Simulation and Attribution Analysis of Spatial–Temporal Variation in Carbon Storage in the Northern Slope Economic Belt of Tianshan Mountains, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
2.2.1. Data Source
2.2.2. Human Activity Data Processing
2.2.3. Carbon Storage Estimation Method
2.2.4. Selection and Correction of Carbon Density
2.2.5. Scenario Simulation
3. Results
3.1. LUCC Dynamics in NSEBTM from 1990 to 2050
3.1.1. LUCC Dynamics from 1990 to 2020
3.1.2. LUCC Dynamics from 2020 to 2050
3.2. Dynamics of Carbon Storage in NSEBTM from 1990 to 2050
3.3. Revisions in Carbon Storage Resulting from LUCC Change
4. Discussion
4.1. Implications of Human Actions on Changes in LUCC
4.2. Impact of Urbanization on Carbon Storage in NSEBTM
4.3. Implications of Different Scenarios of Carbon Storage Results for Future Planning
4.4. Potential Applications and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, W.; Cao, X.; Dong, X.; Zhen, X. The effects of carbon-related news on carbon emissions and carbon transfer from a global perspective: Evidence from an extended STIRPAT model. J. Clean. Prod. 2023, 425, 138974. [Google Scholar] [CrossRef]
- IPCC. AR6 Synthesis Report: Climate Change 2023. In Proceedings of the Sixth Assessment Report during the Panel’s 58th Session, Interlaken, Switzerland, 13–19 March 2023. [Google Scholar]
- Hong, X.; Liu, C.; Zhang, C.; Tian, Y.; Wu, H.; Yin, H.; Zhu, Y.; Cheng, Y. Vast ecosystem disturbance in a warming climate may jeopardize our climate goal of reducing CO2: A case study for megafires in the Australian ‘black summer’. Sci. Total Environ. 2023, 866, 161387. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, H.; Zheng, X.; Deng, W.; Chen, J.; Zhang, S.; Cheng, C. Will climate warming of terrestrial ecosystem contribute to increase soil greenhouse gas fluxes in plot experiment? A global meta-analysis. Sci. Total Environ. 2022, 827, 154114. [Google Scholar] [CrossRef] [PubMed]
- Findell, K.L.; Berg, A.; Gentine, P.; Krasting, J.P.; Lintner, B.R.; Malyshev, S.; Santanello, J.A.; Shevliakova, E. The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun. 2017, 8, 989. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, J.; Wang, P.; Zhou, Z.; Chen, X. The synergy between temporal and spatial effects of human activities on CO2 emissions in Chinese cities. Environ. Impact Asses 2023, 103, 107264. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, C.; Wang, M.; Zhao, L.; Zhao, Y.; Zhang, Q.; Zhang, C. Decoupling analysis to assess the impact of land use patterns on carbon emissions: A case study in the Yellow River Delta efficient eco-economic zone, China. J. Clean. Prod. 2023, 412, 137415. [Google Scholar] [CrossRef]
- Aneseyee, A.B.; Soromessa, T.; Elias, E.; Noszczyk, T.; Hernik, J.; Benti, N.E. Expressing carbon storage in economic terms: The case of the upper Omo Gibe Basin in Ethiopia. Sci. Total Environ. 2022, 808, 152166. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Nishina, K.; Noda, H.M. Impacts of future climate change on the carbon budget of northern high-latitude terrestrial ecosystems: An analysis using ISI-MIP data. Polar Sci. 2016, 10, 346–355. [Google Scholar] [CrossRef]
- Gui, D.; He, H.; Liu, C.; Han, S. Spatio-temporal dynamic evolution of carbon emissions from land use change in Guangdong Province, China, 2000–2020. Ecol. Indic. 2023, 156, 111131. [Google Scholar] [CrossRef]
- Houghton, R.A.; Skole, D.L.; Nobre, C.A.; Hackler, J.L.; Lawrence, K.T.; Chomentowski, W.H. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 2000, 403, 301–304. [Google Scholar] [CrossRef]
- Guan, J.; Yao, J.; Li, M.; Zheng, J. Assessing the Spatiotemporal Evolution of Anthropogenic Impacts on Remotely Sensed Vegetation Dynamics in Xinjiang, China. Remote Sens. 2021, 13, 4651. [Google Scholar] [CrossRef]
- He, Y.; Ma, J.; Zhang, C.; Yang, H. Spatio-Temporal Evolution and Prediction of Carbon Storage in Guilin Based on FLUS and InVEST Models. Remote Sens. 2023, 15, 1445. [Google Scholar] [CrossRef]
- Li, G.; Cheng, G.; Liu, G.; Chen, C.; He, Y. Simulating the Land Use and Carbon Storage for Nature-Based Solutions (NbS) under Multi-Scenarios in the Three Gorges Reservoir Area: Integration of Remote Sensing Data and the RF–Markov–CA–InVEST Model. Remote Sens. 2023, 15, 5100. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, Y.; Deng, H.; Yang, C.; Wang, Z.; Gao, M. Response and multi-scenario prediction of carbon storage to land use/cover change in the main urban area of Chongqing, China. Ecol. Indic. 2022, 142, 109205. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Q.; Yu, Q.; Wang, J.; Wang, F.; Qiu, S.; Ai, M.; Zhao, J. Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China. Ecol. Indic. 2023, 151, 110345. [Google Scholar] [CrossRef]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Li, J.; Shao, Z. Spatiotemporal evolution and prediction of carbon stock in Urumqi City based on PLUS and InVEST models. Arid. Zone Res. 2024, 41, 499–508. [Google Scholar]
- Wang, Y.; Zhang, Z.; Chen, X. Land Use Transitions and the Associated Impacts on Carbon Storage in the Poyang Lake Basin, China. Remote Sens. 2023, 15, 2703. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, X.; Li, J.; Feng, X.; Liu, L. Research on the spatio-temporal variation of carbon storage in the Xinjiang Tianshan Mountains based on the InVEST model. Arid. Zone Res. 2022, 39, 1896–1906. [Google Scholar]
- Han, M.; Xu, C.; Long, Y.; Liu, F. Simulation and Prediction of Changes in Carbon Storage and Carbon Source/Sink under Different Land Use Scenarios in Arid Region of Northwest China. Bull. Soil. Water Conserv. 2022, 42, 335–344. [Google Scholar]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Wang, K.; Ma, H.; Fang, C. The relationship evolution between urbanization and urban ecological resilience in the Northern Slope Economic Belt of Tianshan Mountains, China. Sustain. Cities Soc. 2023, 97, 104783. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, S.; Lei, J.; Zhang, X.; Tong, Y.; Duan, Z.; Fan, L. Evolution of economic linkage network of the cities and counties on the northern slope of the Tianshan Mountains, China. Reg. Sustain. 2023, 4, 173–184. [Google Scholar] [CrossRef]
- Jin-yan, L.; Lan-bo, C.; Miao, D.; Ali, A. Water resources allocation model based on ecological priority in the arid region. Environ. Res. 2021, 199, 111201. [Google Scholar] [CrossRef]
- Joshua, J. Economic Development and the Belt and Road Initiative. In The Belt and Road Initiative and the Global Economy: Volume I—Trade and Economic Development; Joshua, J., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 47–81. [Google Scholar]
- Zhu, C.; Fang, C.; Zhang, L. Analysis of the coupling coordinated development of the Population–Water–Ecology–Economy system in urban agglomerations and obstacle factors discrimination: A case study of the Tianshan North Slope Urban Agglomeration, China. Sustain. Cities Soc. 2023, 90, 104359. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, C.; Zhu, C.; Gao, Q. Ecosystem service trade-offs and identification of eco-optimal regions in urban agglomerations in arid regions of China. J. Clean. Prod. 2022, 373, 133823. [Google Scholar] [CrossRef]
- Zhu, C.; Fang, C.; Zhang, L.; Wang, X. Simulating the interrelationships among population, water, ecology, and economy in urban agglomerations based on a system dynamics approach. J. Clean. Prod. 2024, 439, 140813. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Lu, X.; Li, J.; Duan, P.; Zhang, B.; Li, C. Correction of nighttimelight images of DMSP/OLS in China. Bull. Surv. Mapp. 2019, 7, 127–131. [Google Scholar] [CrossRef]
- Guan, J.; Dong, L.; Wang, Y.; Wang, X. DMSP-OLS and NPP-VIIRS night light image correction in China. Bull. Surv. Mapp. 2021, 9, 1–8. [Google Scholar]
- Maanan, M.; Maanan, M.; Karim, M.; Ait Kacem, H.; Ajrhough, S.; Rueff, H.; Snoussi, M.; Rhinane, H. Modelling the potential impacts of land use/cover change on terrestrial carbon stocks in north-west Morocco. Int. J. Sust. Dev. World 2019, 26, 560–570. [Google Scholar] [CrossRef]
- Alam, S.A.; Starr, M.; Clark, B.J.F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study. J. Arid. Environ. 2013, 89, 67–76. [Google Scholar] [CrossRef]
- Giardina, C.P.; Ryan, M.G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 2000, 404, 858–861. [Google Scholar] [CrossRef]
- Chen, G.; Yang, Y.; Liu, L.; Li, X.; Zhao, C.; Yuan, Y. Research Review on Total Below ground C arbon Allocation in Forest Ecosystems. J. Subtrop. Resour. Environ. 2007, 2, 34–42. [Google Scholar]
- Han, C.; Zheng, J.; Wang, Z.; Yu, W. Spatio-temporal variation and multi-scenario simulation of carbon storage in terrestrial ecosystems in Turpan Hami Basin based on PLUS-InVEST model. Arid. Land. Geogr. 2024, 47, 260–269. [Google Scholar]
- Li, P.; Chen, J.; Li, Y.; Wu, W. Using the InVEST-PLUS Model to Predict and Analyze the Pattern of Ecosystem Carbon storage in Liaoning Province, China. Remote Sens. 2023, 15, 4050. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zeng, S.; Liu, X.; Tian, J.; Zeng, J. Spatial–Temporal Pattern Analysis and Development Forecasting of Carbon Stock Based on Land Use Change Simulation: A Case Study of the Xiamen–Zhangzhou–Quanzhou Urban Agglomeration, China. Land 2024, 13, 476. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, X.; Sun, D. A Coupled InVEST-PLUS Model for the Spatiotemporal Evolution of Ecosystem Carbon Storage and Multi-Scenario Prediction Analysis. Land 2024, 13, 509. [Google Scholar] [CrossRef]
- Zong, S.; Hu, Y.; Zhang, Y.; Wang, W. Identification of land use conflicts in China’s coastal zones: From the perspective of ecological security. Ocean. Coast. Manag. 2021, 213, 105841. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, L.; Luo, Q.; Chen, H.; Yang, Y. Spatial optimization of cotton cultivation in Xinjiang: A climate change perspective. Int. J. Appl. Earth Obs. 2023, 124, 103523. [Google Scholar] [CrossRef]
- Zhang, D.; Zuo, X.; Zang, C. Assessment of future potential carbon sequestration and water consumption in the construction area of the Three-North Shelterbelt Programme in China. Agr. For. Meteorol. 2021, 303, 108377. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Q.; Liu, N.; Sun, Y.; Guo, H.; Song, X. The impact of LUCC on the spatial pattern of ecological network during urbanization: A case study of Jinan City. Ecol. Indic. 2023, 155, 111004. [Google Scholar] [CrossRef]
- Pan, Z.; Gao, G.; Fu, B.; Liu, S.; Wang, J.; He, J.; Liu, D. Exploring the historical and future spatial interaction relationship between urbanization and ecosystem services in the Yangtze River Basin, China. J. Clean. Prod. 2023, 428, 139401. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, Y.; Tang, Z.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Model. 2017, 345, 30–40. [Google Scholar] [CrossRef]
- Mishra, A.; Humpenöder, F.; Churkina, G.; Reyer, C.P.O.; Beier, F.; Bodirsky, B.L.; Schellnhuber, H.J.; Lotze-Campen, H.; Popp, A. Land use change and carbon emissions of a transformation to timber cities. Nat. Commun. 2022, 13, 4889. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, X.; Zhang, S.; Gao, H.; Huang, J.; Sun, S.; Song, X.; Fry, E.; Tian, H.; Xia, X. Urban development enhances soil organic carbon storage through increasing urban vegetation. J. Environ. Manag. 2022, 312, 114922. [Google Scholar] [CrossRef]
- Wang, F.; Dong, M.; Ren, J.; Luo, S.; Zhao, H.; Liu, J. The impact of urban spatial structure on air pollution: Empirical evidence from China. Environ. Dev. Sustain. 2022, 24, 5531–5550. [Google Scholar] [CrossRef]
- Zhang, R.; Liang, T.; Guo, J.; Xie, H.; Feng, Q.; Aimaiti, Y. Grassland dynamics in response to climate change and human activities in Xinjiang from 2000 to 2014. Sci. Rep. 2018, 8, 2888. [Google Scholar] [CrossRef]
- Amar, G.; Mamtimin, A.; Wang, Y.; Wang, Y.; Gao, J.; Yang, F.; Song, M.; Aihaiti, A.; Wen, C.; Liu, J. Factors controlling and variations of CO2 fluxes during the growing season in Gurbantunggut Desert. Ecol. Indic. 2023, 154, 110708. [Google Scholar] [CrossRef]
- Yang, F.; Huang, J.; Zheng, X.; Huo, W.; Zhou, C.; Wang, Y.; Han, D.; Gao, J.; Ali, M.; Yang, X.; et al. Evaluation of carbon sink in the Taklimakan Desert based on correction of abnormal negative CO2 flux of IRGASON. Sci. Total Environ. 2022, 838, 155988. [Google Scholar] [CrossRef] [PubMed]
- Magnano, A.L.; Meglioli, P.A.; Vazquez Novoa, E.; Chillo, V.; Alvarez, J.A.; Alvarez, L.M.; Sartor, C.E.; Vázquez, D.P.; Vega Riveros, C.C.; Villagra, P.E. Relationships between land-use intensity, woody species diversity, and carbon storage in an arid woodland ecosystem. Forest Ecol. Manag. 2023, 529, 120747. [Google Scholar] [CrossRef]
- Liu, D.; Gong, H.; Li, J.; Liu, Z.; Wang, L.; Ouyang, Z.; Xu, L.; Wang, T. Continuous crop rotation increases soil organic carbon stocks in river deltas: A 40-year field evidence. Sci. Total Environ. 2024, 906, 167749. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Xu, Y.; Wu, P.; Xue, T.; Wang, J.; Shi, Y.; Zhang, Y.; Song, Y.; Wang, P. Regional responses to global climate change: Progress and prospects for trend, causes, and projection of climatic warming-wetting in Northwest China. Adv. Earth Sci. 2023, 38, 551–562. [Google Scholar]
Type | Data | Resolution | Data Source |
---|---|---|---|
Provincial administrative boundaries | Research area boundaries | Vector data | Chinese Academy of Sciences Resource and Environmental Science and Data Center |
LUCC | CLCD | 30 m | Wuhan University |
Socioeconomic factors | GDP | 1 km | Chinese Academy of Sciences Resource and Environmental Science and Data Center |
Population | 1 km | ||
Distance from the city | Vector data | OpenStreetMap | |
Distance from the road | Vector data | ||
Distance from the water | Vector data | ||
Distance from the train station | Vector data | ||
Nighttime lighting data | 1 km | National Oceanic and Atmospheric Administration of the United States | |
Climate and environmental factors | Annual precipitation | 1 km | Chinese Academy of Sciences Resource and Environment Science and Data Center |
Annual temperature | 1 km | ||
Soil type | 1 km | ||
NDVI | 1 km | National Aeronautics and Space Administration | |
Topographic data | DEM | 30 m | Geospatial data cloud |
Slope | 30 m | Based on ArcGIS. | |
Aspect | 30 m |
LUCC | Cabove | Cbelow | Csoil | Cdead | References |
---|---|---|---|---|---|
Farmland | 4.18 | 3.38 | 80.22 | 0 | [20,21,39] |
Forest | 44.51 | 3.37 | 137.12 | 0 | [20,21,39] |
Grassland | 8.49 | 2.61 | 73.93 | 0 | [20,21,39] |
Water | 0.92 | 0 | 0 | 0 | [20,21,39] |
Built-up | 3.26 | 2.09 | 0 | 0 | [20,21,39] |
Unused | 0.65 | 1.25 | 15.99 | 0 | [20,21,39] |
Land Use Scenarios | Land Use Types | Farmland | Forest | Grassland | Water | Built-up | Unused |
---|---|---|---|---|---|---|---|
Natural growth scenario | Farmland | 1 | 0 | 1 | 0 | 0 | 0 |
Forest | 1 | 1 | 0 | 0 | 0 | 0 | |
Grassland | 1 | 1 | 1 | 1 | 1 | 1 | |
Water | 1 | 0 | 1 | 1 | 1 | 1 | |
Built-up | 0 | 0 | 0 | 1 | 1 | 0 | |
Unused | 1 | 0 | 1 | 1 | 1 | 1 | |
Ecological protection scenario | Farmland | 1 | 1 | 1 | 1 | 0 | 1 |
Forest | 0 | 1 | 1 | 0 | 0 | 0 | |
Grassland | 0 | 1 | 1 | 0 | 0 | 0 | |
Water | 1 | 1 | 1 | 1 | 0 | 1 | |
Built-up | 1 | 1 | 1 | 1 | 1 | 1 | |
Unused | 1 | 1 | 1 | 1 | 0 | 1 | |
Economic development scenario | Farmland | 1 | 0 | 0 | 0 | 1 | 0 |
Forest | 0 | 1 | 0 | 0 | 1 | 0 | |
Grassland | 0 | 0 | 1 | 0 | 1 | 0 | |
Water | 0 | 0 | 0 | 1 | 1 | 1 | |
Built-up | 0 | 0 | 0 | 0 | 1 | 0 | |
Unused | 0 | 0 | 0 | 0 | 1 | 1 |
Land Use Type | Farmland | Forest | Grassland | Water | Built-up | Unused |
---|---|---|---|---|---|---|
Neighborhood Weight | 0.27 | 0.03 | 0.39 | 0.11 | 0.06 | 0.14 |
LUCC | Carbon Storage/t | ||||||
---|---|---|---|---|---|---|---|
1990 | 2000 | 2010 | 2020 | 2050 S1 | 2050 S2 | 2050 S3 | |
Farmland | 165.33 | 183.65 | 239.69 | 252.75 | 299.49 | 232.93 | 239.50 |
Forest | 61.20 | 81.20 | 93.55 | 102.64 | 120.07 | 120.95 | 104.47 |
Grassland | 995.93 | 976.99 | 945.24 | 893.58 | 834.65 | 914.10 | 883.87 |
Water | 0.41 | 0.41 | 0.46 | 0.44 | 0.35 | 0.36 | 0.36 |
Built-up | 0.18 | 0.43 | 0.80 | 1.17 | 1.62 | 0.75 | 2.75 |
Unused | 450.40 | 447.95 | 439.94 | 446.35 | 448.09 | 447.52 | 447.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Wang, Y.; Mamtimin, A.; Liu, Y.; Zhang, L.; Gao, J.; Aihaiti, A.; Wen, C.; Song, M.; Yang, F.; et al. Simulation and Attribution Analysis of Spatial–Temporal Variation in Carbon Storage in the Northern Slope Economic Belt of Tianshan Mountains, China. Land 2024, 13, 608. https://doi.org/10.3390/land13050608
Zhang K, Wang Y, Mamtimin A, Liu Y, Zhang L, Gao J, Aihaiti A, Wen C, Song M, Yang F, et al. Simulation and Attribution Analysis of Spatial–Temporal Variation in Carbon Storage in the Northern Slope Economic Belt of Tianshan Mountains, China. Land. 2024; 13(5):608. https://doi.org/10.3390/land13050608
Chicago/Turabian StyleZhang, Kun, Yu Wang, Ali Mamtimin, Yongqiang Liu, Lifang Zhang, Jiacheng Gao, Ailiyaer Aihaiti, Cong Wen, Meiqi Song, Fan Yang, and et al. 2024. "Simulation and Attribution Analysis of Spatial–Temporal Variation in Carbon Storage in the Northern Slope Economic Belt of Tianshan Mountains, China" Land 13, no. 5: 608. https://doi.org/10.3390/land13050608
APA StyleZhang, K., Wang, Y., Mamtimin, A., Liu, Y., Zhang, L., Gao, J., Aihaiti, A., Wen, C., Song, M., Yang, F., Zhou, C., & Huo, W. (2024). Simulation and Attribution Analysis of Spatial–Temporal Variation in Carbon Storage in the Northern Slope Economic Belt of Tianshan Mountains, China. Land, 13(5), 608. https://doi.org/10.3390/land13050608