Comparative Analysis of Land and Air Temperature in Romania since A.D. 1961
Abstract
:1. Introduction
- -
- Climate change over the past decades had produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction [7]; Kelly and Goulden [8] expect that climate change will shift plant distribution as species expand in newly favorable areas and decline in increasingly hostile locations. Their study comparing the year 1977 with the period 2006–2007 showed that southern California’s climate warmed at the surface, the precipitation variability increased, the amount of snow decreased during the 30-year period preceding the second survey, and the average elevation of the dominant plant species rose by ≈65 m between the surveys.
- -
- It is supposed that further temperature rises will have a profound impact on commercial fisheries through continued shifts in distribution and alterations in community interactions [9].
- -
- Baker et al. (2004) showed that corals containing unusual algal symbionts (that are thermally tolerant and commonly associated with high-temperature environments) are much more abundant on reefs that have been severely affected by recent climate change [10].
- -
- Agricultural adaptation must be made in a more coherent manner due to the likelihood of further changes occurring, and there are many potential adaptation options available for marginal change of existing agricultural systems (often variations of existing climate risk management) [11].
- -
- Using four different global datasets, Nita et al. [12] showed that the last decade was the warmest in Europe, USA, southern Africa, northern Siberia and most of Australia, since modern measurements have been introduced.
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, L.; Liu, T.; Cai, H.; Tang, J.; Bu, K.; Yan, F.; Yang, C.; Yang, J.; Zhang, S. Estimating land surface radiation balance using MODIS in northeastern China. J. Appl. Remote Sens. 2014, 8, 083523. [Google Scholar] [CrossRef]
- Haigh, J. Solar Influences on Climate, Granthan Institute for Climate Change, Briefing Paper No. 5. 2011. Available online: https://www.imperial.ac.uk/media/imperial-college/grantham-institute/public/publications/briefing-papers/Solar-Influences-on-Climate---Grantham-BP-5.pdf (accessed on 1 December 2023).
- Shahmohamadi, P.; Che-Ani, A.I.; Maulud, K.N.A.; Tawil, N.M.; Abdullah, N.A.G. The Impact of Anthropogenic Heat on Formation of Urban Heat Island and Energy Consumption Balance. Urban Stud. Res. 2011, 2011, 497524. [Google Scholar] [CrossRef]
- Gruber, A.; Winston, J.S. Earth-Atmosphere Relative Heating Based on NOAA Scanning Radiometer Measurements. Bull. Am. Meteorol. Soc. 1978, 59, 1570–1573. [Google Scholar] [CrossRef]
- Brown, J.H.; Valone, T.J.; Curtin, C.G. Reorganization of an arid ecosystem in response to recent climate change. Proc. Natl. Acad. Sci. USA 1997, 94, 9729–9733. [Google Scholar] [CrossRef]
- Pielke, R.A., Sr. Land Use and Climate Change. Science 2005, 310, 1625–1626. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2003, 427, 145–148. [Google Scholar] [CrossRef]
- Kelly, A.E.; Goulden, M.L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA 2008, 105, 11823–11826. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.L.; Low, P.J.; Ellis, J.R.; Reynolds, J.D. Climate Change and Distribution Shifts in Marine Fishes. Science 2005, 308, 1912–1915. [Google Scholar] [CrossRef]
- Baker, A.C.; Starger, C.J.; McClanahan, T.R.; Glynn, P.W. Coral reefs: Corals’ adaptive response to climate change. Nature 2004, 430, 741. [Google Scholar] [CrossRef]
- Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef]
- Nita, I.A.; Sfîcă, L.; Voiculescu, M.; Birsan, M.V.; Micheu, M.M. Changes in the global mean air temperature over land since 1980. Atmos. Res. 2022, 279, 106392. [Google Scholar] [CrossRef]
- Reshotkin, O.V.; Khudyakov, O.I. Soil temperature response to modern climate change at four sites of different latitude in the European part of Russia. IOP Conf. Ser. Earth Environ. Sci. 2019, 368, 012040. [Google Scholar] [CrossRef]
- Dorau, K.; Bamminger, C.; Koch, D.; Mansfeldt, T. Evidences of soil warming from long-term trends (1951–2018) in North Rhine-Westphalia, Germany. Clim. Chang. 2022, 170, 9. [Google Scholar] [CrossRef]
- Almendra-Martín, L.; Martínez-Fernández, J.; Piles, M.; González-Zamora, Á.; Benito-Verdugo, P.; Gaona, J. Analysis of soil moisture trends in Europe using rank-based and empirical decomposition approaches. Glob. Planet. Chang. 2022, 215, 103868. [Google Scholar] [CrossRef]
- García-García, A.; Cuesta-Valero, F.J.; Miralles, D.G.; Mahecha, M.D.; Quaas, J.; Reichstein, M.; Zscheischler, J.; Peng, J. Soil heat extremes can outpace air temperature extremes. Nat. Clim. Chang. 2023, 13, 1237–1241. [Google Scholar] [CrossRef]
- Busuioc, A.; Birsan, M.-V.; Carbunaru, D.; Baciu, M.; Orzan, A. Changes in the large-scale thermodynamic instability and connection with rain shower frequency over Romania. Verification of the Clausius–Clapeyron scaling. Int. J. Climatol. 2016, 36, 2015–2034. [Google Scholar] [CrossRef]
- Manea, A.; Birsan, M.V.; Tudorache, G.; Cărbunaru, F. Changes in the type of precipitation and associated cloud types in Eastern Romania (1961–2008). Atmos. Res. 2016, 169, 357–365. [Google Scholar] [CrossRef]
- Bălteanu, D.; Chendeş, V.; Sima, M.; Enciu, P. A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphology 2010, 124, 102–112. [Google Scholar] [CrossRef]
- Berbecel, O.; Neacşa, O. Climatologie şi Agrometeorologie (Climatology and Agrometeorology); Editura Didactică şi Pedagogică: Bucharest, Romania, 1966; p. 354. (In Romanian) [Google Scholar]
- Bălteanu, D.; Dumitraşcu, M.; Geacu, S.; Mitrică, B.; Sima, M. (Eds.) România: Natură şi Societate (Romania: Nature and Society); Publishing House of the Romanian Academy: Bucharest, Romania, 2016; 685p. [Google Scholar]
- Croitoru, A.E.; Piticar, A.; Ciupertea, A.F.; Roșca, C.F. Changes in heat waves indices in Romania over the period 1961–2015. Global Planet. Chang. 2016, 146, 109–121. [Google Scholar] [CrossRef]
- Dobrinescu, A.; Busuioc, A.; Birsan, M.-V.; Dumitrescu, A.; Orzan, A. Changes in thermal discomfort indices in Romania and responsible large-scale mechanisms. Clim. Res. 2015, 64, 213–226. [Google Scholar] [CrossRef]
- Papathoma-Koehle, M.; Promper, C.; Bojariu, R.; Cica, R.; Sik, A.; Perge, K.; László, P.; Balázs Czikora, E.; Dumitrescu, A.; Turcus, C.; et al. A common methodology for risk assessment and mapping for Southeast Europe: An application for heat wave risk in Romania. Nat. Hazards 2016, 82 (Suppl. S1), 89–109. [Google Scholar] [CrossRef]
- Dascalu, S.I.; Gothard, M.; Bojariu, R.; Birsan, M.-V.; Cică, R.; Vintilă, R.; Adler, M.-J.; Chendeș, V.; Mic, R.-P. Drought-related variables over the Bârlad basin (Eastern Romania) under climate change scenarios. Catena 2016, 141, 92–99. [Google Scholar] [CrossRef]
- Birsan, M.V. Trends in Monthly Natural Streamflow in Romania and Linkages to Atmospheric Circulation in the North Atlantic. Water Resour. Manag. 2015, 29, 3305–3313. [Google Scholar] [CrossRef]
- Mihai, G.; Bîrsan, M.-V.; Dumitrescu, A.; Alexandru, A.; Mirancea, I.; Ivanov, P.; Stuparu, E.; Teodosiu, M.; Daia, M. Adaptive genetic potential of European silver fir in Romania in the context of climate change. Ann. Forest Res. 2018, 61, 95–108. [Google Scholar] [CrossRef]
- Mihai, G.; Teodosiu, M.; Birsan, M.-V.; Alexandru, A.-M.; Mirancea, I.; Apostol, E.-N.; Garbacea, P.; Ionita, L. Impact of Climate Change and Adaptive Genetic Potential of Norway Spruce at the South–eastern Range of Species Distribution. Agric. Forest Meteorol. 2020, 291, 108040. [Google Scholar] [CrossRef]
- Mihai, G.; Alexandru, A.; Stoica, E.; Birsan, M.-V. Intraspecific Growth Response to Drought of Abies alba in the Southeastern Carpathians. Forests 2021, 12, 387. [Google Scholar] [CrossRef]
- Mihai, G.; Curtu, A.-L.; Alexandru, A.; Nita, I.-A.; Ciocîrlan, E.; Birsan, M.-V. Growth and Adaptive Capacity of Douglas Fir Genetic Resources from Western Romania under Climate Change. Forests 2022, 13, 805. [Google Scholar] [CrossRef]
- Mihai, G.; Alexandru, A.; Nita, I.-A.; Birsan, M.-V. Climate Change in the Provenance Regions of Romania over the Last 70 Years: Implications for Forest Management. Forests 2022, 13, 1203. [Google Scholar] [CrossRef]
- Micheu, M.M.; Birsan, M.-V.; Nita, I.-A.; Andrei, M.D.; Nebunu, D.; Acatrinei, C.; Sfica, L.; Szep, R.; Keresztesi, A.; De Arroyabe Hernaez, P.F.; et al. Influence of meteorological variables on people with cardiovascular diseases in Bucharest, Romania (2011–2012). Rom. Rep. Phys. 2021, 73, 707. [Google Scholar]
- Birsan, M.V.; Micu, D.M.; Nita, A.I.; Mateescu, E.; Szép, R.; Keresztesi, Á. Spatio-temporal changes in annual temperature extremes over Romania (1961–2013). Rom. J. Phys. 2019, 64, 816. [Google Scholar]
- Birsan, M.V.; Nita, I.-A.; Craciun, A.; Sfica, L.; Keresztesi, Á.; Szep, R.; Micheu, M. Observed Changes in Mean and Maximum Monthly Wind Speed over Romania since Ad 1961. Rom. Rep. Phys. 2020, 72, 702. [Google Scholar]
- Dumitrescu, A.; Bojariu, R.; Birsan, M.-V.; Marin, L.; Manea, A. Recent climatic changes in Romania from observational data (1961–2013). Theor. Appl. Climatol. 2015, 122, 111–119. [Google Scholar] [CrossRef]
- Necula, C.; Ștefan, S.; Bîrsan, M.-V.; Barbu, N.; Niță, I.-A. Maximum winter temperature over Romania in connection to atmospheric circulation. Theor. Appl. Climatol. 2024, 155, 3861–3870. [Google Scholar] [CrossRef]
- Amihăesei, V.-A.; Micu, D.-M.; Cheval, S.; Dumitrescu, A.; Sfîcă, L.; Bîrsan, M.-V. Changes in snow cover climatology and its elevation dependency over Romania (1961–2020). J. Hydrol. Reg. Stud. 2024, 51, 101637. [Google Scholar] [CrossRef]
- Nita, I.A.; Apostol, L.; Patriche, C.V.; Sfîcă, L.; Bojariu, R.; Birsan, M.V. Frequency of Atmospheric Circulation Types over Romania According to Jenkinson-Collison Method Based on Two Long-Term Reanalysis Datasets. Rom. J. Phys. 2022, 67, 812. [Google Scholar]
- Sfîcă, L.; Beck, C.; Nita, A.-I.; Voiculescu, M.; Birsan, M.-V.; Philipp, A. Cloud cover changes driven by atmospheric circulation in Europe during the last decades. Int. J. Climatol. 2021, 41 (Suppl. S1), E2211–E2230. [Google Scholar] [CrossRef]
- Szép, R.; Mateescu, E.; Niță, I.-A.; Birsan, M.-V.; Bodor, Z.; Keresztesi, Á. Effects of the Eastern Carpathians on atmospheric circulations and precipitation chemistry from 2006 to 2016 at four monitoring stations (Eastern Carpathians, Romania). Atmos. Res. 2018, 214, 311–328. [Google Scholar] [CrossRef]
- Țîmpu, S.; Sfîcă, L.; Dobri, R.-V.; Cazacu, M.M.; Nita, I.-A.; Birsan, M.-V. Tropospheric Dust and Associated Atmospheric Circulations over the Mediterranean Region with Focus on Romania’s Territory. Atmosphere 2020, 11, 349. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Salas, J.D. Analysis and Modeling of Hydrologic Time Series. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1993; Chapter 19; pp. 19.1–19.72. [Google Scholar]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; Techniques of Water Resources Investigations, Book 4, Chapter A3; U.S. Geological Survey: Reston, VA, USA, 2002; 522p.
- Micu, D.M.; Dumitrescu, A.; Cheval, S.; Nita, I.-A.; Birsan, M.-V. Temperature changes and elevation-warming relationships in the Carpathian Mountains. Int. J. Climatol. 2021, 41, 2154–2172. [Google Scholar] [CrossRef]
Climatological Normal | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1961–1990 | −3.2 | −1.2 | 3.1 | 9.1 | 14.3 | 17.6 | 19.2 | 18.6 | 14.8 | 9.3 | 4 | −0.7 |
1971–2000 | −2.4 | −1 | 3.3 | 8.9 | 14.3 | 17.7 | 19.3 | 18.8 | 14.5 | 9.1 | 3.3 | −0.7 |
1981–2010 | −2.1 | −1 | 3.5 | 9.3 | 14.9 | 18.3 | 20.2 | 19.7 | 14.8 | 9.6 | 3.8 | −0.8 |
Climatological Normal | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1961–1990 | 36.4 | 34.9 | 35.1 | 51.3 | 75.4 | 89.4 | 78.5 | 64 | 45.6 | 37.5 | 43.7 | 42.4 |
1971–2000 | 31.2 | 29.2 | 32.8 | 52.8 | 72.9 | 88.7 | 77.8 | 63.5 | 51.6 | 42.3 | 40.2 | 39.4 |
1981–2010 | 33.6 | 31.6 | 38.3 | 51.3 | 66.5 | 84.5 | 77.9 | 64.7 | 55 | 43.5 | 41.5 | 44.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manea, A.; Birsan, M.-V.; Dima, V.; Havriș, L.-E. Comparative Analysis of Land and Air Temperature in Romania since A.D. 1961. Land 2024, 13, 596. https://doi.org/10.3390/land13050596
Manea A, Birsan M-V, Dima V, Havriș L-E. Comparative Analysis of Land and Air Temperature in Romania since A.D. 1961. Land. 2024; 13(5):596. https://doi.org/10.3390/land13050596
Chicago/Turabian StyleManea, Ancuta, Marius-Victor Birsan, Viorica Dima, and Loredana-Elena Havriș. 2024. "Comparative Analysis of Land and Air Temperature in Romania since A.D. 1961" Land 13, no. 5: 596. https://doi.org/10.3390/land13050596
APA StyleManea, A., Birsan, M. -V., Dima, V., & Havriș, L. -E. (2024). Comparative Analysis of Land and Air Temperature in Romania since A.D. 1961. Land, 13(5), 596. https://doi.org/10.3390/land13050596