Spatial Spillover Effects of Urbanization on Ecosystem Services under Altitude Gradient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Variable Selection and Data Sources
2.2.1. Variable Selection
2.2.2. Data Sources
2.2.3. Ecosystem Services Assessment
- Water conservation services
- 2.
- Water and soil conservation services
- 3.
- Windproof sand fixation service
- 4.
- Biodiversity conservation services
2.2.4. Statistical Method
- Correlation analysis
- (1)
- Global Moran’s I
- (2)
- Local Moran’s I
- 2.
- Regression model
- (1)
- Ordinary least square (OLS) model
- (2)
- Spatial weight matrix
- (3)
- Spatial econometric model
3. Results
3.1. Temporal and Spatial Characteristics of Urbanization Level
3.2. Temporal and Spatial Characteristics of Ecosystem Services
3.3. Autocorrelation Analysis of Ecosystem Services
3.4. Regression Result of Ordinary Least Square (OLS) Method
3.5. Estimation of Spatial Econometric Model
3.5.1. Selective Testing of Spatial Econometric Models
3.5.2. Regression Results of Spatial Durbin Model
3.5.3. Direct Effect and Indirect Effect Analysis
4. Discussion
4.1. Comparative Analysis of the Results
4.1.1. Impacts of Urbanization on Ecosystem Services in Plain Areas
4.1.2. Impacts of Urbanization on Ecosystem Services in Shallow and Deep Mountain Areas
4.2. Discussion of Models
4.3. Future Construction Proposal
5. Conclusions
- (1)
- From 2000 to 2020, with the continuous expansion of urbanization in the study area, the level of ecosystem service decreased at first, then increased slightly with the development of various ecological and environmental protection projects. The results are consistent with Hypothesis 1. On the whole, the ecosystem services in the study area have obvious regional characteristics and aggregation characteristics. Therefore, we suggest the rational promotion of the urbanization process according to natural conditions, population size, social and economic development stage, etc.; the promotion of the sound development of the ecosystem; the strengthening of the driving and radiation effects of the ecosystem service function on the environmental improvement of surrounding areas; and the formation of a sound linkage between regions;
- (2)
- In the context of the interaction of land resource endowment with the physical geographical environment and population migration, we can see great differences in the scale, level, and structure of urbanization at different elevations. In plain areas, the indirect effects of economic, population, and land urbanization have a greater negative impact on ecosystem services than the direct effects. In shallow and deep mountainous areas, economic urbanization and land urbanization show negative direct effects, with the deep mountainous areas being more affected. Social urbanization has a negative indirect influence on shallow mountainous areas and a positive indirect influence on deep mountainous areas. Overall, land urbanization is the most important factor inhibiting local ecosystem services in all regions, reflecting the consistency of our regression results with those of most other studies;
- (3)
- The impacts of different forms of urbanization on ecosystem services vary significantly at different altitudes, highlighting the complexity of urbanization construction’s effects on the ecological environment. The discussion of regression models in this paper supports the rationality of using the spatial Durbin model for estimation and demonstrates the importance of altitude factors in exploring urbanization’s impacts on ecosystem services. This underscores the necessity and scientific approach to regional coordination and sound regional development.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McPhearson, T.; Pickett, S.T.A.; Grimm, N.B.; Niemelä, J.; Alberti, M.; Elmqvist, T.; Weber, C.; Haase, D.; Breuste, J.; Qureshi, S. Advancing Urban Ecology toward a Science of Cities. BioScience 2016, 66, 198–212. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Buccolieri, R.; Santino, A.; Aarrevaara, E. Planning of Urban Green Spaces: An Ecological Perspective on Human Benefits. Land 2021, 10, 105. [Google Scholar] [CrossRef]
- Wu, J. Urban ecology and sustainability: The state-of-the-science and future directions. Landsc. Urban Plan. 2014, 125, 209–221. [Google Scholar] [CrossRef]
- Wu, J.G.; Xiang, W.N.; Zhao, J.Z. Urban ecology in China: Historical developments and future directions. Landsc. Urban Plan. 2014, 125, 222–233. [Google Scholar] [CrossRef]
- Li, Z.; Li, X. How to Study Hillside Development and Protection in the Context of Urbanization: A Review of the English Literature Concerning Research Methods and Technology. Chin. Landsc. Archit. 2016, 32, 62–67. [Google Scholar]
- Li, Z. Towards Co-governance: Regulating Hillside Development in Metropolitan Los Angeles. Landsc. Archit. 2018, 25, 23–29. [Google Scholar] [CrossRef]
- Russo, E.; Agnello, T.; Zhang, W.; Hu, Y. Urban Hillside Protection: A Case Study of Cincinnati, Ohio, United States of America. Landsc. Archit. 2018, 25, 10–22. [Google Scholar] [CrossRef]
- Wang, X. Urbanization of Low Mountain Area. Landsc. Archit. 2018, 25, 4–5. [Google Scholar]
- Wang, J.; Chen, Y.; Liao, W.; He, G.; Tett, S.F.B.; Yan, Z.; Zhai, P.; Feng, J.; Ma, W.; Huang, C.; et al. Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities. Nat. Clim. Change 2021, 11, 1084–1089. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, E. An evaluation of the ecological and environmental security on China’s terrestrial ecosystems. Sci. Rep. 2017, 7, 811. [Google Scholar] [CrossRef] [PubMed]
- Cumming, G.S.; Buerkert, A.; Hoffmann, E.M.; Schlecht, E.; von Cramon-Taubadel, S.; Tscharntke, T. Implications of agricultural transitions and urbanization for ecosystem services. Nature 2014, 515, 50–57. [Google Scholar] [CrossRef]
- Wu, K.; Wang, D.; Lu, H. The Spatial Spillover Effect of Multi-Dimensional Urbanization on the Value of Ecosystem Services. Soc. Sci. Shenzhen 2023, 6, 79–88. [Google Scholar]
- Peng, J.; Tian, L.; Liu, Y.; Zhao, M.; Hu, Y.; Wu, J. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 2017, 607, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Yang, J.; Sun, D.; Li, T.; Liu, Y. Spatial Responses of Ecosystem Service Value during the Development of Urban Agglomerations. Land 2022, 11, 165. [Google Scholar] [CrossRef]
- Ji, J.; Wang, S.; Zhou, Y.; Liu, W.; Wang, L. Studying the Eco-Environmental Quality Variations of Jing-Jin-Ji Urban Agglomeration and Its Driving Factors in Different Ecosystem Service Regions From 2001 to 2015. IEEE Access 2020, 8, 154940–154952. [Google Scholar] [CrossRef]
- Wang, K.; Gao, J.; Liu, C.; Zhang, Y.; Wang, C. Understanding the effects of socio-ecological factors on trade-offs and synergies among ecosystem services to support urban sustainable management: A case study of Beijing, China. Sustain. Cities Soc. 2024, 100, 105024. [Google Scholar] [CrossRef]
- He, Y.; Wang, W.; Chen, Y.; Yan, H. Assessing spatio-temporal patterns and driving force of ecosystem service value in the main urban area of Guangzhou. Sci. Rep. 2021, 11, 3027. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhou, D.; Jiang, G. Conflict or Coordination? Multiscale assessment of the spatio-temporal coupling relationship between urbanization and ecosystem services: The case of the Jingjinji Region, China. Ecol. Indic. 2020, 117, 106543. [Google Scholar] [CrossRef]
- Tang, X.; Hao, X.; Liu, Y.; Pan, Y.; Li, H. Driving factors and spatial heterogeneity analysis of ecosystem services value. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2016, 47, 336–342. [Google Scholar]
- Li, J.; Yang, D.; Yang, F.; Zhang, Y.; Wang, H. Influence of landscape pattern on ecosystem service supply-demand mismatch in Tianjin within the context of urbanization. Acta Ecol. Sin. 2024, 1–16. [Google Scholar] [CrossRef]
- Li, J.; Xie, B.; Dong, H.; Zhou, K.; Zhang, X. The impact of urbanization on ecosystem services: Both time and space are important to identify driving forces. J. Environ. Manag. 2023, 347, 119161. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Chen, W.; Hou, Y.; Li, Y. Spatial-temporal risk assessment of urbanization impacts on ecosystem services based on pressure-status—Response framework. Sci. Rep. 2019, 9, 16806. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Wang, J. Spatially heterogeneity response of ecosystem services supply and demand to urbanization in China. Ecol. Eng. 2021, 169, 106303. [Google Scholar] [CrossRef]
- Wu, A.; Zhao, Y.; Shen, H.; Qin, Y.; Liu, X. Spatio-Temporal Pattern Evolution of Ecosystem Service Supply and Demand in Beijing-Tianjin-Hebei Region. J. Ecol. Rural. Environ. 2018, 34, 968–975. [Google Scholar]
- Zhang, L.; Peng, W.; Zhang, J. Assessment of Land Ecological Security from 2000 to 2020 in the Chengdu Plain Region of China. Land 2023, 12, 1448. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa–Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Fang, C.; Mu, X.; Chen, D. Coupling and coordination analysis of urbanization and ecosystem service value in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2022, 137, 108782. [Google Scholar]
- Xie, H.; Zhu, Z.; Li, Z. Spatial Divergence Analysis of Ecosystem Service Value in Hilly Mountainous Areas: A Case Study of Ruijin City. Land 2022, 11, 768. [Google Scholar] [CrossRef]
- Schirpke, U.; Tappeiner, U.; Tasser, E. A transnational perspective of global and regional ecosystem service flows from and to mountain regions. Sci. Rep. 2019, 9, 6678. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yu, W.; Qian, Y.; Han, L.; Pickett, S.T.A.; Wang, J.; Li, W.; Ouyang, Z. Beyond city expansion: Multi-scale environmental impacts of urban megaregion formation in China. Natl. Sci. Rev. 2021, 9, nwab107. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Wang, S.; Li, D.; Qiao, Q. Ecological Baseline for Beijing’s Urban Sprawl: Basic Ecosystem Services and Their Security Patterns. City Plan. Rev. 2010, 34, 19–24. [Google Scholar]
- Fu, M.; Xiao, N.; Zhao, Z.; Gao, X.; Li, J. Effects of Urbanization on Ecosystem Services in Beijing. Res. Soil Water Conserv. 2016, 23, 235–239. [Google Scholar] [CrossRef]
- Cui, X. Study on Urbanization Governance Transformation in Beijing Metropolitan Area. Doctoral Dissertation, Capital University of Economics and Business, Beijing, China, 2015. [Google Scholar]
- Zeng, J.; Cui, X.; Chen, W.; Yao, X. Impact of urban expansion on the supply-demand balance of ecosystem services: An analysis of prefecture-level cities in China. Environ. Impact Assess. Rev. 2023, 99, 107003. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, P.; Li, G.; Yang, D.; Qin, M. The Response of Composite Ecosystem Services to Urbanization: From the Perspective of Spatial Relevance and Spatial Spillover. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8204–8214. [Google Scholar] [CrossRef]
- Xing, L.; Zhu, Y.; Wang, J. Spatial spillover effects of urbanization on ecosystem services value in Chinese cities. Ecol. Indic. 2021, 121, 107028. [Google Scholar] [CrossRef]
- Wu, Y. Spatial Econometric Model Applied Research. Doctoral Dissertation, Huazhong University of Science and Technology, Wuhan, China, 2017. [Google Scholar]
- Yang, H. Spatial Econometric Model Selection, Estimation and Its Application Based on the Comparison of Classical Methods and MCMC Methods. Doctoral Dissertation, Jiangxi University of Finance & Economics, Nanchang, China, 2015. [Google Scholar]
- Guo, G. The Theoretical and Applied Research of Spatial Econometric Model. Doctoral Dissertation, Huazhong University of Science and Technology, Wuhan, China, 2013. [Google Scholar]
- Ling, Y.; Yang, Y.; Xu, J.; Wang, L.; Wang, Z.; Sun, Y.; Yao, C.; Wang, Y. Impacts of urbanization on the supply and demand relationship of typical ecosystem services in Beijing-Tianjin-Hebei region. Acta Ecol. Sin. 2023, 43, 5289–5304. [Google Scholar]
- Yang, X.; Xie, M.; Zhang, Y.; Liu, D. Influencing Mechanism of Urbanization on Carbon Storage in Urban and Rural Ecological Spaces:A Case Study of Beijing. J. Chin. Urban For. 2023, 21, 98–105+142. [Google Scholar]
- Yang, R.; Hou, W.; Wang, L.; Zhang, S.; Wu, S.; Liu, S.; Zhao, W. Study on the change of green space and ecological environment quality in shallow mountainous areas of Beijing. Environ. Prot. Sci. 2024, 50, 74–80. [Google Scholar] [CrossRef]
- Yu, K.; Xu, L.; You, H.; Hu, Y. The Socio-economical Zoning of the Suburb Hilly Rural Area in Beijing A Two-step Cluster Approach. Urban Dev. Stud. 2010, 17, 66–71. [Google Scholar]
- Beijing Territorial Ecological Restoration Plan (2021–2035). Available online: https://www.beijing.gov.cn/zhengce/zcjd/202206/t20220608_2732616.html (accessed on 12 December 2023).
- Guidelines for Delineating Red Lines for Ecological Protection (2006–2020). Available online: https://www.mee.gov.cn/gkml/hbb/bgt/201707/W020170728397753220005.pdf (accessed on 12 December 2023).
- Zhou, K.; Yang, J.; Yang, T.; Ding, T. Spatial and temporal evolution characteristics and spillover effects of China’s regional carbon emissions. J. Environ. Manag. 2023, 325, 116423. [Google Scholar] [CrossRef]
- Wang, K.; Feng, Y.; Qiu, C.; Wang, X.; Ma, J.; Zhang, Y. Spatial and temporal evolution and drivers of ecosystem services in Beijing, Tianjin and the Beijing-Tianjin Ring urban agglomeration. Acta Ecol. Sin. 2022, 42, 7871–7883. [Google Scholar]
- Wang, J. Study on Urban Ecological Pattern in Mountain and Plain Ecotone. Urban Dev. Stud. 2009, 16, 56–62. [Google Scholar]
- Guo, Q.-t.; Dong, Y.; Feng, B.; Zhang, H. Can green finance development promote total-factor energy efficiency? Empirical evidence from China based on a spatial Durbin model. Energy Policy 2023, 177, 113523. [Google Scholar] [CrossRef]
- Chen, H.; Yi, J.; Chen, A.; Peng, D.; Yang, J. Green technology innovation and CO2 emission in China: Evidence from a spatial-temporal analysis and a nonlinear spatial durbin model. Energy Policy 2023, 172, 113338. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, L.; Li, L.; Xu, F.; Lin, J. Multi-scenario simulation of land use and ecosystem services in Beijing under the background of low-carbon development. Acta Ecol. Sin. 2023, 43, 3571–3581. [Google Scholar]
- Wei, L. Research on the Spatial Spillover Effect of New Urbanization and Industrial Structure Coupling and Coordinated Development on Economic Growth. Doctoral Dissertation, Shanghai Normal University, Shanghai, China, 2019. [Google Scholar]
- Ge, T.; Hao, X.; Li, J. Effects of public participation on environmental governance in China: A spatial Durbin econometric analysis. J. Clean. Prod. 2021, 321, 129042. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Li, Y.; Zhao, S.; Dai, Z.; Duan, M. Construction and optimization of ecological network in rapidly urbanized area:A case study of Daxing District, Beijing. Acta Ecol. Sin. 2023, 43, 8321–8331. [Google Scholar] [CrossRef]
- Liu, X.; Liu, C.; Chen, L.; Pei, X.; Qiao, Q. Gradient effects and ecological zoning of ecosystem services in transition zone of Beijing Bay. Trans. Chin. Soc. Agric. Eng. 2020, 36, 276–285. [Google Scholar]
- Liu, L. Study on Ecological Vulnerability of Typical Mountain Forest in Beijing. Doctoral Dissertation, Beijing Forestry University, Beijing, China, 2011. [Google Scholar]
- Yan, S.; Li, J.; Wang, Y.; Zheng, X. The vulnerability evolution and simulation of town’s social ecosystem in shallow mountain area:A case study of Pinggu District in Beijing. Acta Ecol. Sin. 2022, 42, 6912–6921. [Google Scholar]
- Cai, Y. Research on the Ecological Security Pattern of Beijing’s Shallow Mountain Area Based on the Evaluation of the Supply Side of Ecosystem Service Flow. Master’s Thesis, Beijing Forestry University, Beijing, China, 2021. [Google Scholar]
- Chen, X.; Wang, T.; Li, B. Simulation of the Future Land Use and Ecosystem Services in the Ecological Conservation Area in Northwestern Beijing. J. Northwest For. Univ. 2021, 36, 86–95. [Google Scholar]
- Mu, S. Study on topographic factors, spatial morphology and density of gullies in mountainous areas of Beijing. Rural. Econ. Sci. -Technol. 2016, 27, 27–30. [Google Scholar]
- Weng, C.; Huang, J.; Greenwood-Nimmo, M. The effect of clean energy investment on CO2 emissions: Insights from a Spatial Durbin Model. Energy Econ. 2023, 126, 107000. [Google Scholar] [CrossRef]
- Chen, J.; Wang, S.; Zou, Y. Construction of an ecological security pattern based on ecosystem sensitivity and the importance of ecological services: A case study of the Guanzhong Plain urban agglomeration, China. Ecol. Indic. 2022, 136, 108688. [Google Scholar] [CrossRef]
- Chu, M.; Lu, J.; Sun, D. Influence of Urban Agglomeration Expansion on Fragmentation of Green Space: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration. Land 2022, 11, 275. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L. Telecoupling: Spatial Ecological Wisdom for Performance Evaluation of Green Infrastructure. Chin. Landsc. Archit. 2023, 39, 51–55. [Google Scholar] [CrossRef]
- Ke, M. Study on the Land Potential and Use Pattern in Shallow Mountain Area of Beijing. Master’s Thesis, Tsinghua University, Beijing, China, 2010. [Google Scholar]
Variables | I | E(I) | Sd(I) | z | p-Value |
---|---|---|---|---|---|
2000 ecosystem services | 0.829 | −0.003 | 0.033 | 25.087 | 0.000 *** |
2010 ecosystem services | 0.877 | −0.003 | 0.033 | 26.536 | 0.000 *** |
2020 ecosystem services | 0.850 | −0.003 | 0.033 | 25.720 | 0.000 *** |
Plain | Shallow Mountain Area | Deep Mountain Area | |||||||
---|---|---|---|---|---|---|---|---|---|
Ind | Time | Spatiotemporal | Ind | Time | Spatiotemporal | Ind | Time | Spatiotemporal | |
Main | |||||||||
Economic urbanization | 0.028 | −0.091 *** | 0.031 * | 0.006 | −0.013 | −0.006 | −0.032 | −0.079 *** | −0.069 * |
(1.56) | (−6.11) | (1.71) | (0.83) | (−1.51) | (−0.72) | (−0.90) | (−2.72) | (−1.83) | |
Population urbanization | −0.096 *** | −0.005 | 0.016 | −0.044 * | −0.043 ** | −0.020 | 0.272 *** | 0.039 | 0.143 |
(−2.83) | (−0.17) | (0.22) | (−1.81) | (−2.48) | (−0.78) | (2.79) | (0.63) | (1.41) | |
Social urbanization | 0.002 | −0.003 ** | 0.003 ** | 0.031 | −0.069 * | −0.014 | 0.116 | −0.009 | −0.098 |
(1.41) | (−2.53) | (2.23) | (0.66) | (−1.74) | (−0.14) | (1.22) | (−0.28) | (−0.78) | |
Land urbanization | −0.290 *** | −0.240 *** | −0.370 *** | −0.008 *** | −0.011 *** | −0.008 *** | −0.016 * | −0.016 *** | −0.017 ** |
(−4.93) | (−3.93) | (−4.97) | (−3.26) | (−6.78) | (−3.19) | (−1.98) | (−5.21) | (−2.17) | |
r2 | 0.433 | 0.445 | 0.440 | 0.083 | 0.126 | 0.113 | 0.156 | 0.266 | 0.201 |
Methods | z | p-Value | |
---|---|---|---|
LM Test | LM–spatial lag | 644.848 | 0.000 |
Robust LM–spatial lag | 269.604 | 0.000 | |
LM–spatial error | 454.075 | 0.000 | |
Robust LM–spatial error | 78.831 | 0.000 | |
Wald Test | Wald–spatial lag | 53.42 | 0.000 |
LR–spatial lag | 49.96 | 0.000 | |
Wald–spatial error | 23.52 | 0.009 | |
LR–spatial error | 18.88 | 0.004 | |
Hausman Test | Assumption is nested within both | 4.29 | 1.000 |
Assumption time nested within both | 2423.42 | 0.000 |
Plain | Shallow Mountain Area | Deep Mountain Area | |||||||
---|---|---|---|---|---|---|---|---|---|
Ind | Time | Spatiotemporal | Ind | Time | Spatiotemporal | Ind | Time | Spatiotemporal | |
Main | |||||||||
Economic urbanization | −0.105 *** | −0.150 ** | −0.130 *** | −0.135 * | −0.138 ** | 0.136 * | 0.279 *** | −0.052 *** | 0.272 *** |
(−3.71) | (−2.36) | (−4.49) | (−1.90) | (−2.04) | (1.89) | (4.79) | (−2.77) | (4.76) | |
Population urbanization | 0.006 | −0.052 *** | 0.030 | −0.136 ** | −0.035 | −0.138 ** | −0.030 | −0.001 | −0.088 |
(0.16) | (−2.82) | (0.76) | (−2.34) | (−0.98) | (−2.28) | (−0.61) | (−0.01) | (−1.54) | |
Social urbanization | −0.031 *** | −0.030 | −0.030 *** | 0.004 | −0.056 | 0.005 | −0.012 | −0.022 | 0.060 |
(−2.70) | (−1.30) | (−2.61) | (0.14) | (−1.40) | (0.19) | (−0.19) | (−0.48) | (0.97) | |
Land urbanization | −0.002 *** | −0.007 *** | −0.002 ** | −0.013 *** | −0.013 *** | −0.013 *** | −0.018 *** | −0.010 *** | −0.021 *** |
(−3.16) | (−6.08) | (−2.54) | (−7.76) | (−9.26) | (−7.74) | (−4.32) | (−5.16) | (−5.05) | |
Wx | |||||||||
Economic urbanization | 0.018 | −0.070 *** | −0.113 ** | −0.090 | −0.002 | −0.092 | −0.316 *** | −0.026 | −0.391 *** |
(0.42) | (−5.33) | (−2.00) | (−0.91) | (−0.03) | (−0.83) | (−3.91) | (−0.86) | (−4.35) | |
Population urbanization | −0.019 | −0.003 | 0.105 ** | 0.135 ** | −0.044 | 0.118 | 0.158 ** | −0.021 | 0.079 |
(−0.47) | (−0.13) | (1.97) | (2.15) | (−0.99) | (1.45) | (2.19) | (−0.35) | (0.82) | |
Social urbanization | 0.046 *** | 0.089 *** | 0.051 *** | −0.021 | −0.046 | −0.016 | 0.091 | 0.095 *** | −0.051 |
(2.91) | (2.99) | (3.24) | (−0.67) | (1.04) | (−0.49) | (1.22) | (3.08) | (−0.59) | |
Land urbanization | 0.004 *** | −0. 900 *** | 0.006 *** | 0.011 *** | 0.008 | 0.011 *** | −0.002 | −0.003 | 0.006 |
(4.15) | (−4.98) | (5.47) | (4.65) | (−0.72) | (4.38) | (−0.17) | (−0.45) | (0.45) | |
Spatial rho | 0.880 *** | 0.805 *** | 0.870 *** | 0.752 *** | 0.593 *** | 0.747 *** | 0.742 *** | 0.655 *** | 0.727 *** |
(47.35) | (28.93) | (45.27) | (24.30) | (12.81) | (23.64) | (16.69) | (7.22) | (15.71) | |
r2 | 0.012 | 0.792 | 0.382 | 0.773 | 0.781 | 0.764 | 0.352 | 0.423 | 0.423 |
Economic Urbanization | Population Urbanization | Social Urbanization | Land Urbanization | ||
---|---|---|---|---|---|
Main | |||||
Direct effects | Plain | −0.006 *** | −0.040 * | 0.033 | −0.220 *** |
(−4.95) | (−1.89) | (1.56) | (−3.38) | ||
Shallow mountain area | −0.013 *** | −0.055 | −0.047 | −0.152 ** | |
(−9.01) | (−1.51) | (−1.42) | (−2.24) | ||
Deep mountain area | −0.013 *** | −0.036 | −0.032 | −0.054 ** | |
(−4.28) | (−0.71) | (−1.42) | (−2.34) | ||
Indirect effects | Plain | −0.015 ** | −0.131 * | 0.428 *** | −0.935 ** |
(−2.26) | (−1.90) | (4.25) | (−2.56) | ||
Shallow mountain area | −0.001 | 0.029 | −0.151 ** | −0.186 | |
(−0.08) | (0.54) | (−1.99) | (−1.35) | ||
Deep mountain area | −0.025 | −0.097 | 0.153 * | −0.026 | |
(−1.29) | (−0.64) | (1.76) | (−0.29) | ||
Total effects | Plain | −0.021 ** | −0.171 ** | 0.461 *** | −1.155 *** |
(−2.30) | (−2.49) | (4.37) | (−2.98) | ||
Shallow mountain area | −0.014 *** | −0.026 | −0.198 ** | −0.338 ** | |
(−4.32) | (−0.60) | (−2.44) | (−2.01) | ||
Deep mountain area | −0.038 * | −0.133 | 0.121 | −0.081 | |
(−1.74) | (−0.75) | (1.17) | (−0.75) |
Plain | Shallow Mountain Area | Deep Mountain Area | |||||||
---|---|---|---|---|---|---|---|---|---|
Ind | Time | Spatiotemporal | Ind | Time | Spatiotemporal | Ind | Time | Spatiotemporal | |
Main | |||||||||
Economic urbanization | −0.002 | −0.014 | −0.001 | −0.000 | −0.020 | −0.008 * | −0.003 | −0.006 | −0.010 |
(−1.00) | (−1.62) | (−0.22) | (−0.08) | (−1.39) | (−1.66) | (−0.18) | (−0.26) | (−0.56) | |
Population urbanization | 0.002 | 0.013 | 0.003 | −0.013 | 0.004 | −0.005 | 0.054 | −0.027 | 0.036 |
(0.26) | (1.12) | (0.45) | (−1.04) | (0.24) | (−0.35) | (1.18) | (−0.68) | (0.78) | |
Social urbanization | 0.048 *** | 0.098 *** | 0.087 *** | 0.052 ** | −0.022 | −0.029 | −0.027 | −0.035 * | −0.033 |
(3.37) | (5.70) | (3.05) | (2.12) | (−0.77) | (−0.56) | (−0.62) | (−1.96) | (−0.58) | |
Land urbanization | 0.001 | −0.003 *** | 0.001 ** | −0.007 *** | −0.008 *** | −0.008 *** | −0.008 ** | −0.011 *** | −0.013 *** |
(1.43) | (−3.09) | (2.09) | (−5.47) | (−6.61) | (−5.73) | (−2.26) | (−6.61) | (−3.60) | |
Spatial rho | 0.836 *** | 0.663 *** | 0.833 *** | 0.722 *** | 0.390 *** | 0.718 *** | 0.753 *** | 0.730 *** | 0.755 *** |
(41.45) | (22.19) | (41.08) | (21.69) | (8.42) | (21.34) | (17.59) | (11.37) | (17.17) | |
r2 | 0.743 | 0.761 | 0.119 | 0.632 | 0.757 | 0.719 | 0.224 | 0.084 | 0.232 |
Plain | Shallow Mountain Area | Deep Mountain Area | |||||||
---|---|---|---|---|---|---|---|---|---|
Ind | Time | Spatiotemporal | Ind | Time | Spatiotemporal | Ind | Time | Spatiotemporal | |
Main | |||||||||
Economic urbanization | 0.009 | −0.001 | 0.009 | 0.006 | −0.009 | −0.017 | 0.073 *** | 0.076 | 0.004 |
(1.44) | (−0.05) | (1.33) | (0.72) | (−0.37) | (−1.62) | (2.65) | (1.39) | (0.10) | |
Population urbanization | −0.026 ** | −0.044 ** | −0.026 ** | −0.010 | −0.026 | 0.005 | 0.006 | −0.026 | 0.058 |
(−2.33) | (−2.22) | (−2.32) | (−0.41) | (−0.98) | (0.21) | (0.10) | (−0.50) | (0.97) | |
Social urbanization | −0.016 | 0.015 | −0.016 | −0.014 | −0.068 ** | −0.144 ** | −0.044 | −0.050 *** | −0.097 * |
(−0.49) | (0.69) | (−0.42) | (−0.33) | (−2.07) | (−2.40) | (−0.93) | (−2.88) | (−1.86) | |
Land urbanization | −0.002 *** | −0.007 *** | −0.002 *** | −0.012 *** | −0.014 *** | −0.013 *** | −0.017 *** | −0.012 *** | −0.014 *** |
(−2.98) | (−6.14) | (−2.98) | (−7.24) | (−10.78) | (−7.80) | (−4.22) | (−7.30) | (−3.92) | |
Spatial rho | 0.896 *** | 0.853 *** | 0.895 *** | 0.765 *** | 0.607 *** | 0.757 *** | 0.802 *** | 0.781 *** | 0.777 *** |
(52.80) | (35.65) | (52.11) | (24.17) | (13.02) | (24.77) | (22.84) | (12.94) | (19.95) | |
r2 | 0.758 | 0.771 | 0.758 | 0.397 | 0.761 | 0.643 | 0.063 | 0.181 | 0.094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Wang, K.; Zhang, Y. Spatial Spillover Effects of Urbanization on Ecosystem Services under Altitude Gradient. Land 2024, 13, 622. https://doi.org/10.3390/land13050622
Yang X, Wang K, Zhang Y. Spatial Spillover Effects of Urbanization on Ecosystem Services under Altitude Gradient. Land. 2024; 13(5):622. https://doi.org/10.3390/land13050622
Chicago/Turabian StyleYang, Xueliang, Kaiping Wang, and Yunlu Zhang. 2024. "Spatial Spillover Effects of Urbanization on Ecosystem Services under Altitude Gradient" Land 13, no. 5: 622. https://doi.org/10.3390/land13050622