Linking Land Use and Land Cover Changes and Ecosystem Services’ Potential in Natura 2000 Site “Nordul Gorjului de Vest” (Southwest Romania)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Modeling the Drivers of LULC Change
2.4. LULC Transition Matrix, Gain and Losses of LULC Classes, Net Change
2.5. Annual Rate of Change and Landscape Metrics
2.6. Ecosystem Services’ Evaluation
2.6.1. Mapping Ecosystem Services
2.6.2. Assessing the Effect of LULC Transitions on Ecosystem Service Potential
2.6.3. Ecosystem Service Interactions
3. Results
3.1. LULC Change Dynamics and LULC Net Change (Gain and Loss)
3.2. Landscape Metrics
3.3. LULC Change Matrix
3.4. Drivers of LULC Changes
3.5. Ecosystem Services’ Evaluation
3.6. Ecosystem Services’ Interactions
4. Discussion
5. Limitations of This Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- de Koning, S.; Boezeman, D.; Kaufmann, M.; Visseren-Hamakers, I.J. Transformative change for biodiversity: A review on the contribution of landscape-oriented partnerships. Biol. Conserv. 2023, 277, 109858. [Google Scholar] [CrossRef]
- Yang, H.; Xu, W.; Yu, J.; Xie, X.; Xie, Z.; Lei, X.; Wu, Z.; Ding, Z. Exploring the impact of changing landscape patterns on ecological quality in different cities: A comparative study among three megacities in eastern and western China. Ecol. Infor. 2023, 77, 102255. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H. Spatiotemporal dynamics and evolution relationships between land-use/land cover change and landscape pattern in response to rapid urban sprawl process: A case study in Wuhan, China. Ecol. Eng. 2022, 182, 106716. [Google Scholar] [CrossRef]
- Tasser, E.; Unterthurner, B.; Agreiter, A.; Aukenthaler, H.; Gerstgrasser, L.; Giardino, M.; Tappeiner, U.; Rüdisser, J. Long-term game species dynamic as indicator for changing landscape quality. Sci. Total Environ. 2023, 874, 162375. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.S.; Sawakuchi, H.O.; Ferreira, M.E.; Ballester, M.V.R. Landscape changes in a neotropical forest-savanna ecotone zone in central Brazil: The role of protected areas in the maintenance of native vegetation. J. Environ. Manag. 2017, 187, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Huang, X.; Zhao, Y.; Liu, X.; Zhou, R. The application of landscape character classification for spatial zoning management in mountainous protected areas—A case study of Laoshan national park, China. Heliyon 2023, 9, e13996. [Google Scholar] [CrossRef]
- You, M.; Zou, Z.; Zhao, W.; Zhang, W.; Fu, C. Study on land use and landscape pattern change in the Huaihe River Ecological and economic zone from 2000 to 2020. Heliyon 2023, 9, e13430. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Chen, H.; Cheng, Z.; He, Y.; Zheng, X. Identifying the Impacts of Land Use Landscape Pattern and Climate Changes on Streamflow From Past to Future. J. Environ. Manag. 2023, 345, 118910. [Google Scholar] [CrossRef]
- Schirpke, U.; Wang, G.; Padoa-Schioppa, E. Mountain landscapes: Protected areas, ecosystem services, and future challenges. Ecosys. Serv. 2021, 49, 101302. [Google Scholar] [CrossRef]
- Li, N.; Tang, N.; Wang, Z.; Zhang, L. Response of different waterbird guilds to landscape changes along the yellow sea coast: A case study. Ecol. Indic. 2022, 142, 109298. [Google Scholar] [CrossRef]
- Shakya, B.; Uddin, K.; Yi, S.; Bhatta, L.D.; Lodhi, M.S.; Htun, N.Z.; Yang, Y. Mapping of the ecosystem services flow from three protected areas in the far-eastern Himalayan Landscape: An impetus to regional cooperation. Ecosys. Serv. 2021, 47, 101222. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhou, L.; Wang, T. Assessment of ecosystem services value in Linghekou wetland based on landscape change. Environ. Sustain. Indic. 2022, 15, 100195. [Google Scholar] [CrossRef]
- Mawuko, O.D.; Huang, X.; Fan, M.; Ou, W. Study on the spatial changes in land use and landscape patterns and their effects on ecosystem services in Ghana, West Africa. Environ. Dev. 2023, 49, 100947. [Google Scholar] [CrossRef]
- Roy, S.K.; Alam, M.T.; Mojumder, P.; Mondal, I.; Kafy, A.A.; Dutta, M.; Ferdous, M.N.; Al Mamun, M.A.; Mahtab, S.B. Dynamic assessment and prediction of land use alterations influence on ecosystem service value: A pathway to environmental sustainability. Environ. Sustain. Indic. 2024, 21, 100319. [Google Scholar] [CrossRef]
- Abera, W.; Tamene, L.; Kassawmar, T.; Mulatu, K.; Kassa, H.; Verchot, L.; Quintero, M. Impacts of land use and land cover dynamics on ecosystem services in the Yayo coffee forest biosphere reserve, southwestern Ethiopia. Ecosys. Serv. 2021, 50, 101338. [Google Scholar] [CrossRef]
- Li, M.; Luo, G.; Li, Y.; Qin, Y.; Huang, J.; Liao, J. Effects of landscape patterns and their changes on ecosystem health under different topographic gradients: A case study of the Miaoling Mountains in southern China. Ecol. Indic. 2023, 154, 110796. [Google Scholar] [CrossRef]
- Yang, Y. Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the Taihang Mountains in Hebei Province, China. Ecol. Indic. 2021, 129, 107967. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Wu, W.; Yu, L. Effects of landscape pattern change on ecosystem services and its interactions in karst cities: A case study of Guiyang City in China. Ecol. Indic. 2022, 145, 109646. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, D.; Song, J.; Guo, J.; You, X.; Jiang, Y. Impacts of land use changes on ecosystem services at different elevations in an ecological function area, northern China. Ecol. Indic. 2022, 140, 109003. [Google Scholar] [CrossRef]
- Baude, M.; Meyer, B.C. Changes in landscape structure and ecosystem services since 1850 analyzed using landscape metrics in two German municipalities. Ecol. Indic. 2023, 152, 110365. [Google Scholar] [CrossRef]
- Li, W.; Kang, J.; Wang, Y. Distinguishing the relative contributions of landscape composition and configuration change on ecosystem health from a geospatial perspective. Sci. Total Environ. 2023, 894, 165002. [Google Scholar] [CrossRef] [PubMed]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Impact of landscape pattern changes on hydrological ecosystem services in the Beressa watershed of the Blue Nile Basin in Ethiopia. Sci. Total Environ. 2021, 793, 148559. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, R.O.; Triest, L.; Lopes, P.F. Cultural ecosystem services: Linking landscape and social attributes to ecotourism in protected areas. Ecosyst. Serv. 2021, 50, 101340. [Google Scholar] [CrossRef]
- Kubacka, M.; Żywica, P.; Subirós, J.V.; Bródka, S.; Macias, A. How do the surrounding areas of national parks work in the context of landscape fragmentation? A case study of 159 protected areas selected in 11 EU countries. Land Use Policy 2022, 113, 105910. [Google Scholar] [CrossRef]
- Daněk, J.; Blättler, L.; Leventon, J.; Vačkářová, D. Beyond nature conservation? Perceived benefits and role of the ecosystem services framework in protected landscape areas in the Czech Republic. Ecosyst. Serv. 2023, 59, 101504. [Google Scholar] [CrossRef]
- Stewart, F.E.; Volpe, J.P.; Eaton, B.R.; Hood, G.A.; Vujnovic, D.; Fisher, J.T. Protected areas alone rarely predict mammalian biodiversity across spatial scales in an Albertan working landscape. Biol. Conserv. 2019, 240, 108252. [Google Scholar] [CrossRef]
- Skokanová, H.; Eremiášová, R. Landscape functionality in protected and unprotected areas: Case studies from the Czech Republic. Ecol. Inform. 2013, 14, 71–74. [Google Scholar] [CrossRef]
- Müller, A.; Schneider, U.A.; Jantke, K. Is large good enough? Evaluating and improving representation of ecoregions and habitat types in the European Union’s protected area network Natura 2000. Biol. Conserv. 2018, 227, 292–300. [Google Scholar] [CrossRef]
- Křenová, Z.; Kindlmann, P. Natura 2000–Solution for Eastern Europe or just a good start? The Šumava National Park as a test case. Biol. Conserv. 2015, 186, 268–275. [Google Scholar] [CrossRef]
- Bellón, B.; Henry, D.A.; Renaud, P.C.; Roque, F.D.O.; Santos, C.C.; Melo, I.; Arvor, D.; de Vos, A. Landscape drivers of mammal habitat use and richness in a protected area and its surrounding agricultural lands. Agric. Ecosyst. Environ. 2022, 334, 107989. [Google Scholar] [CrossRef]
- Liu, Y.; Lü, Y.; Fu, B.; Zhang, X. Landscape pattern and ecosystem services are critical for protected areas’ contributions to sustainable development goals at regional scale. Sci. Total Environ. 2023, 881, 163535. [Google Scholar] [CrossRef] [PubMed]
- Rafaai, N.H.; Abdullah, S.A.; Reza, M.I.H. Identifying factors and predicting the future land-use change of protected area in the agricultural landscape of Malaysian peninsula for conservation planning. Remote Sens. Appl. 2020, 18, 100298. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.J.; Jiang, J.; Zhao, Y.G. Direct and indirect effects of agricultural expansion and landscape fragmentation processes on natural habitats. Agric. Ecosyst. Environ. 2023, 353, 108555. [Google Scholar] [CrossRef]
- Pompeu, J.; Assis, T.O.; Ometto, J.P. Landscape changes in the Cerrado: Challenges of land clearing, fragmentation and land tenure for biological conservation. Sci. Total Environ. 2024, 906, 167581. [Google Scholar] [CrossRef]
- Stringer, L.C.; Scrieciu, S.S.; Reed, M.S. Biodiversity, land degradation, and climate change: Participatory planning in Romania. Appl. Geogr. 2009, 29, 77–90. [Google Scholar] [CrossRef]
- Hurdu, B.I.; Coste, A.; Halmagyi, A.; Szatmari, P.M.; Farkas, A.; Pușcaș, M.; Turtureanu, P.D.; Roșca-Casian, O.; Tănase, C.; Oprea, A.; et al. Ex situ conservation of plant diversity in Romania: A synthesis of threatened and endemic taxa. J. Nat. Conserv. 2022, 68, 126211. [Google Scholar] [CrossRef]
- Knorn, J.; Kuemmerle, T.; Radeloff, V.C.; Szabo, A.; Mindrescu, M.; Keeton, W.S.; Abrudan, I.; Griffiths, P.; Gancz, V.; Hostert, P. Forest restitution and protected area effectiveness in post-socialist Romania. Biol. Conserv. 2012, 146, 204–212. [Google Scholar] [CrossRef]
- Pătru-Stupariu, I.; Stupariu, M.S.; Tudor, C.A.; Grădinaru, S.R.; Gavrilidis, A.; Kienast, F.; Hersperger, A.M. Landscape fragmentation in Romania’s Southern Carpathians: Testing a European assessment with local data. Landsc. Urban Plan. 2015, 143, 1–8. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X. Land use/land cover change and statistical modelling of cultivated land change drivers in Nigeria. Reg. Environ. Chang. 2018, 18, 247–259. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Hysa, A.; Löwe, R.; Geist, J. Ecosystem services potential is declining across European capital metropolitan areas. Sci. Rep. 2024, 14, 8903. [Google Scholar] [CrossRef] [PubMed]
- Paná, S.; Marinelli, M.V.; Bonansea, M.; Ferral, A.; Valente, D.; Camacho Valdez, V.; Petrosillo, I. The multiscale nexus among land use-land cover changes and water quality in the Suquía River Basin, a semi-arid region of Argentina. Sci. Rep. 2024, 14, 4670. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.P.; De, K.; Uniyal, V.P.; Sathyakumar, S. Unveiling of climate change-driven decline of suitable habitat for Himalayan bumblebees. Sci. Rep. 2024, 14, 4983. [Google Scholar] [CrossRef] [PubMed]
- Marino, D.; Gaglioppa, P.; Schirpke, U.; Guadagno, R.; Marucci, A.; Palmieri, M.; Pellegrino, D.; Gusmerotti, N. Assessment and governance of Ecosystem Services for improving management effectiveness of Natura 2000 sites. Bio-Based Appl. Econom. 2014, 3, 229–247. [Google Scholar] [CrossRef]
- Gheorghe, L.M. Changes in the land cover inside the NATURA 2000 sites in Oltenia SW Development Region. Lucr. Semin. Geogr. Dimitrie Cantemir 2011, 31, 103–110. [Google Scholar]
- Hosmer, D.W.; Lameshow, S. Applied Logistic Regression, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2000; pp. 143–202. [Google Scholar]
- Franklin, J.; Miller, J.A. Mapping Species Distribution—Spatial Inference and Prediction; Cambridge University Press: Cambridge, UK, 2010; pp. 209–234. [Google Scholar]
- Pampel, F.C. Logistic Regression; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2000; pp. 19–50. [Google Scholar] [CrossRef]
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling? Ecography 2014, 37, 191–203. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org (accessed on 14 July 2023).
- Moulds, S.; Buytaert, W.; Mijic, A. An open and extensible framework for spatially explicit land use change modelling: The lulcc R package. Geosci. Model Dev. 2015, 8, 3215–3229. [Google Scholar] [CrossRef]
- Pontius, R.; Shusas, E.; McEachern, M. Detecting Important Categorical Land Changes While Accounting for Persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Teferi, E.; Bewket, W.; Uhlenbrook, S.; Wenninger, J. Understanding recent land use and land cover dynamics in the source region of the Upper Blue Nile, Ethiopia:Spatially explicit statistical modeling of systematic transitions. Agric. Ecosyst. Environ. 2013, 165, 98–117. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010; pp. 467–481. [Google Scholar]
- Hesselbarth, M.H.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. Landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landsc. Online 2014, 34. [Google Scholar] [CrossRef]
- Syrbe, R.-U.; Schroter, M.; Grunewald, K.; Walz, U.; Burkhard, B. What to map. In Mapping Ecosystem Services; Burkard, B., Maes, J., Eds.; Pensoft Publishers: Sofia, Bulgaria, 2017; pp. 149–156. [Google Scholar]
- Hijmans, R.J.; van Etten, J. Raster: Geographic Analysis and Modeling with Raster Data. R Package Version 2.0-12. 2012. Available online: http://CRAN.R-project.org/package=raster (accessed on 2 January 2024).
- Li, C.; Wu, J. Land use transformation and eco-environmental effects based on production-living-ecological spatial synergy: Evidence from Shaanxi Province, China. Environ. Sci. Pollut. Res. 2022, 29, 41492–41504. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Shu, N.; Wan, Q.; Huang, Q. Land Use Function Transition and Associated Ecosystem Service Value Effects Based on Production–Living–Ecological Space: A Case Study in the Three Gorges Reservoir Area. Land 2023, 12, 391. [Google Scholar] [CrossRef]
- Gomes, L.C.; Bianchi, F.J.; Cardoso, I.M.; Fernandes Filho, E.I.; Schulte, R.P. Land use change drives the spatio-temporal variation of ecosystem services and their interactions along an altitudinal gradient in Brazil. Landsc. Ecol. 2020, 35, 1571–1586. [Google Scholar] [CrossRef]
- Haase, D.; Schwarz, N.; Strohbach, M.; Kroll, F.; Seppelt, R. Synergies, trade-offs, and losses of ecosystem services in urban regions: An integrated multiscale framework applied to the Leipzig-Halle Region, Germany. Ecol. Soc. 2012, 17. Available online: http://www.jstor.org/stable/26269073 (accessed on 5 January 2024). [CrossRef]
- Hagyó, A.; Tóth, G. The impact of environmental policy on soil quality: Organic carbon and phosphorus levels in croplands and grasslands of the European Natura 2000 network. J Environ. Manag. 2018, 223, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Ursu, A.; Stoleriu, C.C.; Ion, C.; Jitariu, V.; Enea, A. Romanian Natura 2000 Network: Evaluation of the Threats and Pressures through the Corine Land Cover Dataset. Remote Sens. 2020, 12, 2075. [Google Scholar] [CrossRef]
- Manolache, S.; Ciocanea, C.M.; Rozylowicz, L.; Nita, A. Natura 2000 in Romania-a decade of governance challenges. Eur. J. Geogr. 2017, 8, 24–34. [Google Scholar]
- Maes, J.; Bruzón, A.G.; Barredo, J.I.; Vallecillo, S.; Vogt, P.; Rivero, I.M.; Santos-Martín, F. Accounting for forest condition in Europe based on an international statistical standard. Nat. Commun. 2023, 14, 3723. [Google Scholar] [CrossRef]
- Duncanson, L.; Liang, M.; Leitold, V.; Armston, J.; Krishna Moorthy, S.M.; Dubayah, R.; Costedoat, S.; Enquist, B.J.; Fatoyinbo, L.; Goetz, S.J.; et al. The effectiveness of global protected areas for climate change mitigation. Nat. Commun. 2023, 14, 2908. [Google Scholar] [CrossRef]
- McNicol, I.M.; Keane, A.; Burgess, N.D.; Bowers, S.J.; Mitchard, E.T.; Ryan, C.M. Protected areas reduce deforestation and degradation and enhance woody growth across African woodlands. Commun. Earth Environ. 2023, 4, 392. [Google Scholar] [CrossRef]
- Rahman, M.F.; Islam, K. Effectiveness of protected areas in reducing deforestation and forest fragmentation in Bangladesh. J. Environ. Manag. 2021, 280, 111711. [Google Scholar] [CrossRef]
- Schwaab, J.; Davin, E.L.; Bebi, P.; Duguay-Tetzlaff, A.; Waser, L.T.; Haeni, M.; Meier, R. Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes. Sci. Rep. 2020, 10, 14153. [Google Scholar] [CrossRef] [PubMed]
- Vorovencii, I. Quantifying landscape pattern and assessing the land cover changes in Piatra Craiului National Park and Bucegi Natural Park, Romania, using satellite imagery and landscape metrics. Environ. Monit. Assess. 2015, 187, 692. [Google Scholar] [CrossRef] [PubMed]
- Malla, R.; Neupane, P.R.; Köhl, M. Climate change impacts: Vegetation shift of broad-leaved and coniferous forests. Trees For. People 2023, 14, 100457. [Google Scholar] [CrossRef]
- Harrison, S.P.; Prentice, I.C.; Barboni, D.; Kohfeld, K.E.; Ni, J.; Sutra, J.-P. Ecophysiological and bioclimatic foundations for a global plant functional classification. J. Veg. Sci. 2010, 21, 300–317. [Google Scholar] [CrossRef]
- Chelli, S.; Simonetti, E.; Wellstein, C.; Campetella, G.; Carnicelli, S.; Andreetta, A.; Giorgini, D.; Puletti, N.; Bartha, S.; Canullo, R. Effects of climate, soil, forest structure and land use on the functional composition of the understorey in Italian forests. J. Veg. Sci. 2019, 30, 1110–1121. [Google Scholar] [CrossRef]
- Bennett, A.C.; Penman, T.D.; Arndt, S.K.; Roxburgh, S.H.; Bennett, L.T. Climate more important than soils for predicting forest biomass at the continental scale. Ecography 2020, 43, 1692–1705. [Google Scholar] [CrossRef]
- Shen, Z.-H.; Fang, J.-Y.; Chiu, C.-A.; Chen, T.-Y. The geographical distribution and differentiation of Chinese beech forests and the association with Quercus. Appl. Veg. Sci. 2015, 18, 23–33. [Google Scholar] [CrossRef]
- When, G.; Ye, X.; Lai, W.; Shi, C.; Huang, Q.; Ye, L.; Zhang, G. Dynamic analysis of mixed forest species under climate change scenarios. Ecol Indic 2021, 133, 108350. [Google Scholar] [CrossRef]
- Burgess-Conforti, J.R.; Moore PAJr Owens, P.R.; Miller, D.M.; Ashworth, A.J.; Hays, P.D.; Evans-White, M.A.; Anderson, K.R. Are soils beneath coniferous tree stands more acidic than soils beneath deciduous tree stands? Environ. Sci. Pollut. Res. 2019, 26, 14920–14929. [Google Scholar] [CrossRef]
- Song, Y.; Sterck, F.; Zhou, X.; Liu, Q.; Kruijt, B.; Poorter, L. Drought resilience of conifer species is driven by leaf lifespan but not by hydraulic traits. New Phytol. 2022, 235, 978–992. [Google Scholar] [CrossRef] [PubMed]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, W07447. [Google Scholar] [CrossRef]
- Petrişor, A.I.; Sirodoev, I.; Ianoş, I. Trends in the national and regional transitional dynamics of land cover and use changes in Romania. Remote Sens. 2020, 12, 230. [Google Scholar] [CrossRef]
- Hinze, J.; Albrecht, A.; Michiels, H.G. Climate-Adapted Potential Vegetation—A European Multiclass Model Estimating the Future Potential of Natural Vegetation. Forests 2023, 14, 239. [Google Scholar] [CrossRef]
- Anderson, E.; Mammides, C. Changes in land-cover within high nature value farmlands inside and outside Natura 2000 sites in Europe: A preliminary assessment. Ambio 2020, 49, 1958–1971. [Google Scholar] [CrossRef] [PubMed]
- Sala, O.E.; Maestre, F.T. Grass–woodland transitions: Determinants and consequences for ecosystem functioning and provisioning of services. J Ecol. 2014, 102, 1357–1362. [Google Scholar] [CrossRef]
- Schils, R.L.M.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; ten Berge, H.; Bertora, C.; et al. Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Korosuo, A.; Pilli, R.; Abad Viñas, R.; Blujdea, V.N.; Colditz, R.R.; Fiorese, G.; Rossi, S.; Vizzarri, M.; Grassi, G. The role of forests in the EU climate policy: Are we on the right track? Carbon Balance Manag. 2023, 18, 15. [Google Scholar] [CrossRef]
- Piaggio, M.; Siikamäki, J. The value of forest water purification ecosystem services in Costa Rica. Sci. Total Environ. 2021, 789, 147952. [Google Scholar] [CrossRef]
Land Cover Type | 1990 | 2000 | 2006 | 2012 | 2018 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % | |
Urban | 21.31 | 2.440 | 21.33 | 2.442 | 13.25 | 1.517 | 13.69 | 1.567 | 13.69 | 1.567 |
Agriculture | 58.69 | 6.721 | 58.60 | 6.711 | 58.19 | 6.664 | 51.33 | 5.878 | 51.33 | 5.878 |
Pastures | 75.78 | 8.679 | 75.74 | 8.674 | 61.88 | 7.087 | 63.28 | 7.247 | 63.28 | 7.247 |
Broad-leaved forest | 411.98 | 47.185 | 419.80 | 48.081 | 435.53 | 49.882 | 438.47 | 50.219 | 437.87 | 50.150 |
Coniferous forest | 22.16 | 2.538 | 22.14 | 2.535 | 21.20 | 2.428 | 21.31 | 2.440 | 21.10 | 2.416 |
Mixed forest | 208.12 | 23.836 | 209.96 | 24.047 | 214.47 | 24.563 | 214.66 | 24.585 | 214.77 | 24.598 |
Natural grasslands | 38.68 | 4.430 | 38.69 | 4.431 | 54.98 | 6.297 | 56.64 | 6.487 | 56.85 | 6.511 |
Transitional woodland shrub | 30.70 | 3.516 | 21.14 | 2.421 | 13.15 | 1.506 | 13.27 | 1.519 | 13.76 | 1.575 |
Sparsely vegetated areas | 0.20 | 0.027 | 0.20 | 0.027 | 0.20 | 0.027 | 0.20 | 0.027 | 0.20 | 0.022 |
Water bodies | 5.49 | 0.628 | 5.51 | 0.631 | 0.26 | 0.029 | 0.26 | 0.031 | 0.26 | 0.036 |
Total area | 873.11 | 100 | 873.11 | 100 | 873.11 | 100 | 873.11 | 100 | 873.11 | 100 |
(1990–2000) | (2000–2006) | (2006–2012) | (2012–2018) | (1990–2018) | |
---|---|---|---|---|---|
Urban | 0.093 (0.009) | −37.880 (−7.935) | 3.320 (0.544) | 0.000 (0.000) | −35.757 (−1.580) |
Agriculture | −0.153 (−0.015) | −0.699 (−0.117) | −11.789 (−2.090) | 0.000 (0.000) | −12.540 (−0.478) |
Pastures | −0.052 (−0.005) | −18.299 (−3.368) | 2.262 (0.372) | 0.000 (0.000) | −16.495 (−0.643) |
Broad-leaved forest | 1.898 (0.188) | 3.747 (0.613) | 0.675 (0.112) | −0.136 (−0.022) | 6.284 (0.217) |
Coniferous forest | −0.090 (−0.009) | −4.245 (−0.723) | 0.518 (0.086) | −0.985 (−0.165) | −4.783 (−0.175) |
Mixed forest | 0.884 (0.088) | 2.148 (0.354) | 0.088 (0.014) | 0.051 (0.008) | 3.195 (0.112) |
Natural grasslands | 0.025 (0.002) | 42.103 (5.856) | 3.019 (0.495) | 0.370 (0.061) | 46.975 (1.375) |
Transitional woodland shrub | −31.140 (−3.730) | −37.795 (−7.912) | 0.912 (0.151) | 3.692 (0.604) | −55.179 (−2.867) |
Sparsely vegetated areas | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) |
Water bodies | 0.364 (0.036) | −95.281 (−50.894) | 0.000 (0.000) | 0.000 (0.000) | −95.264 (−10.892) |
Ur | Ag | Ps | Blf | Cf | Mf | Ng | Tws | Swa | Wb | Total 1990 | Loss | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ur | 21.18 | 0.06 | 0.03 | 0.03 | - | - | - | - | - | 0.01 | 21.31 | 0.13 |
Ag | 0.08 | 58.38 | 0.06 | 0.11 | 0.01 | 0.03 | - | - | - | 0.02 | 58.69 | 0.31 |
Ps | 0.03 | 0.05 | 75.44 | 0.19 | - | 0.03 | - | 0.04 | - | - | 75.78 | 0.34 |
Blf | 0.02 | 0.08 | 0.15 | 411.35 | - | 0.15 | 0.14 | 0.09 | - | - | 411.98 | 0.63 |
Cf | - | - | 0.01 | 0.03 | 22.07 | 0.04 | - | 0.01 | - | - | 22.16 | 0.09 |
Mf | - | 0.01 | 0.03 | 0.12 | 0.02 | 207.22 | 0.06 | 0.66 | - | - | 208.12 | 0.90 |
Ng | 0.02 | - | - | 0.12 | 0.03 | 0.02 | 38.49 | - | - | - | 38.68 | 0.19 |
Tws | - | 0.01 | 0.02 | 7.85 | 0.01 | 2.47 | - | 20.34 | - | - | 30.70 | 10.36 |
Swa | - | - | - | - | - | - | - | - | 0.20 | - | 0.20 | - |
Wb | - | 0.01 | - | - | - | - | - | - | - | 5.48 | 5.49 | 0.01 |
Total 2000 | 21.33 | 58.60 | 75.74 | 419.80 | 22.14 | 209.96 | 38.69 | 21.14 | 0.20 | 5.51 | 873.11 | |
Gain | 0.15 | 0.22 | 0.30 | 8.45 | 0.07 | 2.74 | 0.20 | 0.80 | - | 0.03 | ||
Net change | 0.02 | −0.09 | −0.04 | 7.82 | −0.02 | 1.84 | 0.01 | −9.56 | - | 0.02 |
Ur | Ag | Ps | Blf | Cf | Mf | Ng | Tws | Swa | Wb | Total 2000 | Loss | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ur | 12.22 | 3.93 | 4.96 | 0.22 | - | - | - | - | - | - | 21.33 | 9.11 |
Ag | 0.78 | 39.87 | 7.26 | 7.62 | - | 0.24 | 2.43 | 0.40 | - | - | 58.60 | 18.73 |
Ps | 0.11 | 12.29 | 40.88 | 6.70 | 0.03 | 1.76 | 13.75 | 0.22 | - | - | 75.74 | 34.86 |
Blf | 0.03 | 0.40 | 1.29 | 410.52 | 0.58 | 2.84 | 1.15 | 2.99 | - | - | 419.80 | 9.28 |
Cf | - | - | 0.05 | 0.07 | 19.47 | 1.10 | 0.64 | 0.81 | - | - | 22.14 | 2.67 |
Mf | - | 0.04 | 0.28 | 0.92 | 0.74 | 205.37 | 0.32 | 2.29 | - | - | 209.96 | 4.59 |
Ng | 0.01 | 0.48 | 2.07 | 3.41 | 0.09 | 0.39 | 32.24 | - | - | - | 38.69 | 6.45 |
Tws | - | 0.18 | 0.97 | 6.07 | 0.29 | 2.74 | 4.45 | 6.44 | - | - | 21.14 | 14.70 |
Swa | - | - | - | - | - | - | - | - | 0.20 | - | 0.20 | - |
Wb | 0.10 | 1.00 | 4.12 | - | - | 0.03 | - | - | - | 0.26 | 5.51 | 5.25 |
Total 2006 | 13.25 | 58.19 | 61.88 | 435.53 | 21.20 | 214.47 | 54.98 | 13.15 | 0.20 | 0.26 | 873.11 | |
Gain | 1.03 | 18.32 | 21.00 | 25.01 | 1.73 | 9.10 | 22.74 | 6.71 | - | - | ||
Net change | −8.08 | −0.41 | −13.86 | 15.73 | −0.94 | 4.51 | 16.29 | −7.99 | - | −5.25 |
Ur | Ag | Ps | Blf | Cf | Mf | Ng | Tws | Swa | Wb | Total 2006 | Loss | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ur | 13.12 | 0.05 | 0.08 | - | - | - | - | - | - | - | 13.25 | 0.13 |
Ag | 0.42 | 51.18 | 3.66 | 1.79 | - | - | 1.14 | - | - | - | 58.19 | 7.01 |
Ps | - | - | 59.52 | 1.30 | - | 0.29 | 0.77 | - | - | - | 61.88 | 2.36 |
Blf | - | 0.09 | 0.02 | 435.03 | 0.01 | 0.32 | 0.06 | - | - | - | 435.53 | 0.50 |
Cf | - | - | - | - | 21.06 | - | - | 0.14 | - | - | 21.20 | 0.14 |
Mf | - | - | - | 0.12 | 0.09 | 213.50 | 0.31 | 0.45 | - | - | 214.47 | 0.97 |
Ng | 0.15 | 0.01 | - | 0.21 | 0.15 | 0.10 | 54.36 | - | - | - | 54.98 | 0.62 |
Tws | - | - | - | 0.02 | - | 0.45 | - | 12.68 | - | - | 13.15 | 0.47 |
Swa | - | - | - | - | - | - | - | - | 0.20 | - | 0.20 | - |
Wb | - | - | - | - | - | - | - | - | - | 0.26 | 0.26 | - |
Total 2012 | 13.69 | 51.33 | 63.28 | 438.47 | 21.31 | 214.66 | 56.64 | 13.27 | 0.20 | 0.26 | 873.11 | |
Gain | 0.57 | 0.15 | 3.76 | 3.44 | 0.25 | 1.16 | 2.28 | 0.59 | - | - | ||
Net change | 0.44 | −6.86 | 1.40 | 2.94 | 0.11 | 0.19 | 1.66 | 0.12 | - | - |
Ur | Ag | Ps | Blf | Cf | Mf | Ng | Tws | Swa | Wb | Total 2012 | Loss | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ur | 13.69 | - | - | - | - | - | - | - | - | - | 13.69 | - |
Ag | - | 51.33 | - | - | - | - | - | - | - | - | 51.33 | - |
Ps | - | - | 63.28 | - | - | - | - | - | - | - | 63.28 | - |
Blf | - | - | - | 437.87 | - | 0.11 | - | 0.49 | - | - | 438.47 | 0.60 |
Cf | - | - | - | - | 21.10 | - | 0.21 | - | - | - | 21.31 | 0.21 |
Mf | - | - | - | - | - | 214.66 | - | - | - | - | 214.66 | - |
Ng | - | - | - | - | - | - | 56.64 | - | - | - | 56.64 | - |
Tws | - | - | - | - | - | - | - | 13.27 | - | - | 13.27 | - |
Swa | - | - | - | - | - | - | - | - | 0.20 | - | 0.20 | - |
Wb | - | - | - | - | - | - | - | - | - | 0.26 | 0.26 | - |
Total 2018 | 13.69 | 51.33 | 63.28 | 437.87 | 21.10 | 214.77 | 56.85 | 13.76 | 0.20 | 0.26 | 873.11 | |
Gain | - | - | - | - | - | 0.11 | 0.21 | 0.49 | - | - | ||
Net change | - | - | - | −0.60 | −0.21 | 0.11 | 0.21 | 0.49 | - | - |
Ur | Ag | Ps | Blf | Cf | Mf | Ng | Tws | Swa | Wb | Total 1990 | Loss | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ur | 12.46 | 3.50 | 4.98 | 0.37 | - | - | - | - | - | - | 21.31 | 8.85 |
Ag | 0.92 | 38.09 | 7.62 | 8.50 | - | 0.23 | 2.95 | 0.38 | - | - | 58.69 | 20.60 |
Ps | 0.08 | 7.91 | 42.22 | 8.33 | 0.02 | 1.80 | 15.22 | 0.20 | - | - | 75.78 | 33.56 |
Blf | - | 0.33 | 1.10 | 403.92 | 0.27 | 2.99 | 1.09 | 2.28 | - | - | 411.98 | 8.06 |
Cf | - | - | - | 0.07 | 19.23 | 1.11 | 0.81 | 0.94 | - | - | 22.16 | 2.93 |
Mf | 0.01 | - | 0.15 | 0.85 | 0.67 | 204.22 | 0.46 | 1.76 | - | - | 208.12 | 3.90 |
Ng | 0.16 | 0.49 | 2.10 | 3.28 | 0.24 | 0.41 | 32.00 | - | - | - | 38.68 | 6.68 |
Tws | - | - | 0.98 | 12.55 | 0.67 | 3.98 | 4.32 | 8.20 | - | - | 30.70 | 22.50 |
Swa | - | - | - | - | - | - | - | - | 0.20 | - | 0.20 | - |
Wb | 0.06 | 1.01 | 4.13 | - | - | 0.03 | - | - | - | 0.26 | 5.49 | 5.23 |
Total 2018 | 13.69 | 51.33 | 63.28 | 437.87 | 21.10 | 214.77 | 56.85 | 13.76 | 0.20 | 0.26 | 873.11 | |
Gain | 1.23 | 13.24 | 21.06 | 33.95 | 1.87 | 10.55 | 24.85 | 5.56 | - | - | ||
Net change | −7.62 | -7.36 | −12.50 | 25.89 | −1.06 | 6.65 | 18.17 | −16.94 | - | −5.23 |
Land Cover Type | Area (km2) | |||||
---|---|---|---|---|---|---|
1990 | 2000 | 2006 | 2012 | 2018 | Goodness-of-Fit Test | |
Urban | 21.31 | 21.33 | 13.25 | 13.69 | 13.69 | 4.365, df = 4, p = 0.358 |
Agriculture | 58.69 | 58.60 | 58.19 | 51.33 | 51.33 | 1.109, df = 4, p = 0.892 |
Pastures | 75.78 | 75.74 | 61.88 | 63.28 | 63.28 | 2.977, df = 4, p = 0.561 |
Broad-leaved forest | 411.98 | 419.80 | 435.53 | 438.47 | 437.87 | 1.364, df = 4, p = 0.850 |
Coniferous forest | 22.16 | 22.14 | 21.20 | 21.31 | 21.10 | 0.050, df = 4, p = 0.999 |
Mixed forest | 208.12 | 209.96 | 214.47 | 214.66 | 214.77 | 0.184, df = 4, p = 0.996 |
Natural grasslands | 38.68 | 38.69 | 54.98 | 56.64 | 56.85 | 7.492, df = 4, p = 0.112 |
Transitional woodland shrub | 30.70 | 21.14 | 13.15 | 13.27 | 13.76 | 12.726, df = 4, p = 0.012 |
Sparsely vegetated areas | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0, df = 4, p = 1 |
Water bodies | 5.49 | 5.51 | 0.26 | 0.26 | 0.26 | 13.985, df = 4, p = 0.007 |
Land Cover Type | 1990 | 2000 | 2006 | 2012 | 2018 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NP | AI | ED | NP | AI | ED | NP | AI | ED | NP | AI | ED | NP | AI | ED | |
Urban | 51 | 73.8 | 2.72 | 50 | 73.8 | 2.72 | 62 | 60.3 | 2.51 | 60 | 60.7 | 2.57 | 60 | 60.7 | 2.57 |
Agriculture | 53 | 81.4 | 5.29 | 51 | 81.4 | 5.28 | 52 | 78.5 | 6.00 | 43 | 79.3 | 5.13 | 43 | 79.3 | 5.13 |
Pastures | 45 | 83.1 | 6.20 | 44 | 83.0 | 6.22 | 44 | 81.9 | 5.43 | 46 | 82.3 | 5.43 | 46 | 82.3 | 5.43 |
Broad-leaved forest | 39 | 92.8 | 14.4 | 39 | 93.0 | 14.3 | 50 | 93.5 | 13.9 | 42 | 93.7 | 13.6 | 43 | 93.7 | 13.6 |
Coniferous forest | 18 | 84.3 | 1.78 | 18 | 84.3 | 1.78 | 22 | 83.2 | 1.81 | 19 | 83.2 | 1.82 | 19 | 82.9 | 1.83 |
Mixed forest | 44 | 93.2 | 7.10 | 45 | 93.0 | 7.38 | 48 | 92.8 | 7.73 | 46 | 92.8 | 7.66 | 46 | 92.8 | 7.66 |
Natural grasslands | 40 | 82.5 | 3.34 | 41 | 82.5 | 3.33 | 46 | 81.2 | 5.01 | 46 | 81.2 | 5.15 | 46 | 81.2 | 5.17 |
Transitional woodland shrub | 56 | 76.6 | 3.49 | 47 | 74.3 | 2.64 | 29 | 78.8 | 1.41 | 17 | 79.6 | 1.37 | 28 | 79.6 | 1.42 |
Sparsely vegetated areas | 1 | 93.5 | 0.02 | 1 | 93.5 | 0.02 | 1 | 93.5 | 0.02 | 1 | 93.5 | 0.02 | 1 | 93.5 | 0.02 |
Water bodies | 4 | 86.6 | 0.43 | 4 | 86.6 | 0.43 | 1 | 78.0 | 0.04 | 1 | 78.0 | 0.04 | 1 | 78.0 | 0.04 |
Dependent Variable: | |||
---|---|---|---|
Broad-Leaved Forest Gain | |||
Estimate (β) | Std. Error | Odds Ratio | |
aspect | −0.002 *** | 0.000 | 0.998 |
bio11 | −0.002 ** | 0.001 | 0.998 |
bio14 | 0.023 *** | 0.006 | 1.023 |
bio15 | 0.037 *** | 0.012 | 1.038 |
bio2 | 1.630 *** | 0.151 | 5.103 |
bio9 | −0.001 *** | 0.000 | 0.998 |
nitrogen | −0.003 *** | 0.000 | 0.997 |
pop dens | 0.018 *** | 0.001 | 1.018 |
roads Euclid | 0.000 *** | 0.000 | 1.000 |
slope | −0.013 *** | 0.003 | 0.987 |
soil carbon | −0.002 *** | 0.000 | 0.997 |
soil pH | 0.231 *** | 0.016 | 1.260 |
water Euclid | −0.000 | 0.000 | 0.999 |
Constant | −146.697 *** | 12.563 | 0.000 |
Observations | 30,700 | ||
Log Likelihood | −7014.776 | ||
Akaike Inf. Crit. | 14,057.550 | ||
AUC | 0.791 |
Dependent Variable: | |||
---|---|---|---|
Broad-Leaved Forest Loss | |||
Estimate (β) | Std. Error | Odds Ratio | |
aspect | −0.003 *** | 0.001 | 0.997 |
bio11 | −0.010 *** | 0.002 | 0.990 |
bio14 | 0.097 *** | 0.011 | 1.102 |
bio15 | −0.025 | 0.024 | 0.975 |
bio2 | −0.458 ** | 0.227 | 0.632 |
bio9 | −0.003 *** | 0.001 | 0.997 |
nitrogen | 0.0002 | 0.001 | 1.000 |
pop dens | −0.077 *** | 0.009 | 0.925 |
roads Euclid | 0.0002 *** | 0.00002 | 1.000 |
slope | −0.040 *** | 0.006 | 0.960 |
soil carbon | −0.004 *** | 0.001 | 0.995 |
soil pH | 0.379 *** | 0.030 | 1.461 |
water Euclid | −0.0001 *** | 0.00001 | 0.999 |
Constant | 15.785 | 19.224 | 7,163,980.64 |
Observations | 28,794 | ||
Log Likelihood | −2215.201 | ||
Akaike Inf. Crit. | 4458.403 | ||
AUC | 0.832 |
Dependent Variable: | |||
---|---|---|---|
Mixed Forest Gain | |||
Estimate (β) | Std. Error | Odds Ratio | |
aspect | −0.005 *** | 0.000 | 0.995 |
bio11 | 0.063 *** | 0.007 | 1.065 |
bio14 | 0.145 *** | 0.011 | 1.156 |
bio15 | 0.271 *** | 0.018 | 1.311 |
bio2 | 2.795 | 203.674 | 16.362 |
bio9 | −0.005 *** | 0.001 | 0.995 |
nitrogen | −0.002 | 0.001 | 0.998 |
pop dens | −0.118 *** | 0.018 | 0.888 |
roads Euclid | −0.000 | 0.000 | 1.000 |
slope | −0.063 *** | 0.006 | 0.938 |
soil carbon | −0.003 *** | 0.001 | 0.997 |
soil pH | 0.185 *** | 0.028 | 1.203 |
water Euclid | −0.001 *** | 0.000 | 0.999 |
Constant | −257.654 | 16,701.270 | 1.26558 × 10−112 |
Observations | 14,995 | ||
Log Likelihood | −1926.298 | ||
Akaike Inf. Crit. | 3880.597 | ||
AUC | 0.879 |
Dependent Variable: | |||
---|---|---|---|
Coniferous Forest Loss | |||
Estimate (β) | Std. Error | Odds Ratio | |
aspect | 0.002 *** | 0.001 | 1.002 |
bio11 | −0.032 | 0.039 | 0.968 |
bio14 | −0.025 | 0.047 | 0.975 |
bio15 | 0.125 ** | 0.051 | 1.133 |
bio2 | - | - | - |
bio9 | 0.004 | 0.014 | 1.003 |
nitrogen | 0.007 *** | 0.002 | 1.007 |
pop dens | −0.531 *** | 0.087 | 0.588 |
roads Euclid | 0.000 | 0.000 | 1.000 |
slope | 0.009 | 0.013 | 1.009 |
soil carbon | 0.004 ** | 0.002 | 1.003 |
soil pH | 0.198 *** | 0.060 | 1.219 |
water Euclid | −0.000 | 0.000 | 0.999 |
Constant | −16.026 * | 8.405 | 0.000 |
Observations | 1562 | ||
Log Likelihood | −484.142 | ||
Akaike Inf. Crit. | 994.283 | ||
AUC | 0.838 |
Dependent Variable: | |||
---|---|---|---|
Transitional Woodland Shrub Loss | |||
Estimate (β) | Std. Error | Odds Ratio | |
aspect | −0.005 *** | 0.001 | 0.994 |
bio11 | 0.021 ** | 0.009 | 1.021 |
bio14 | 0.008 | 0.015 | 1.007 |
bio15 | 0.145 *** | 0.030 | 1.155 |
bio2 | 15.412 | 376.007 | 4,935,224.174 |
bio9 | −0.002 * | 0.001 | 0.998 |
nitrogen | −0.005 *** | 0.001 | 0.995 |
pop dens | −0.029 *** | 0.006 | 0.971 |
roads Euclid | −0.0001 ** | 0.00003 | 0.999 |
slope | 0.009 | 0.009 | 1.008 |
soil carbon | 0.003 *** | 0.001 | 1.002 |
soil pH | −0.058 | 0.041 | 0.943 |
water Euclid | 0.000 *** | 0.000 | 1.000 |
Constant | −1267.072 | 30,832.550 | 0.000 |
Observations | 2156 | ||
Log Likelihood | −890.878 | ||
Akaike Inf. Crit. | 1809.755 | ||
AUC | 0.797 |
Dependent Variable: | |||
---|---|---|---|
Natural Grasslands Gain | |||
Estimate (β) | Std. Error | Odds Ratio | |
aspect | 0.004 *** | 0.001 | 1.003 |
bio11 | 0.222 *** | 0.011 | 1.248 |
bio14 | 0.100 *** | 0.020 | 1.104 |
bio15 | 0.079 * | 0.037 | 1.082 |
bio2 | −0.259 | 0.297 | 0.771 |
bio9 | 0.005 *** | 0.001 | 1.005 |
nitrogen | −0.005 *** | 0.002 | 0.994 |
pop dens | 0.022 | 0.019 | 1.021 |
roads Euclid | 0.000 | 0.000 | 1.000 |
slope | 0.092 *** | 0.009 | 1.096 |
soil carbon | −0.001 | 0.001 | 0.998 |
soil pH | −0.457 *** | 0.048 | 0.633 |
water Euclid | −0.000 *** | 0.000 | 0.999 |
Constant | −1.781 | 25.248 | 0.168 |
Observations | 3977 | ||
Log Likelihood | −803.585 | ||
Akaike Inf. Crit. | 1635.171 | ||
AUC | 0.972 |
Ecosystem Service | |||
---|---|---|---|
Local climate regulation | |||
Period | Increase | No change | Decrease |
1990–2000 | 1.270 | 98.561 | 0.169 |
2000–2006 | 7.414 | 89.640 | 2.946 |
2006–2012 | 0.596 | 98.796 | 0.608 |
2012–2018 | - | 99.919 | 0.081 |
1990–2018 | 8.272 | 88.867 | 2.861 |
Regulation of waste | |||
1990–2000 | 1.271 | 98.54 | 0.165 |
2000–2006 | 5.309 | 89.236 | 5.455 |
2006–2012 | 0.815 | 98.888 | 0.297 |
2012–2018 | 0.012 | 99.908 | 0.080 |
1990–2018 | 6.378 | 88.655 | 4.967 |
Water purification | |||
1990–2000 | 1.269 | 98.561 | 0.167 |
2000–2006 | 7.634 | 89.265 | 3.101 |
2006–2012 | 0.718 | 98.671 | 0.611 |
2012–2018 | - | 99.920 | 0.080 |
1990–2018 | 8.533 | 88.444 | 3.023 |
Effect | LULC Conversion Type | Conversion Area (km2) | Contribution Rate to ES | Percentage of Contribution/% |
---|---|---|---|---|
Positive | Urban → Broad-leaved forest | 0.37 | 0.00288 | 1.40050 |
Agriculture → Broad-leaved forest | 8.50 | 0.03970 | 19.30558 | |
Pastures → Broad-leaved forest | 8.33 | 0.05187 | 25.22369 | |
Coniferous forest → Broad-leaved forest | 0.07 | 0.0000 | 0.0000 | |
Mixed forest → Broad-leaved forest | 0.85 | 0.0000 | 0.0000 | |
Natural grasslands → Broad-leaved forest | 3.28 | 0.01532 | 7.44991 | |
Transitional woodland shrub → Broad-leaved forest | 12.55 | 0.05862 | 28.50613 | |
Pastures → Coniferous forest | 0.02 | 0.00009 | 0.04376 | |
Broad-leaved forest → Coniferous forest | 0.27 | 0.00000 | 0.00000 | |
Mixed forest → Coniferous forest | 0.67 | 0.00000 | 0.00000 | |
Natural grasslands → Coniferous forest | 0.24 | 0.00112 | 0.544641 | |
Transitional woodland shrub → Coniferous forest | 0.67 | 0.00312 | 1.51721 | |
Agriculture → Mixed forest | 0.23 | 0.00107 | 0.52032 | |
Pastures → Mixed forest | 1.8 | 0.01121 | 5.45127 | |
Broad-leaved forest → Mixed forest | 2.99 | 0.00000 | 0.00000 | |
Coniferous forest → Mixed forest | 1.11 | 0.00000 | 0.00000 | |
Natural grasslands → Mixed forest | 0.41 | 0.00191 | 0.92884 | |
Transitional woodland shrub → Mixed forest | 3.98 | 0.01859 | 9.04007 | |
Water bodies → Mixed forest | 0.03 | 0.00014 | 0.06808 | |
Total | 0.20564 | 100.00000 | ||
Negative | Broad-leaved forest → Agriculture | 0.33 | −0.00154 | 3.52806 |
Broad-leaved forest → Pastures | 1.10 | −0.00685 | 15.69301 | |
Broad-leaved forest → Natural grasslands | 1.09 | −0.00509 | 11.66094 | |
Broad-leaved forest → Transitional woodland shrub | 2.28 | −0.01064 | 24.37572 | |
Coniferous forest → Natural grasslands | 0.81 | −0.00378 | 8.65979 | |
Coniferous forest → Transitional woodland shrub | 0.94 | −0.00439 | 10.05727 | |
Mixed forest → Urban | 0.01 | −0.00007 | 0.16036 | |
Mixed forest → Pastures | 0.15 | −0.00093 | 2.13058 | |
Mixed forest → Natural grasslands | 0.46 | −0.00214 | 4.90265 | |
Mixed forest → Transitional woodland shrub | 1.76 | −0.00822 | 18.83162 | |
Total | −0.04365 | 100.00000 |
Effect | LULC Conversion Type | Conversion Area (km2) | Contribution Rate to ES | Percentage of Contribution/% |
---|---|---|---|---|
Positive | Agriculture → Mixed forest | 0.23 | 0.00323 | 3.92609 |
Pastures → Mixed forest | 1.8 | 0.01685 | 20.48136 | |
Broad-leaved forest → Mixed forest | 2.99 | 0.01399 | 17.00498 | |
Coniferous forest → Mixed forest | 1.11 | 0.00519 | 6.30849 | |
Natural grasslands → Mixed forest | 0.41 | 0.00575 | 6.98918 | |
Transitional woodland shrub → Mixed forest | 3.98 | 0.03726 | 45.2899 | |
Water bodies → Mixed forest | 0.03 | 0.00000 | 0.00000 | |
Total | 0.08227 | 100.00000 | ||
Negative | Mixed forest → Urban | 0.01 | −0.00023 | 0.39135 |
Mixed forest → Pastures | 0.15 | −0.00070 | 1.19108 | |
Mixed forest → Broad-leaved forest | 0.85 | 0.00000 | 0.00000 | |
Mixed forest → Coniferous forest | 0.67 | 0.00000 | 0.00000 | |
Mixed forest → Natural grasslands | 0.46 | −0.00646 | 10.99200 | |
Mixed forest → Transitional woodland shrub | 1.76 | −0.01647 | 28.02452 | |
Water bodies → Urban | 0.06 | −0.00140 | 2.38216 | |
Water bodies → Agriculture | 1.01 | −0.01418 | 24.12796 | |
Water bodies → Pastures | 4.13 | −0.01933 | 32.89093 | |
Total | −0.05877 | 100.00000 |
Effect | LULC Conversion Type | Conversion Area (km2) | Contribution Rate to ES | Percentage of Contribution/% |
---|---|---|---|---|
Positive | Urban → Broad-leaved forest | 0.37 | 0.00288 | 1.12469 |
Agriculture → Broad-leaved forest | 8.50 | 0.05293 | 20.67017 | |
Pastures → Broad-leaved forest | 8.33 | 0.06484 | 25.32120 | |
Coniferous forest → Broad-leaved forest | 0.07 | 0.00000 | 0.00000 | |
Mixed forest → Broad-leaved forest | 0.85 | 0.00000 | 0.00000 | |
Natural grasslands → Broad-leaved forest | 3.28 | 0.01021 | 3.98719 | |
Transitional woodland shrub → Broad-leaved forest | 12.55 | 0.07816 | 30.52290 | |
Pastures → Coniferous forest | 0.02 | 0.00015 | 0.05857 | |
Broad-leaved forest → Coniferous forest | 0.27 | 0.00000 | 0.00000 | |
Mixed forest → Coniferous forest | 0.67 | 0.00000 | 0.00000 | |
Natural grasslands → Coniferous forest | 0.24 | 0.00074 | 0.28898 | |
Transitional woodland shrub → Coniferous forest | 0.67 | 0.00417 | 1.62846 | |
Agriculture → Mixed forest | 0.23 | 0.00179 | 0.69902 | |
Pastures → Mixed forest | 1.8 | 0.01401 | 5.47116 | |
Broad-leaved forest → Mixed forest | 2.99 | 0.00000 | 0.00000 | |
Coniferous forest → Mixed forest | 1.11 | 0.00000 | 0.00000 | |
Natural grasslands → Mixed forest | 0.41 | 0.00127 | 0.49595 | |
Transitional woodland shrub → Mixed forest | 3.98 | 0.02478 | 9.67704 | |
Water bodies→ Mixed forest | 0.03 | 0.00014 | 0.05467 | |
Total | 0.25607 | 100.00000 | ||
Negative | Broad-leaved forest → Agriculture | 0.33 | −0.00256 | 5.05032 |
Broad-leaved forest → Pastures | 1.10 | −0.00856 | 16.88696 | |
Broad-leaved forest → Natural grasslands | 1.09 | −0.00339 | 6.68771 | |
Broad-leaved forest → Transitional woodland shrub | 2.28 | −0.01419 | 27.99369 | |
Coniferous forest → Natural grasslands | 0.81 | −0.00252 | 4.97139 | |
Coniferous forest → Transitional woodland shrub | 0.94 | −0.00585 | 11.54074 | |
Mixed forest → Urban | 0.01 | −0.00007 | 0.13809 | |
Mixed forest → Pastures | 0.15 | −0.00116 | 2.28842 | |
Mixed forest → Natural grasslands | 0.46 | −0.00143 | 2.82106 | |
Mixed forest → Transitional woodland shrub | 1.76 | −0.01096 | 21.62162 | |
Total | −0.05069 | 100.00000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, S.M.; Mititelu-Ionuș, O.; Ștefănescu, D.M. Linking Land Use and Land Cover Changes and Ecosystem Services’ Potential in Natura 2000 Site “Nordul Gorjului de Vest” (Southwest Romania). Land 2024, 13, 650. https://doi.org/10.3390/land13050650
Popescu SM, Mititelu-Ionuș O, Ștefănescu DM. Linking Land Use and Land Cover Changes and Ecosystem Services’ Potential in Natura 2000 Site “Nordul Gorjului de Vest” (Southwest Romania). Land. 2024; 13(5):650. https://doi.org/10.3390/land13050650
Chicago/Turabian StylePopescu, Simona Mariana, Oana Mititelu-Ionuș, and Dragoș Mihail Ștefănescu. 2024. "Linking Land Use and Land Cover Changes and Ecosystem Services’ Potential in Natura 2000 Site “Nordul Gorjului de Vest” (Southwest Romania)" Land 13, no. 5: 650. https://doi.org/10.3390/land13050650
APA StylePopescu, S. M., Mititelu-Ionuș, O., & Ștefănescu, D. M. (2024). Linking Land Use and Land Cover Changes and Ecosystem Services’ Potential in Natura 2000 Site “Nordul Gorjului de Vest” (Southwest Romania). Land, 13(5), 650. https://doi.org/10.3390/land13050650