Enhancing Landslide Detection with SBConv-Optimized U-Net Architecture Based on Multisource Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. U-Net
2.2.2. ResU-Net
2.2.3. SBConv Module
2.2.4. Spatial and Band Refined Convolution (SBConv)
- Input ConvBlock: The process begins with an input feature map that is first processed by a standard convolutional block (ConvBlock), preparing the features for subsequent refinement.
- ResBlock + SBConv: The output from the initial ConvBlock is then fed into a residual block combined with the SBConv. This combination allows for the incorporation of both residual learning and specialized convolution operations to enhance feature representation.
- SRU: Within the SBConv, the Spatial Refined Unit (SRU) takes the input feature map X and applies a series of operations to refine the spatial characteristics of the features, yielding a spatially-refined feature map .
- BRU: Following spatial refinement, the Band Refined Unit (BRU) further processes to emphasize and recalibrate the spectral information, resulting in the band-refined feature map Y.
- Output ConvBlock: Finally, the refined feature map Y is passed through an output convolutional block (Output ConvBlock), producing the final output that is used in further layers or for constructing the final segmentation map.
2.2.5. Spatial Refined Unit (SRU)
2.2.6. Band Refined Unit (BRU)
2.3. Model Evaluation
3. Results
3.1. Experimental Settings
3.2. Experimental Results
3.3. Prediction with Different Models
4. Discussion
4.1. Comparison with Existing Approaches
4.2. Broader Implications and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BRU | Band Refined Unit |
CNN | Convolutional Neural Network |
DEM | Digital Elevation Model |
DL | Deep Learning |
IDCU | Improved Double Convolution Unit |
InSAR | Interferometric Synthetic Aperture Radar |
LiDAR | Light Detection And Ranging |
ML | Machine Learning |
SAR | Synthetic Aperture Radar |
SBConv | Spatial and Band Refined Convolution |
SRU | Spatial Refined Unit |
References
- Arrogante-Funes, P.; Bruzón, A.G.; Álvarez Ripado, A.; Arrogante-Funes, F.; Martín-González, F.; Novillo, C.J. Assessment of the Regeneration of Landslides Areas Using Unsupervised and Supervised Methods and Explainable Machine Learning Models. Landslides 2024, 21, 275–290. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Bui, D.T.; Pradhan, B.; Acharya, T.D.; Pham, B.T.; Zhu, A.X.; Chen, W.; Ahmad, B.B. Landslide Susceptibility Mapping Using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest Ensembles in the Guangchang Area (China). Catena 2018, 163, 399–413. [Google Scholar] [CrossRef]
- Lukić, T.; Bjelajac, D.; Fitzsimmons, K.E.; Marković, S.B.; Basarin, B.; Mlađan, D.; Micić, T.; Schaetzl, R.J.; Gavrilov, M.B.; Milanović, M.; et al. Factors Triggering Landslide Occurrence on the Zemun Loess Plateau, Belgrade Area, Serbia. Environ. Earth Sci. 2018, 77, 519. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Hong, B.; Li, L.; Liu, J.; Lei, H. Erosion Characteristics of Loess Tunnels on the Loess Plateau: A Field Investigation and Experimental Study. Earth Surf. Process. Landforms 2020, 45, 1945–1958. [Google Scholar] [CrossRef]
- Meng, Z.J.; Ma, P.H.; Peng, J.B. Characteristics of Loess Landslides Triggered by Different Factors in the Chinese Loess Plateau. J. Mt. Sci. 2021, 18, 3218–3229. [Google Scholar] [CrossRef]
- Wang, H.B.; Sassa, K. Rainfall-Induced Landslide Hazard Assessment Using Artificial Neural Networks. Earth Surf. Process. Landforms 2006, 31, 235–247. [Google Scholar] [CrossRef]
- Wu, T.; Xie, X.; Wu, H.; Zeng, H.; Zhu, X. A Quantitative Analysis Method of Regional Rainfall-Induced Landslide Deformation Response Variation Based on a Time-Domain Correlation Model. Land 2022, 11, 703. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, Z.; Xu, S.; Cheng, Y. Post Evaluation of Slope Cutting on Loess Slopes under Long-Term Rainfall Based on a Model Test. Sustainability 2022, 14, 15838. [Google Scholar] [CrossRef]
- Jing, J.; Wu, Z.; Yan, W.; Ma, W.; Liang, C.; Lu, Y.; Chen, D. Experimental Study on Progressive Deformation and Failure Mode of Loess Fill Slopes under Freeze-Thaw Cycles and Earthquakes. Eng. Geol. 2022, 310, 106896. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, Y.; Wang, Q.; Chen, F.; Lu, C.; Lei, S. Mapping Post-Earthquake Landslide Susceptibility: A U-net like Approach. Remote. Sens. 2020, 12, 2767. [Google Scholar] [CrossRef]
- Shafapourtehrany, M.; Rezaie, F.; Jun, C.; Heggy, E.; Bateni, S.M.; Panahi, M.; Özener, H.; Shabani, F.; Moeini, H. Mapping Post-Earthquake Landslide Susceptibility Using U-net, VGG-16, VGG-19, and Metaheuristic Algorithms. Remote Sens. 2023, 15, 4501. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Zhang, G.; Hu, X.; Xing, B.; Wang, D. Reservoir Landslide Displacement Prediction under Rainfall Based on the ILF-FFT Method. Bull. Eng. Geol. Environ. 2023, 82, 179. [Google Scholar] [CrossRef]
- Lu, W.; Hu, Y.; Zhang, Z.; Cao, W. A Dual-Encoder U-net for Landslide Detection Using Sentinel-2 and DEM Data. Landslides 2023, 20, 1975–1987. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Yang, R.; Yao, G.; Xu, Q.; Zhang, X. A Novel Weakly Supervised Remote Sensing Landslide Semantic Segmentation Method: Combining CAM and cycleGAN Algorithms. Remote Sens. 2022, 14, 3650. [Google Scholar] [CrossRef]
- Ge, X.; Zhao, Q.; Wang, B.; Chen, M. Lightweight Landslide Detection Network for Emergency Scenarios. Remote Sens. 2023, 15, 1085. [Google Scholar] [CrossRef]
- Xu, S.; Song, Y.; Hao, X. A Comparative Study of Shallow Machine Learning Models and Deep Learning Models for Landslide Susceptibility Assessment Based on Imbalanced Data. Forests 2022, 13, 1908. [Google Scholar] [CrossRef]
- Cabral, V.; Reis, F.; Veloso, V.; Ogura, A.; Zarfl, C. A Multi-Step Hazard Assessment for Debris-Flow Prone Areas Influenced by Hydroclimatic Events. Eng. Geol. 2023, 313, 106961. [Google Scholar] [CrossRef]
- Zhang, Y.; Ayyub, B.M.; Gong, W.; Tang, H. Risk Assessment of Roadway Networks Exposed to Landslides in Mountainous Regions—A Case Study in Fengjie County, China. Landslides 2023, 20, 1419–1431. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Liu, Y.; Huang, Y.; Wang, Y.; Lu, Z. Characteristics and Prevention Mechanisms of Artificial Slope Instability in the Chinese Loess Plateau. Catena 2021, 207, 105621. [Google Scholar] [CrossRef]
- Adnan, M.S.G.; Rahman, M.S.; Ahmed, N.; Ahmed, B.; Rabbi, M.F.; Rahman, R.M. Improving Spatial Agreement in Machine Learning-Based Landslide Susceptibility Mapping. Remote Sens. 2020, 12, 3347. [Google Scholar] [CrossRef]
- An, B.; Wang, C.; Liu, C.; Li, P. A Multi-Source Remote Sensing Satellite View of the February 22nd Xinjing Landslide in the Mining Area of Alxa Left Banner, China. Landslides 2023, 20, 2517–2523. [Google Scholar] [CrossRef]
- Abbas, F.; Zhang, F.; Abbas, F.; Ismail, M.; Iqbal, J.; Hussain, D.; Khan, G.; Alrefaei, A.F.; Albeshr, M.F. Landslide Susceptibility Mapping: Analysis of Different Feature Selection Techniques with Artificial Neural Network Tuned by Bayesian and Metaheuristic Algorithms. Remote Sens. 2023, 15, 4330. [Google Scholar] [CrossRef]
- Abraham, M.T.; Vaddapally, M.; Satyam, N.; Pradhan, B. Spatio-Temporal Landslide Forecasting Using Process-Based and Data-Driven Approaches: A Case Study from Western Ghats, India. Catena 2023, 223, 106948. [Google Scholar] [CrossRef]
- Arabameri, A.; Karimi-Sangchini, E.; Pal, S.C.; Saha, A.; Chowdhuri, I.; Lee, S.; Tien Bui, D. Novel Credal Decision Tree-Based Ensemble Approaches for Predicting the Landslide Susceptibility. Remote Sens. 2020, 12, 3389. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, L.; Dong, J.; Guo, J.; Wang, Y.; Liao, M. Automatic Identification of Active Landslides over Wide Areas from Time-Series InSAR Measurements Using Faster RCNN. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103516. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, C.; Li, B.; Gao, Y.; Chen, L.; Liu, D. Monitoring Spatiotemporal Evolution of Kaiyang Landslides Induced by Phosphate Mining Using Distributed Scatterers InSAR Technique. Landslides 2023, 20, 695–706. [Google Scholar] [CrossRef]
- Ciampalini, A.; Raspini, F.; Lagomarsino, D.; Catani, F.; Casagli, N. Landslide Susceptibility Map Refinement Using PSInSAR Data. Remote Sens. Environ. 2016, 184, 302–315. [Google Scholar] [CrossRef]
- Stumpf, A.; Kerle, N. Combining Random Forests and Object-Oriented Analysis for Landslide Mapping from Very High Resolution Imagery. Procedia Environ. Sci. 2011, 3, 123–129. [Google Scholar] [CrossRef]
- Mladenova, I.E.; Bolten, J.D.; Crow, W.T.; Anderson, M.C.; Hain, C.R.; Johnson, D.M.; Mueller, R. Intercomparison of Soil Moisture, Evaporative Stress, and Vegetation Indices for Estimating Corn and Soybean Yields Over the U.S. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1328–1343. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in Landslide Investigations: A Review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef]
- Rossi, M.; Kirschbaum, D.; Luciani, S.; Mondini, A.C.; Guzzetti, F. TRMM Satellite Rainfall Estimates for Landslide Early Warning in Italy: Preliminary Results. In Proceedings of the Remote Sensing of the Atmosphere, Clouds, and Precipitation IV, Kyoto, Japan, 29 October–1 November 2012; Hayasaka, T., Nakamura, K., Im, E., Eds.; SPIE: Bellingham, WA, USA, 2012. [Google Scholar] [CrossRef]
- Lagomarsino, D.; Segoni, S.; Fanti, R.; Catani, F. Updating and Tuning a Regional-Scale Landslide Early Warning System. Landslides 2013, 10, 91–97. [Google Scholar] [CrossRef]
- Marjanović, M.; Kovačević, M.; Bajat, B.; Voženílek, V. Landslide Susceptibility Assessment Using SVM Machine Learning Algorithm. Eng. Geol. 2011, 123, 225–234. [Google Scholar] [CrossRef]
- Zeng, F.; Nait Amar, M.; Mohammed, A.S.; Motahari, M.R.; Hasanipanah, M. Improving the Performance of LSSVM Model in Predicting the Safety Factor for Circular Failure Slope through Optimization Algorithms. Eng. Comput. 2022, 38, 1755–1766. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Jaboyedoff, M.; Derron, M.H.; Fei, L.; Li, H.; Luo, X. Loess Landslides Detection via a Partially Supervised Learning and Improved Mask-RCNN with Multi-Source Remote Sensing Data. Catena 2023, 231, 107371. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Han, L.; Chen, L.; Wang, L. Slope Stability Prediction Using Ensemble Learning Techniques: A Case Study in Yunyang County, Chongqing, China. J. Rock Mech. Geotech. Eng. 2022, 14, 1089–1099. [Google Scholar] [CrossRef]
- Huang, P.C. Establishing a Shallow-Landslide Prediction Method by Using Machine-Learning Techniques Based on the Physics-Based Calculation of Soil Slope Stability. Landslides 2023, 20, 2741–2756. [Google Scholar] [CrossRef]
- Huang, R.; Chen, T. Landslide Recognition from Multi-Feature Remote Sensing Data Based on Improved Transformers. Remote Sens. 2023, 15, 3340. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y.; Tsangaratos, P.; Ilia, I.; Wang, X. Combining Evolutionary Algorithms and Machine Learning Models in Landslide Susceptibility Assessments. Remote Sens. 2020, 12, 3854. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef]
- Chen, H.; He, Y.; Zhang, L.; Yao, S.; Yang, W.; Fang, Y.; Liu, Y.; Gao, B. A Landslide Extraction Method of Channel Attention Mechanism U-net Network Based on Sentinel-2A Remote Sensing Images. Int. J. Digit. Earth 2023, 16, 552–577. [Google Scholar] [CrossRef]
- Li, G.; Zhou, X.; Chen, C.; Xu, L.; Zhou, F.; Shi, F.; Tang, J. Multitype Geomagnetic Noise Removal via an Improved U-Net Deep Learning Network. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5916512. [Google Scholar] [CrossRef]
- Li, J.; Wen, Y.; He, L. SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 6153–6162. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Xu, Y.; Ghamisi, P.; Kopp, M.; Kreil, D. Landslide4Sense: Reference Benchmark Data and Deep Learning Models for Landslide Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5633017. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Xu, Y.; Zhao, H.; Wang, J.; Zhong, Y.; Zhao, D.; Zang, Q.; Wang, S.; Zhang, F.; Shi, Y.; et al. The Outcome of the 2022 Landslide4Sense Competition: Advanced Landslide Detection From Multisource Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2022, 15, 9927–9942. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote. Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef]
- Chen, M.; Dong, W.; Yu, H.; Woodhouse, I.; Ryan, C.M.; Liu, H.; Georgiou, S.; Mitchard, E.T.A. Multimodal Deep Learning for Mapping Forest Dominant Height by Fusing GEDI with Earth Observation Data. arXiv 2023, arXiv:2311.11777. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Hu, X.; Yang, J. Selective Kernel Networks. arXiv 2019, arXiv:1903.06586. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems; Pereira, F., Burges, C., Bottou, L., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
Model | Precision | Recall | F1 | Mean F1 | OA |
---|---|---|---|---|---|
U-Net | 85.47 | 60.59 | 70.91 | 85.16 | 98.85 |
SruU-Net | 81.57 | 64.89 | 72.28 | 85.85 | 98.85 |
BruU-Net | 73.75 | 68.35 | 70.95 | 85.14 | 98.7 |
SBConvU-Net | 72.13 | 75.74 | 73.89 | 86.63 | 98.76 |
ResU-Net | 85.85 | 54.75 | 66.86 | 83.11 | 98.74 |
SruResU-Net | 83.75 | 58.89 | 69.16 | 84.27 | 98.78 |
BruResU-Net | 80.69 | 59.24 | 68.32 | 83.84 | 98.73 |
SBConvResU-Net | 76.82 | 70.98 | 73.78 | 86.59 | 98.83 |
Model | Recall | Precision | F1 |
---|---|---|---|
PSPNet | 52.03 | 61.55 | 56.39 |
ContextNet | 49.29 | 70.77 | 58.11 |
DeepLab-v2 | 63.68 | 60.8 | 62.21 |
DeepLab-v3+ | 62.11 | 69.91 | 65.78 |
FCN-8s | 63.05 | 68.66 | 65.73 |
LinkNet | 67.02 | 66.76 | 66.89 |
FRRN-A | 64.4 | 76.57 | 69.96 |
FRRN-B | 76.16 | 64.93 | 70.1 |
SQNet | 66.69 | 74.2 | 70.24 |
SBConvU-Net | 75.74 | 72.13 | 73.89 |
SBConvResU-Net | 70.98 | 76.82 | 73.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zou, Y.; Li, Y.; He, Y.; Wu, W.; Niu, R.; Xu, S. Enhancing Landslide Detection with SBConv-Optimized U-Net Architecture Based on Multisource Remote Sensing Data. Land 2024, 13, 835. https://doi.org/10.3390/land13060835
Song Y, Zou Y, Li Y, He Y, Wu W, Niu R, Xu S. Enhancing Landslide Detection with SBConv-Optimized U-Net Architecture Based on Multisource Remote Sensing Data. Land. 2024; 13(6):835. https://doi.org/10.3390/land13060835
Chicago/Turabian StyleSong, Yingxu, Yujia Zou, Yuan Li, Yueshun He, Weicheng Wu, Ruiqing Niu, and Shuai Xu. 2024. "Enhancing Landslide Detection with SBConv-Optimized U-Net Architecture Based on Multisource Remote Sensing Data" Land 13, no. 6: 835. https://doi.org/10.3390/land13060835
APA StyleSong, Y., Zou, Y., Li, Y., He, Y., Wu, W., Niu, R., & Xu, S. (2024). Enhancing Landslide Detection with SBConv-Optimized U-Net Architecture Based on Multisource Remote Sensing Data. Land, 13(6), 835. https://doi.org/10.3390/land13060835