017, 48, 762–768. (In Chinese) [Google Scholar]
- He, Y.R.; Shen, N.; Wang, Y.Q.; Tang, J.L.; Gao, T.Y.; Yang, Y.X.; Fan, Y.Q. Mechanism of formation of soil crevice and soil erosion in intensively-eroded area in Yuanmou dry and hot valley of Jinshajiang River. J. Soil Water Conserv. 2008, 22, 33–36. (In Chinese) [Google Scholar]
- Liu, J.; Zhang, X.J.; Zhou, Z. Quantifying effects of root systems of planted and natural vegetation on rill detachment and erodibility of a loessial soil. Soil Tillage Res. 2019, 195, 104420. [Google Scholar] [CrossRef]
- Parhizkar, M.; Shabanpour, M.; Lucas-Borja, M.E.; Zema, D.A. Hydromulch roots reduce rill detachment capacity by overland flow in deforested hillslopes. J. Hydrol. 2021, 598, 126272. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.H.; Shi, Y.Y.; Li, Z.W.; Shan, Z.J. Effects of near soil surface characteristics on the soil detachment process in a chronological series of vegetation restoration. Soil Sci. Soc. Am. J. 2015, 79, 1213–1222. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, G.H. Temporal variation in soil erodibility indices for five typical land use types on the Loess Plateau of China. Geoderma 2021, 381, 114695. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, J.B.; Cao, L.X.; Zheng, X.B.; Ren, P.; Zhao, S.L. The influence of tillage practices on soil detachment in the red soil region of China. Catena 2018, 165, 272–278. [Google Scholar] [CrossRef]
- Knapen, A.; Poesen, A.; Baets, S.D. Seasonal variations in soil erosion resistance during concentrated flow for a loess-derived soil under two contrasting tillage practices. Soil Tillage Res. 2007, 94, 425–440. [Google Scholar] [CrossRef]
- Wilson, G.V.; Zhang, T.; Wells, R.R.; Liu, B. Consolidation effects on relationships among soil erosion properties and soil physical quality indicators. Soil Tillage Res. 2020, 198, 104550. [Google Scholar] [CrossRef]
- Nachtergaele, J.; Poesen, J. Spatial and temporal variations in resistance of loess-derived soils to ephemeral gully erosion. Eur. J. Soil Sci. 2002, 53, 449–463. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China (MWR). National Construction Plan for Comprehensive Control of Soil and Water Loss of Sloping Farmland in the 13th Five Years Plan. Available online: http://www.mwr.gov.cn/xw/slyw/201703/t20170314_880871.html (accessed on 5 March 2024). (In Chinese)
- Liu, D.C.; Zhang, X.Z. Characteristic and ecological conservation of farmland resources in Liangshan Canton. J. Sichuan Agric. Univ. 2004, 22, 49–52. (In Chinese) [Google Scholar]
- Su, Z.A.; Xiong, D.H.; Zhang, J.H.; Zhou, T.; Yang, H.K.; Dong, Y.F.; Fang, H.D.; Shi, L.T. Variation in the vertical zonality of erodibility and critical shear stress of rill erosion in China’s Hengduan Mountains. Earth Surf. Proc. Landf. 2019, 44, 88–97. [Google Scholar] [CrossRef]
- Dai, J.D.; Zhang, Z.H.; Zhang, J.H.; Jia, L.Z.; Wang, Y.; Xu, H.C. Effect of tillage erosion on characteristics of hydraulic erosion in the Dry-hot Valley region. J. Soil Water Conserv. 2021, 35, 116–124+131. (In Chinese) [Google Scholar]
- Xu, H.C.; Jia, L.Z.; Zhang, J.H.; Zhang, Z.H.; Wei, Y.H. Combined effects of tillage direction and slope gradient on soil translocation by hoeing. Catena 2019, 175, 421–429. [Google Scholar] [CrossRef]
- He, M.Y.; Zhong, R.H.; Guo, Q.K.; Duan, X.W.; Shan, Z.J. A meta-analysis on soil erosion in the Dry-hot Valleys based on runoff-plot data. J. Soil Water Conserv. 2023, 37, 291–297+304. (In Chinese) [Google Scholar]
- Ma, H.C.; McConchie, J.A. The dry-hot valleys and forestatin southwest China. J. For. Res. 2001, 12, 35–39. [Google Scholar]
- Soil Survey Office of Sichuan Province. Soil Series of Sichuan; Sichuan Science and Technology Press: Chengdu, China, 1994. (In Chinese) [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- He, T.X.; Chen, B.; Chen, C.S. Assessment of the ecological adaptability of different maize varieties to the areas along Anlin River. Barl. Cereal Sci. 2019, 36, 31–35. (In Chinese) [Google Scholar]
- Cao, L.X.; Zhang, K.L.; Dai, H.L.; Guo, Z.L. Modeling soil detachment on unpaved road surfaces on the loess plateau. Trans. ASABE 2011, 54, 1377–1384. [Google Scholar] [CrossRef]
- Cao, L.X.; Zhang, Y.G.; Lu, H.Z.; Yuan, J.Q.; Zhu, Y.Y.; Liang, Y. Grass hedge effects on controlling soil loss from concentrated flow: A case study in the red soil region of China. Soil Tillage Res. 2015, 148, 97–105. [Google Scholar] [CrossRef]
- Huang, F.Q.; Di, B.F.; Huang, C.M.; Tan, Q. Spatial distribution of soil erosion in Liangshan, Sichuan based on a new equation to estimate the rainfall erosivity. J. Mt. Sci. 2013, 31, 55–64. [Google Scholar]
- Nearing, M.A.; Simanton, J.R.; Norton, L.D.; Bulygin, S.J.; Stone, J. Soil erosion by surface water flow on a stony, semiarid hill-slope. Earth Surf. Process. Landf. 1999, 24, 677–686. [Google Scholar] [CrossRef]
- Foster, G.R.; Meyer, L.D.; Onstad, C.A. An erosion equation derived from basic principles. Trans. ASAE 1977, 20, 678–682. [Google Scholar] [CrossRef]
- Cochrane, T.A.; Flanagan, D.C. Detachment in a simulated rill. Trans. ASAE 1997, 40, 111–119. [Google Scholar] [CrossRef]
- Le Bissonnais, Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 2016, 67, 11–21. [Google Scholar] [CrossRef]
- Shi, Z.H.; Yan, F.L.; Li, L.; Li, Z.X.; Cai, C.F. Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China. Catena 2010, 81, 240–248. [Google Scholar] [CrossRef]
- Gabriel, J.L.; García-González, I.; Quemada, M.; Martin-Lammerding, D.; AlonsoAyuso, M.; Hontoria, C. Cover crops reduce soil resistance to penetration by preserving soil surface water content. Geoderma 2021, 386, 114911. [Google Scholar] [CrossRef]
- Fattet, M.; Fu, Y.; Ghestem, M.; Ma, W.; Foulonneau, M.; Nespoulous, J.; Le Bissonnais, Y.; Stokes, A. Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena 2011, 87, 60–69. [Google Scholar] [CrossRef]
- Liu, J.X.; Chen, L.D.; Wang, B.; Peng, X.Y. Effects of physical crust on soil detachment by overland flow in the Loess Plateau region of China. Int. Soil Water Conserv. Res. 2024, 12, 107–120. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Van, D.W.; Knapen, A.; Debaets, S. Effects of cereal roots on detachment rates of single and double drilled topsoils during concentrated flow. Eur. J. Soil Sci. 2006, 57, 381–391. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, J.B.; Cao, L.X.; Liang, Y. Infiltration and runoff generation under various cropping patterns in the red soil region of China. Land Degrad. Dev. 2016, 27, 83–91. [Google Scholar] [CrossRef]
- Cerdà, A. Aggregate stability against water forces under different climates on agriculture land and scrubland in southern Bolivia. Soil Tillage Res. 2000, 57, 159–166. [Google Scholar] [CrossRef]
- Cosentino, D.; Chenu, C.; Le Bissonnais, Y. Aggregate stability and microbial community dynamics under drying–wetting cycles in a silt loam soil. Soil Biol. Biochem. 2006, 38, 2053–2062. [Google Scholar] [CrossRef]
- Chen, K.L.; Yan, Y.F.; Li, Y.H.; Zhang, H.; Tang, K.M.; Wu, H.Y.; Kang, Y.Y. Temporal variation in soil rill erodibility and critical shear stress during concentrated flow for three different crops. Soil Water Res. 2023, 18, 181–191. [Google Scholar]
- Li, M.; Liu, Q.; Zhang, H.; Wells, R.R.; Wang, L.; Geng, J. Effects of antecedent soil moisture on rill erodibility and critical shear stress. Catena 2022, 216, 106356. [Google Scholar] [CrossRef]
- King, K.W.; Flanagan, D.C.; Norton, L.D.; Laflen, J.M. Rill erodibility parameters influenced by long-term management practices. Trans. ASAE 1995, 38, 159–164. [Google Scholar] [CrossRef]
- Mamo, M.; Bubenzer, G.D. Detachment rate, soil erodibility and soil strength as influenced by living plant roots part II: Field study. Trans. ASAE 2001, 44, 1175–1181. [Google Scholar] [CrossRef]
- West, L.T.; Miller, W.P.; Bruce, R.R.; Langdale, G.W.; Laflen, J.M.; Thomas, A.W. Cropping system and consolidation effects on rill erosion in the Georgia Piedmont. Soil Sci. Soc. Am. J. 1992, 56, 1238–1243. [Google Scholar] [CrossRef]
Treatment | Description | Purpose |
---|---|---|
Continuous fallow | Kept fallowed after the last year’s corn harvest | To reflect the influence of the natural dry–wet cycle on soil detachment and resistance. |
Fallow after tillage | Tilled in May and then fallowed | To reflect the effect of tillage disturbances and the following consolidation effect on the soil resistance dynamics. |
Tillage with corn | Tilled in May and corn was sown | To reflect the effect of tillage disturbances and crop growth on soil resistance dynamics. |
Treatment | MWD a (mm) | Bulk Density (g cm−3) | Organic Matter Content (g kg−1) | Shear Strength (kPa) | |
---|---|---|---|---|---|
May | Continuous fallow | 1.66 | 1.42 a | 19.65 | 35.12 |
Fresh tilled | — | 1.11 b | 20.01 | — | |
August | Continuous fallow | 1.34 b | 1.38 a | 20.92 | 36.08 a |
Fallow after tillage | 1.14 b | 1.33 b | 20.02 | 26.12 b | |
Tillage with corn | 1.81 a | 1.28 b | 23.24 | 25.16 b | |
October | Continuous fallow | 1.30 b | 1.40 | 20.05 | 42.56 b |
Fallow after tillage | 1.42 b | 1.42 | 22.42 | 40.00 b | |
Tillage with corn | 1.98 a | 1.37 | 24.71 | 24.04 a |
Growing Season | Treatment | Shear Stress Equation a | R2 | n | SIG. |
---|---|---|---|---|---|
May | Continuous fallow | Dr = 0.0034 (τ − 6.62) | 0.735 | 9 | 0.003 |
Fresh tilled | Dr = 0.0076 (τ − 6.64) | 0.741 | 9 | 0.003 | |
August | Continuous fallow | Dr = 0.0042 (τ − 6.86) | 0.883 | 9 | 0.000 |
Fallow after tillage | Dr = 0.0068 (τ − 6.47) | 0.762 | 9 | 0.002 | |
Tillage with corn | Dr = 0.0029 (τ − 5.59) | 0.723 | 9 | 0.004 | |
October | Continuous fallow | Dr = 0.0035 (τ − 5.51) | 0.866 | 9 | 0.000 |
Fallow after tillage | Dr = 0.0041 (τ − 5.15) | 0.824 | 9 | 0.001 | |
Tillage with corn | Dr = 0.0018 (τ − 3.94) | 0.678 | 9 | 0.006 |
Parameter | MWD a | Bulk Density | Organic Matter Content | Shear Strength | |
---|---|---|---|---|---|
Soil detachment rate | r | −0.827 * | 0.048 | −0.788 * | 0.166 |
p-Value | 0.022 | 0.919 | 0.035 | 0.723 | |
n | 7 | 7 | 7 | 7 | |
Rill erodibility | r | −0.860 * | −0.104 | −0.629 | 0.057 |
p-Value | 0.013 | 0.825 | 0.130 | 0.904 | |
n | 7 | 7 | 7 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Qin, X.; Kong, Y.; Hou, D.; Ren, P. Temporal Variation in Soil Resistance to Rill Erosion in Cropland of the Dry—Hot Valley Region, Southwest China. Land 2024, 13, 546. https://doi.org/10.3390/land13040546
Wang Y, Qin X, Kong Y, Hou D, Ren P. Temporal Variation in Soil Resistance to Rill Erosion in Cropland of the Dry—Hot Valley Region, Southwest China. Land. 2024; 13(4):546. https://doi.org/10.3390/land13040546
Chicago/Turabian StyleWang, Yi, Xiaosong Qin, Yaping Kong, Dongdong Hou, and Ping Ren. 2024. "Temporal Variation in Soil Resistance to Rill Erosion in Cropland of the Dry—Hot Valley Region, Southwest China" Land 13, no. 4: 546. https://doi.org/10.3390/land13040546
APA StyleWang, Y., Qin, X., Kong, Y., Hou, D., & Ren, P. (2024). Temporal Variation in Soil Resistance to Rill Erosion in Cropland of the Dry—Hot Valley Region, Southwest China. Land, 13(4), 546. https://doi.org/10.3390/land13040546