Evolution Model and Driving Mechanism of Urban Logistics Land: Evidence from the Yangtze River Delta
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.2.1. Logistics Land and Logistics Park
1.2.2. Logistics Facility and Spatial Planning
1.3. Research Gap and Question
2. Materials and Methods
2.1. Study Area
2.2. Research Method
2.2.1. Boston Consulting Group (BCG) Matrix
2.2.2. Global Moran’s Index and Cold-Hotspot Analysis
2.2.3. Geographically Weighted Regression
2.3. Indicator System and Data Sources
2.3.1. Dependent Variable
2.3.2. Independent Variable
2.3.3. Data Sources
3. Results
3.1. Distribution Pattern
3.1.1. Scale of Urban Logistics Land
3.1.2. Proportion of Urban Logistics Land
3.2. Spatiotemporal Evolution Model
3.2.1. Scale of Urban Logistics Land
3.2.2. Proportion of Urban Logistics Land
3.3. Driving Mechanism Analysis
3.3.1. Descriptive Statistics Analysis of Regression Coefficients
3.3.2. Spatial Pattern of Factor Effects
4. Discussion
4.1. Evolution Model: Supply vs. Demand and Growth vs. Inventory
4.2. Driving Mechanism: Scale vs. Proportion and Power vs. Resistance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Samadhiya, A.; Agrawal, R.; Kumar, A.; Garza-Reyes, J.A. Regenerating the logistics industry through the Physical Internet Paradigm: A systematic literature review and future research orchestration. Comput. Ind. Eng. 2023, 178, 109150. [Google Scholar] [CrossRef]
- Aljohani, K.; Thompson, R.G. Impacts of logistics sprawl on the urban environment and logistics: Taxonomy and review of literature. J. Transp. Geogr. 2016, 57, 255–263. [Google Scholar] [CrossRef]
- Carlucci, F.; Cira, A.; Ioppolo, G.; Massari, S.; Siviero, L. Logistics and land use planning: An application of the ACIT indicator in European port regions. Land Use Policy 2018, 75, 60–69. [Google Scholar] [CrossRef]
- Montolio, C.A.; Coch, G.S.; Buxeda, A.I. Renewable Land: Planning the Evolution of Logistic Areas. Ace-Archit. City Environ. 2021, 16, 9042. [Google Scholar] [CrossRef]
- Zhang, S.N. Urban Planning Based on the Optimization Layout of Urban Logistics Network. Open House Int. 2016, 41, 124–129. [Google Scholar] [CrossRef]
- Baker, D.; Briant, S.; Hajirasouli, A.; Yigitcanlar, T.; Paz, A.; Bhaskar, A.; Corry, P.; Whelan, K.; Donehue, P.; Parsons, H. Urban freight logistics and land use planning education: Trends and gaps through the lens of literature. Transp. Res. Interdiscip. Perspect. 2023, 17, 100731. [Google Scholar] [CrossRef]
- Hesse, M. Logistics: Situating flows in a spatial context. Geogr. Compass 2020, 14, e12492. [Google Scholar] [CrossRef]
- Ye, C.; Huang, Z.X.; Wei, J.; Wang, X.Y. Spatial-Temporal Evolutionary Characteristics and Its Driving Mechanisms of China’s Logistics Industry Efficiency under Low Carbon Constraints. Pol. J. Environ. Stud. 2023, 31, 5405–5417. [Google Scholar] [CrossRef]
- Liang, R.; Xue, Z.Z.; Chong, H.Y. Risk Evaluation of Logistics Park Projects’ Lifecycle during the COVID-19 Pandemic: Failure Mode and Effects Analysis. J. Constr. Eng. Manag. 2023, 149, 04022153. [Google Scholar] [CrossRef]
- China Federation of Logistics and Purchasing, China Logistics Society. Sixth National Logistics Park (Base) Survey Report, December 2022. Available online: https://www.sohu.com/a/622903822_649545 (accessed on 5 October 2023).
- Woudsma, C.; Jensen, J.F.; Kanaroglou, P.; Maoh, H. Logistics land use and the city: A spatial-temporal modeling approach. Transp. Res. E-Log 2008, 44, 277–297. [Google Scholar] [CrossRef]
- Wagner, T. Regional traffic impacts of logistics-related land use. Transp. Policy 2010, 17, 224–229. [Google Scholar] [CrossRef]
- Jakubicek, P.; Woudsma, C. Proximity, land, labor and planning? Logistics industry perspectives on facility location. Transp. Lett. 2011, 3, 161–173. [Google Scholar] [CrossRef]
- Van den Heuvel, F.P.; de Langen, P.W.; van Donselaar, K.H.; Fransoo, J.C. Regional logistics land allocation policies: Stimulating spatial concentration of logistics firms. Transp. Policy 2013, 30, 275–282. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Zhou, C.; Liu, K.L.; Huang, L.Y.; Li, Z.C. Comparison of the driving mechanism between logistics land use and facilities: A case study from Wuhan metropolitan area. J. Transp. Geogr. 2024, 114, 103779. [Google Scholar] [CrossRef]
- Song, Y.; Yeung, G.; Zhu, D.L.; Zhang, L.X.; Xu, Y.; Zhang, L.Y. Efficiency of logistics land use: The case of Yangtze River Economic Belt in China, 2000–2017. J. Transp. Geogr. 2020, 88, 102851. [Google Scholar] [CrossRef]
- Xu, Y.J.; Jia, H.F.; Zhang, Y.K.; Tian, G.D. Analysis on the location of green logistics park based on heuristic algorithm. Adv. Mech. Eng. 2018, 10, 5. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Zhu, J.X.; Jia, H.F.; Xu, Y.J. A two-stage layout method for functional areas in logistics park. Adv. Mech. Eng. 2019, 11, 1687814019829954. [Google Scholar] [CrossRef]
- Liang, Y.Z. Distribution Route Optimization Method for the Logistics Park Based on Improved Artificial Bee Colony Algorithm. Agro Food Ind. Hi-Tech 2017, 28, 3266–3269. [Google Scholar]
- Zhang, D.Z.; Jiang, J.H.; Li, S.Y.; Li, X.M.; Zhan, Q.W. Optimal Investment Timing and Size of a Logistics Park: A Real Options Perspective. Complexity 2017, 2017, 2813816. [Google Scholar] [CrossRef]
- Xiao, Z.P.; Yuan, Q.; Sun, Y.H.; Sun, X.X. New paradigm of logistics space reorganization: E-commerce, land use, and supply chain management. Transp. Res. Interdiscip. Perspect. 2021, 9, 100300. [Google Scholar] [CrossRef]
- Sakai, T.; Beziat, A.; Heitz, A. Location factors for logistics facilities: Location choice modeling considering activity categories. J. Transp. Geogr. 2020, 85, 102710. [Google Scholar] [CrossRef]
- Tang, X.F.; Zhang, J.; Xu, P. A multi-objective optimization model for sustainable logistics facility location. Transp. Res. Part D-Transp. Environ. 2013, 22, 45–48. [Google Scholar] [CrossRef]
- Xu, F.; Ma, Y.F.; Liu, C.; Ji, Y. Emergency Logistics Facilities Location Dual-Objective Modeling in Uncertain Environments. Sustainability 2024, 16, 1361. [Google Scholar] [CrossRef]
- Sakai, T.; Kawamura, K.; Hyodo, T. Locational dynamics of logistics facilities: Evidence from Tokyo. J. Transp. Geogr. 2015, 46, 10–19. [Google Scholar] [CrossRef]
- Yang, Z.W.; Chen, X.H.; Pan, R.X.; Yuan, Q. Exploring location factors of logistics facilities from a spatiotemporal perspective: A case study from Shanghai. J. Transp. Geogr. 2022, 100, 103318. [Google Scholar] [CrossRef]
- Mokhele, M. The geography of logistics facilities relative to airports: Taxonomy of literature and research agenda. J. Transp. Supply Chain Manag. 2022, 16, a770. [Google Scholar] [CrossRef]
- Hu, K.; Dong, Z.Q. Design of Spatial Structure Change Model of Coastal Port Logistics Economy. J. Coast. Res. 2019, 93, 1080–1086. [Google Scholar] [CrossRef]
- Wang, N.A. Planning and Layout of Intelligent Logistics Park Based on Improved Genetic Algorithm. Mob. Inf. Syst. 2022, 2022, 9182274. [Google Scholar] [CrossRef]
- Onden, I.; Acar, A.Z.; Eldemir, F. Evaluation of the Logistics Center Locations Using a Multi-Criteria Spatial Approach. Transport 2018, 33, 322–334. [Google Scholar] [CrossRef]
- Kang, S. Exploring the contextual factors behind various phases in logistics sprawl: The case of Seoul Metropolitan Area, South Korea. J. Transp. Geogr. 2022, 105, 103476. [Google Scholar] [CrossRef]
- Dablanc, L.; Ogilvie, S.; Goodchild, A. Logistics Sprawl Differential Warehousing Development Patterns in Los Angeles, California, and Seattle, Washington. Transp. Res. Rec. 2014, 2410, 105–112. [Google Scholar] [CrossRef]
- Rivera-Blasco, D.; Ruiz-Sánchez, J. Logistics sprawl in the urban mega-region of Madrid. The space of the supply chain between dispersion and centrality. Ciudad Y Territ.-Estud. Territ.-Cytet 2021, 53, 95–118. [Google Scholar] [CrossRef]
- Opasanon, S.; Lertsanti, P. Impact analysis of logistics facility relocation using the analytic hierarchy process (AHP). Int. Trans. Oper. Res. 2013, 20, 325–339. [Google Scholar] [CrossRef]
- Nefs, M. Applying a logistics cluster typology in spatial planning for circularity: Lessons from a Dutch policy lab. Plan. Pract. Res. 2024. [Google Scholar] [CrossRef]
- Akram, M.W.; Hafeez, M.; Yang, S.C.; Sethi, N.; Mahar, S.; Salahodjaev, R. Asian logistics industry efficiency under low carbon environment: Policy implications for sustainable development. Environ. Sci. Pollut. Res. 2023, 30, 59793–59801. [Google Scholar] [CrossRef] [PubMed]
- Kin, B.; Rai, H.B.; Dablanc, L.; Quak, H. Integrating logistics into urban planning: Best practices from Paris and Rotterdam. Eur. Plan. Stud. 2023, 32, 24–44. [Google Scholar] [CrossRef]
- Kovac, M.; Tadic, S.; Krstic, M.; Veljovic, M. A Methodology for Planning City Logistics Concepts Based on City-Dry Port Micro-Consolidation Centres. Mathematics 2023, 11, 3347. [Google Scholar] [CrossRef]
- Sharma, S.K.; Singh, A.P. Urban logistics stakeholder priority assessment to improve urban planning policy. Int. J. Constr. Manag. 2023, 23, 2869–2878. [Google Scholar] [CrossRef]
- Guo, D.J.; Chen, Y.C.; Yang, J.S.; Tan, Y.H.; Zhang, C.H.; Chen, Z.L. Planning and application of underground logistics systems in new cities and districts in China. Tunn. Undergr. Space Technol. 2021, 113, 103947. [Google Scholar] [CrossRef]
- Fahimnia, B.; Reisi, M.; Paksoy, T.; Özceylan, E. The implications of carbon pricing in Australia: An industrial logistics planning case study. Transp. Res. Part D-Transp. Environ. 2013, 18, 78–85. [Google Scholar] [CrossRef]
- Jalal, A.M.; Toso, E.A.V.; Morabito, R. Integrated approaches for logistics network planning: A systematic literature review. Int. J. Prod. Res. 2021, 60, 5697–5725. [Google Scholar] [CrossRef]
- Xue, Z.J.; Fang, Y.L.; Peng, W.X.; Chen, X.S. A Hybrid Heuristic Algorithm for Maximizing the Resilience of Underground Logistics Network Planning. Appl. Sci. 2023, 13, 12588. [Google Scholar] [CrossRef]
- Ran, L.M.; Ran, S.N.; Meng, C.M. Green city logistics path planning and design based on genetic algorithm. PeerJ Comput. Sci. 2023, 9, e1347. [Google Scholar] [CrossRef] [PubMed]
- Borangiu, T.; Raileanu, S. A smart palletising planning and control model in Logistics 4.0 framework. Int. J. Prod. Res. 2022, 61, 8580–8597. [Google Scholar] [CrossRef]
- Woudsma, C.; Jakubicek, P. Logistics land use patterns in metropolitan Canada. J. Transp. Geogr. 2020, 88, 102381. [Google Scholar] [CrossRef]
- Sakai, T.; Kawamura, K.; Hyodo, T. Evaluation of the spatial pattern of logistics facilities using urban logistics land-use and traffic simulator. J. Transp. Geogr. 2019, 74, 145–160. [Google Scholar] [CrossRef]
- Ding, H.P.; Liu, Y.J.; Zhang, Y.Y.; Wang, S.X.; Guo, Y.X.; Zhou, S.L.; Liu, C.H. Data-driven evaluation and optimization of the sustainable development of the logistics industry: Case study of the Yangtze River Delta in China. Environ. Sci. Pollut. Res. 2022, 29, 68815–68829. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.C.; Persson, L. A Theory of Gazelle Growth: Competition, Venture Capital Finance and Policy. N. Am. J. Econ. Financ. 2020, 50, 101019. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, H.; Zhao, K.; Zhao, S.; Li, W. Dynamics, Risk and Management Performance of Urban Real Estate Inventory in Yangtze River Delta. Buildings 2022, 12, 2140. [Google Scholar] [CrossRef]
- Sakai, T.; Kawamura, K.; Hyodo, T. Logistics facilities for intra and inter-regional shipping: Spatial distributions, location choice factors, and externality. J. Transp. Geogr. 2020, 86, 102783. [Google Scholar] [CrossRef]
- Long, R.Y.; Ouyang, H.Z.; Guo, H.Y. Super-slack-based measuring data envelopment analysis on the spatial-temporal patterns of logistics ecological efficiency using global Malmquist Index model. Environ. Technol. Innov. 2020, 18, 100770. [Google Scholar] [CrossRef]
- Miyamoto, S.; Chacon, A.; Hossain, M.; Martinez, L. Soil salinity of urban turf areas irrigated with saline water I. Spatial variability. Landsc. Urban Plan. 2005, 71, 233–241. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, K.; Zhang, P. Spatial Inequality in China’s Housing Market and the Driving Mechanism. Land 2021, 10, 841. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, K.; Yan, Y.; Zhu, K.; Guan, C. Spatio-Temporal Evolution Characteristics and Influencing Factors of Urban Service-Industry Land in China. Land 2022, 11, 13. [Google Scholar] [CrossRef]
- Li, W.; Wang, M.; Zhao, S. The Spatio-Temporal Dynamics, Driving Mechanism, and Management Strategies for Inter-national Students in China under the Background of the Belt and Road Initiatives. ISPRS Int. J. Geo-Inf. 2023, 12, 405. [Google Scholar] [CrossRef]
- Marquaridt, D.W. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 1970, 12, 591–612. [Google Scholar] [CrossRef]
- Fortheringham, S.; Brunsdon, C.H.; Charlton, M. Quantitative Geography; SAGE Publications: London, UK, 2000. [Google Scholar]
- Li, L.; Zhao, K.; Wang, X.; Zhao, S.; Liu, X.; Li, W. Spatio-Temporal Evolution and Driving Mechanism of Urbanization in Small Cities: Case Study from Guangxi. Land 2022, 11, 415. [Google Scholar] [CrossRef]
- Li, W.; Zhang, P.; Zhao, K.; Chen, H.; Zhao, S. The Evolution Model of and Factors Influencing Digital Villages: Evidence from Guangxi, China. Agriculture 2023, 13, 659. [Google Scholar] [CrossRef]
- Li, W.; Weng, L.; Zhao, K.; Zhao, S.; Zhang, P. Research on the Evaluation of Real Estate Inventory Management in China. Land 2021, 10, 1283. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for Classification of Urban Land Use and Planning Standards of Development Land (GB 50137-2011); China Construction Industry Press: Beijing, China, 2011; Urban Land Classification and Planning Construction Land Use Standards. [Google Scholar]
- Yan, B.R.; Yao, B.; Zhang, C.J. Industrial structure, high-quality development of logistics industry and the economy. PLoS ONE 2023, 18, e0285229. [Google Scholar] [CrossRef]
- Jing, N.; Cai, W.X. Analysis on the spatial distribution of logistics industry in the developed East Coast Area in China. Ann. Reg. Sci. 2010, 45, 331–350. [Google Scholar] [CrossRef]
- Fried, T.; Goodchild, A. E-commerce and logistics sprawl: A spatial exploration of last-mile logistics platforms. J. Transp. Geogr. 2023, 112, 103692. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Kong, J.; Zhang, Y.; Wang, H.; Deng, S.H. Case Study of Stratification, Spatial Agglomeration, and Unequal Logistics Industry Development on Western Cities in China. J. Urban Plan. Dev. 2022, 148, 05022009. [Google Scholar] [CrossRef]
- Hardjomidjojo, H.; Yusianto, R.; Marimin, M.; Suprihatin, S. Sustainable Agro-industry Logistics Solutions using Spatial Analysis. Oper. Supply Chain Manag.-Int. J. 2022, 15, 41–55. [Google Scholar] [CrossRef]
- Cho, H.; Lee, J. Does transportation size matter for competitiveness in the logistics industry? The cases of maritime and air transportation. Asian J. Shipp. Logist. 2020, 36, 202–211. [Google Scholar] [CrossRef]
- Wang, Y.J. Driving Factors and Spatial Temporal Heterogeneity of Low-Carbon Coupling Coordination between the Logistics Industry and Manufacturing Industry. Sustainability 2022, 14, 14134. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. China Urban Construction Statistical Yearbook; China Statistics Press: Beijing, China, 2000–2020. Available online: https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/tjxx/jstjnj/index.html (accessed on 3 November 2023).
- Urban Social and Economic Survey Department of the National Bureau of Statistics. China City Statistical Yearbook; China Statistics Press: Beijing, China, 2001–2021; Available online: https://data.cnki.net/yearBook/single?id=N2023070131 (accessed on 3 November 2023).
- Shanghai Municipal Bureau of Statistics; Shanghai Survey Team of the National Bureau of Statistics. Shanghai Statistical Yearbook; China Statistics Press: Beijing, China, 2001–2021. Available online: https://tjj.sh.gov.cn/tjnj/index.html (accessed on 5 November 2023).
- Jiangsu Municipal Bureau of Statistics; Jiangsu Survey Team of the National Bureau of Statistics. Jiangsu Statistical Yearbook; China Statistics Press: Beijing, China, 2001–2021. Available online: http://www.jiangsu.gov.cn/col/col84736/ (accessed on 7 November 2023).
- Zhejiang Municipal Bureau of Statistics; Zhejiang Survey Team of the National Bureau of Statistics. Zhejiang Statistical Yearbook; China Statistics Press: Beijing, China, 2001–2021. Available online: http://tjj.zj.gov.cn/col/col1525563/index.html (accessed on 11 November 2023).
- Anhui Municipal Bureau of Statistics; Anhui Survey Team of the National Bureau of Statistics. Anhui Statistical Yearbook; China Statistics Press: Beijing, China, 2001–2021. Available online: http://tjj.ah.gov.cn/ssah/qwfbjd/tjnj/index.html (accessed on 15 November 2023).
- Li, Y.; Wei, Z.G. Regional Logistics Demand Prediction: A Long Short-Term Memory Network Method. Sustainability 2022, 14, 13478. [Google Scholar] [CrossRef]
- Qiu, R.; Liang, Y.T.; Liao, Q.; Jiao, Y.Q.; Wang, B.H.; Guo, Y.; Zhang, H.R. Primary logistics planning of oil products under the imbalance of supply and demand. Pet. Sci. 2022, 19, 1915–1925. [Google Scholar] [CrossRef]
- Baghestani, A.; Abbasi, M.; Rastegar, S.; Mamdoohi, A.R.; Afaghpoor, A.; Saffarzadeh, M. Logistics Village Location with Capacity Planning Problem, a MILP Model Approach. Sustainability 2023, 15, 4633. [Google Scholar] [CrossRef]
- Wang, N.; Li, Y.Z.; Dai, C.J. Decision-Making Approach of Two-Sided Matching of Supply and Demand of Logistics Service Based on the Uncertain Preference Ordinal. Math. Probl. Eng. 2020, 2020, 5480842. [Google Scholar] [CrossRef]
- Fan, Y.Q.; Zhang, Y.Q.; Song, Z.G.; Liu, H. Coordination Mechanism of Port Logistics Resources Integration from the Perspective of Supply-Demand Relationship. J. Coast. Res. 2020, 103, 619–623. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, X.; Chen, H.; Zhao, S. Matching Relationship between Urban Service Industry Land Expansion and Economy Growth in China. Land 2023, 12, 1139. [Google Scholar] [CrossRef]
- McLeod, S.; Browne, M. Planning for the sustainability of freight and logistics: Strategic guiding principles for regional policy. Eur. J. Transp. Infrastruct. Res. 2023, 3, 30–47. [Google Scholar] [CrossRef]
- Tian, X.B.; Zhang, M.R. Research on Spatial Correlations and Influencing Factors of Logistics Industry Development Level. Sustainability 2019, 11, 1356. [Google Scholar] [CrossRef]
- Xu, X.X.; Wang, Y.H. Study on Spatial Spillover Effects of Logistics Industry Development for Economic Growth in the YRD City Cluster Based on Spatial Durbin Model. Int. J. Environ. Res. Public Health 2018, 14, 1508. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.J.; Su, X.; Liu, J.M. The Spatial Spillover Effect of Logistics and Manufacturing Co-Agglomeration on Regional Economic Resilience: Evidence from China’s Provincial Panel Data. Sustainability 2023, 15, 8208. [Google Scholar] [CrossRef]
- Aoyama, Y.; Ratick, S.J.; Schwarz, G. Modeling the impact of business-to-business electronic commerce on the organization of the logistics industry. Geogr. Anal. 2005, 37, 46–68. [Google Scholar] [CrossRef]
Framework | Indicator | Abbreviation | Variable |
---|---|---|---|
State | Scale of Urban Logistics Land | SULL | Dependent |
Proportion of Urban Logistics Land | PULL | ||
Pressure | Gross Domestic Product | GDP | Independent |
Economic Density | ED | ||
GDP Per Capita | GDPPC | ||
Population Density | PD | ||
Response | Highway Length | HL | |
Road Network Density | RND | ||
Industrial Land Ratio | ILR | ||
Commercial Land Ratio | CLR |
Indicator | Mean | Min | Upper-Quarter | Median | Lower-Quarter | Max |
---|---|---|---|---|---|---|
GDP | 2.89 | −12.89 | 1.21 | 4.01 | 5.72 | 12.36 |
ED | 1.99 | −3.28 | −0.01 | 1.09 | 2.86 | 16.66 |
PCGDP | −1.39 | −10.42 | −4.98 | −1.42 | 1.29 | 9.08 |
PD | −1.13 | −20.61 | −1.78 | −0.97 | 0.39 | 4.31 |
HL | 0.58 | −4.68 | −1.33 | −0.40 | 1.71 | 8.55 |
RND | 0.06 | −6.49 | −1.63 | 0.22 | 1.39 | 5.40 |
ILR | −0.07 | −4.26 | −1.93 | −0.41 | 1.21 | 6.12 |
CLR | −0.85 | −9.42 | −1.76 | −0.26 | 1.19 | 3.88 |
Indicator | Mean | Min | Upper-Quarter | Median | Lower-Quarter | Max |
---|---|---|---|---|---|---|
GDP | −1.04 | −14.89 | −0.99 | −0.13 | 0.32 | 3.09 |
ED | 1.22 | −0.74 | −0.24 | 0.54 | 1.59 | 10.87 |
PCGDP | 0.48 | −5.82 | −0.50 | 0.38 | 1.96 | 6.06 |
PD | 0.39 | −5.41 | −0.09 | 0.20 | 0.66 | 4.22 |
HL | 0.03 | −1.72 | −0.69 | −0.42 | 0.07 | 4.47 |
RND | 0.55 | −1.73 | −0.26 | 0.20 | 0.74 | 4.98 |
ILR | 0.34 | −2.85 | −0.42 | 0.16 | 0.74 | 4.71 |
CLR | −0.49 | −3.09 | −1.19 | −0.20 | 0.33 | 1.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Zhu, Y.; Zhu, H.; Zhao, S.; Zhang, J. Evolution Model and Driving Mechanism of Urban Logistics Land: Evidence from the Yangtze River Delta. Land 2024, 13, 616. https://doi.org/10.3390/land13050616
Cao J, Zhu Y, Zhu H, Zhao S, Zhang J. Evolution Model and Driving Mechanism of Urban Logistics Land: Evidence from the Yangtze River Delta. Land. 2024; 13(5):616. https://doi.org/10.3390/land13050616
Chicago/Turabian StyleCao, Jun, Yangfei Zhu, Haohao Zhu, Sidong Zhao, and Junxue Zhang. 2024. "Evolution Model and Driving Mechanism of Urban Logistics Land: Evidence from the Yangtze River Delta" Land 13, no. 5: 616. https://doi.org/10.3390/land13050616
APA StyleCao, J., Zhu, Y., Zhu, H., Zhao, S., & Zhang, J. (2024). Evolution Model and Driving Mechanism of Urban Logistics Land: Evidence from the Yangtze River Delta. Land, 13(5), 616. https://doi.org/10.3390/land13050616