Spatial Disparity of Neighborhood Food Environment by Socioeconomic Status: Application of Urban Network Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Source and Variable Selection
2.3. Methodology
3. Results
3.1. Descriptive Analysis Results
3.2. Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | Lower-Income Groups | Upper-Income Groups | t-Test of Mean Difference | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Obs. | Mean | S.D. | Min. | Max. | Obs. | Mean | S.D. | Min. | Max. | t | p | ||
Food availability | 8270 | 3.84 | 3.03 | 0 | 26 | 8273 | 3.40 | 2.89 | 0 | 23 | 9.537 | 0.001 | *** |
Food accessibility | 8270 | 2.23 | 1.76 | 0 | 14.46 | 8273 | 1.97 | 1.68 | 0 | 13.30 | 9.736 | 0.001 | *** |
Middle age (%) | 8270 | 23.95 | 1.97 | 0 | 47.81 | 8273 | 23.83 | 1.72 | 0 | 38.56 | 4.336 | 0.001 | *** |
Age of 70 or above (%) | 8270 | 12.53 | 3.01 | 0 | 45.86 | 8273 | 12.83 | 3.02 | 0 | 44.67 | −12.93 | 0.001 | *** |
Population density | 8270 | 44.47 | 26.64 | 0.05 | 307.65 | 8273 | 43.35 | 27.08 | 0.03 | 277.17 | 2.671 | 0.008 | *** |
Employment density | 8270 | 9.54 | 34.15 | 0 | 1509.96 | 8273 | 12.98 | 54.91 | 0 | 2504.43 | −4.846 | 0.001 | *** |
Multi-family houses (%) | 8270 | 35.55 | 35.22 | 0 | 100 | 8273 | 30.08 | 34.6 | 0 | 100 | 10.067 | 0.001 | *** |
Apartment (%) | 8270 | 43.36 | 46.34 | 0 | 100 | 8273 | 49.82 | 46.9 | 0 | 100 | −8.886 | 0.001 | *** |
Other (%) | 8270 | 4.21 | 12.8 | 0 | 100 | 8273 | 4.37 | 12.74 | 0 | 100 | −0.848 | 0.397 | |
Building age of 20 or above (%) | 8270 | 50.44 | 37.38 | 0 | 100 | 8273 | 50.5 | 39.9 | 0 | 100 | −0.092 | 0.926 | |
Building age of 10 or less (%) | 8270 | 20.31 | 27.69 | 0 | 100 | 8273 | 19.1 | 29.28 | 0 | 100 | 2.724 | 0.006 | *** |
Density of commercial area | 8270 | 0 | 0.01 | 0 | 0.5 | 8273 | 0 | 0.01 | 0 | 0.59 | −2.75 | 0.006 | *** |
Density of office area | 8270 | 0 | 0.02 | 0 | 0.6 | 8273 | 0 | 0.03 | 0 | 0.98 | −4.576 | 0.001 | *** |
Density of residential area | 8270 | 0.02 | 0.01 | 0 | 0.22 | 8273 | 0.02 | 0.01 | 0 | 0.35 | −12.515 | 0.001 | *** |
Density of other areas | 8270 | 0 | 0.02 | 0 | 0.7 | 8273 | 0 | 0.03 | 0 | 1.42 | −0.547 | 0.585 | |
Density of green area | 8270 | 0.01 | 0.07 | 0 | 3.99 | 8273 | 0 | 0.06 | 0 | 3.47 | 0.829 | 0.407 | |
Land-use mix | 8270 | 0.3 | 0.3 | 0 | 1 | 8273 | 0.28 | 0.3 | 0 | 1 | 3.737 | 0.001 | *** |
Density of intersection | 8270 | 23.14 | 65.13 | 0 | 1792.53 | 8273 | 23.22 | 68.2 | 0 | 2066.22 | −0.082 | 0.935 | |
Bus stop | 8270 | 0.99 | 0.11 | 0 | 1 | 8273 | 0.98 | 0.12 | 0 | 1 | 2.106 | 0.035 | ** |
Subway station | 8270 | 0.3 | 0.46 | 0 | 1 | 8273 | 0.35 | 0.48 | 0 | 1 | −7.493 | 0.001 | *** |
Senior welfare center | 8270 | 0.11 | 0.32 | 0 | 1 | 8273 | 0.1 | 0.31 | 0 | 1 | 2.137 | 0.033 | ** |
△ of convenience store | 8270 | 0.62 | 0.48 | 0 | 1 | 8273 | 0.61 | 0.49 | 0 | 1 | 1.068 | 0.286 |
References
- Glanz, K.; Sallis, J.F.; Saelens, B.E.; Frank, L.D. Healthy nutrition environments: Concepts and measures. Am. J. Health Promot. 2005, 19, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Han, S.N. Associations between exposure to unhealthy food outlets within residential district and obesity. Nutr. Res. Pract. 2016, 21, 463–476. [Google Scholar]
- Yang, N.R.; Kim, K.R. Qualitative study on the perception of community food-accessibility environment among urban older adults. Korean J. Community Nutr. 2020, 25, 137–149. [Google Scholar] [CrossRef]
- Wang, M.C.; Kim, S.; Gonzalez, A.A.; MacLeod, K.E.; Winkleby, M.A. Socioeconomic and food-related physical characteristics of the neighborhood environment are associated with body mass index. J. Epidemiol. Community Health 2007, 61, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.; Purciel-Hill, M.; Ghai, N.R.; Kaufman, L.; Graham, R.; Van Wye, G. Measuring food deserts in New York City’s low-income neighborhoods. Health Place 2011, 17, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.A.; Bell, B.A.; Clark, J.; Ngendahimana, D.; Borawski, E.; Trapl, E.; Sehgal, A.R. Small improvements in an urban food environment resulted in no changes in diet among residents. J. Community Health 2021, 46, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Korean Statistical Information Service. Consumer Price Index in July 2020. Available online: https://kostat.go.kr/portal/korea/kor_nw/1/4/2/index.board?bmode=read&bSeq=&aSeq=391141&pageNo=1&rowNum=10&navCount=10&currPg=&searchInfo=&sTarget=title&sTxt= (accessed on 11 September 2020).
- Hendrickson, D.; Smith, C.; Eikenberry, N. Fruit and vegetable access in four low-income food deserts communities in Minnesota. Agric. Hum. Values 2006, 23, 371–383. [Google Scholar] [CrossRef]
- Koh, K.; Reno, R.; Hyder, A. Examining disparities in food accessibility among households in Columbus, Ohio: An agent-based model. Food Secur. 2019, 11, 317–331. [Google Scholar] [CrossRef]
- Iwama, N.; Tanaka, K.; Sasaki, M.; Komaki, N.; Saito, Y. The dietary life of the elderly in local cities and food desert issues: A case study of Mito City, Ibaraki Prefecture. Jpn. J. Hum. Geogr. 2009, 61, 139–159. [Google Scholar]
- Fields, N.; Cronley, C.; Mattingly, S.P.; Murphy, E.R.; Miller, V.J. You are really at their mercy: Examining the relationship between transportation disadvantage and social exclusion among older adults through the use of innovative technology. Transp. Res. Rec. 2019, 2673, 12–24. [Google Scholar] [CrossRef]
- Choi, Y.; Suzuki, T. A study on shopping behaviors for groceries and awareness on convenience of elderly people. J. City Plan. Inst. Jpn. 2012, 47, 271–276. [Google Scholar] [CrossRef]
- Shergold, I.; Parkhurst, G. Transport-related social exclusion amongst older people in rural southwest England and Wales. J. Rural Stud. 2012, 28, 412–421. [Google Scholar] [CrossRef]
- Özkazanç, S.; Sönmez, F.N.Ö. Spatial analysis of social exclusion from a transportation perspective: A case study of Ankara metropolitan area. Cities 2017, 67, 74–84. [Google Scholar] [CrossRef]
- Lee, N.R. A Case Study on the Potential Food Deserts in the Regions of the Poverty in Seoul, Korea. Master’s Thesis, Korea National University of Education, Cheongju-si, Republic of Korea, 2017. [Google Scholar]
- Cummins, S.; MacIntyre, S. ‘Food deserts’—Evidence and assumption in health policy making. BMJ 2002, 325, 436–438. [Google Scholar]
- Walker, R.E.; Keane, C.R.; Burke, J.G. Disparities and access to healthy food in the United States: A review of food deserts literature. Health Place 2010, 16, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.; Richards, R. Food store access and household fruit and vegetable use among participants in the US food stamp program. Public Health Nutr. 2004, 7, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Apparicio, P.; Cloutier, M.S.; Shearmur, R. The case of Montreal’s missing food deserts: Evaluation of accessibility to food supermarkets. Int. J. Health Geogr. 2007, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Suzuki, T. Food deserts, activity patterns, & social exclusion: The case of Tokyo, Japan. Appl. Geogr. 2013, 43, 87–98. [Google Scholar]
- Winne, M. Food Town, USA: Seven Unlikely Cities That Are Changing the Way We Eat; Island Press: Washington, DC, USA, 2019. [Google Scholar]
- Evans, A.; Banks, K.; Jennings, R.; Nehme, E.; Nemec, C.; Sharma, S.; Hussaini, A.; Yaroch, A. Increasing access to healthful foods: A qualitative study with residents of low-income communities. Int. J. Behav. Nutr. Phys. Act. 2015, 12, S5. [Google Scholar] [CrossRef] [PubMed]
- Shannon, J.; Lee, J.S.; Holloway, S.R.; Brown, A.; Bell, J. Evaluating the relationship between urban environment and food security in Georgia’s older population. Appl. Geogr. 2015, 60, 224–229. [Google Scholar] [CrossRef]
- Helbich, M.; Schadenberg, B.; Hagenauer, J.; Poelman, M. Food deserts? Healthy food access in Amsterdam. Appl. Geogr. 2017, 83, 1–12. [Google Scholar] [CrossRef]
- Lewis, L.B.; Sloane, D.C.; Nascimento, L.M.; Diamant, A.L.; Guinyard, J.J.; Yancey, A.K.; Flynn, G. 2005. African Americans’ access to healthy food options in South Los Angeles restaurants. Am. J. Public Health 2005, 95, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Karpyn, A.E.; Riser, D.; Tracy, T.; Wang, R.; Shen, Y.E. The changing landscape of food deserts. UNSCN Nutr. 2019, 44, 46–53. [Google Scholar] [PubMed]
- Raja, S.; Yin, L.; Roemmich, J.; Ma, C.; Epstein, L.; Yadav, P.; Ticoalu, A.B. Food environment, built environment, and women’s BMI: Evidence from Erie County, New York. J. Plan. Educ. Res. 2010, 29, 444–460. [Google Scholar] [CrossRef]
- Morland, K.; Wing, S.; Roux, A.D. The contextual effect of the local food environment on residents’ diets: The atherosclerosis risk in communities study. Am. J. Public Health 2002, 92, 1761–1768. [Google Scholar] [CrossRef] [PubMed]
- Mohammadian Mosammam, H.; Sarrafi, M.; Tavakoli Nia, J.; Mosammam, A.M. Measuring food deserts via GIS-based multicriteria decision making: The case of Tehran. Prof. Geogr. 2017, 69, 455–471. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, B. Local retail food environment and consumption of fruit and vegetable among adults in Hong Kong. Int. J. Environ. Res. Public Health 2018, 15, 2247. [Google Scholar] [CrossRef]
- Nakamura, H.; Nakamura, M.; Okada, E.; Ojima, T.; Kondo, K. Association of food access and neighbor relationships with diet and underweight among community-dwelling older Japanese. J. Epidemiol. 2017, 27, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Tani, Y.; Suzuki, N.; Fujiwara, T.; Hanazato, M.; Kondo, N.; Miyaguni, Y.; Kondo, K. Neighborhood food environment and mortality among older Japanese adults: Results from the JAGES cohort study. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 101. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.R.; Kim, K. A study on the case of food deserts in Seoul. J. Korean Urban Geogr. Soc. 2017, 20, 79–90. [Google Scholar] [CrossRef]
- Statistical Geographic Information Service. Available online: https://sgis.kostat.go.kr (accessed on 13 October 2020).
- Seoul Open Data Plaza. Available online: https://data.seoul.go.kr (accessed on 13 October 2020).
- Kim, D.; Lee, C.K.; Seo, D.Y. Food deserts in Korea? A GIS analysis of food consumption patterns at sub-district level in Seoul using the KNHANES 2008-2012 data. Nutr. Res. Pract. 2016, 10, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.S.; Lee, Y.N.; Choi, W. HMR selection motive and behaviorism by lifestyle type. J. Hotel Resort 2005, 4, 395–408. [Google Scholar]
- Graham, J.E.; Fisher, S.R.; Bergés, I.M.; Kuo, Y.F.; Ostir, G.V. Walking speed threshold for classifying walking independence in hospitalized older adults. Phys. Ther. 2010, 90, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Mendoza, C.L.; Cabañero-Martínez, M.J.; Millán-Calenti, J.C.; Cabrero-García, J.; López-Sánchez, R.; Maseda-Rodríguez, A. Reliability of 4-m and 6-m walking speed tests in elderly people with cognitive impairment. Arch. Gerontol. Geriatr. 2011, 52, e67–e70. [Google Scholar] [CrossRef] [PubMed]
- Sevtsuk, A.; Mekonnen, M. Urban network analysis. Rev. Int. De Géomatique–n 2012, 287, 305. [Google Scholar]
- Handy, S.L.; Niemeier, D.A. Measuring accessibility: An exploration of issues and alternatives. Environ. Plan. A 1997, 29, 1175–1194. [Google Scholar] [CrossRef]
- Assoumou, B.O.M.T.; Coughenour, C.; Godbole, A.; McDonough, I. Senior food insecurity in the USA: A systematic literature review. Public Health Nutr. 2023, 26, 229–245. [Google Scholar] [CrossRef] [PubMed]
- Knippen, K.L.; Lee, H.; Ford, T.; Welch, P. Bad enough to cook for two, worse for one–mixed method evaluation of eating behavior among community dwelling older adults. J. Nutr. Gerontol. Geriatr. 2020, 39, 214–235. [Google Scholar] [CrossRef]
- Kim, C.O. Food choice patterns among frail older adults: The associations between social network, food choice values, and diet quality. Appetite 2016, 96, 116–121. [Google Scholar] [CrossRef]
- Dent, E.; Wright, O.R.; Woo, J.; Hoogendijk, E.O. Malnutrition in older adults. Lancet 2023, 401, 951–966. [Google Scholar] [CrossRef] [PubMed]
- Kandapan, B.; Pradhan, I.; Pradhan, J. Food insecurity and malnutrition among Indian older adults: Findings from longitudinal ageing study in India, 2017–2018. J. Popul. Ageing 2023, 16, 639–659. [Google Scholar] [CrossRef] [PubMed]
- Seong, T.K.; Lee, S. Analysis of Accessibility Changes to Neighborhood Food Environment and Food Desert Phenomenon in Seoul, Korea: Focused on the High Density Areas of Low-income Older Adults. J. Korea Plan. Assoc. 2021, 56, 137–155. [Google Scholar] [CrossRef]
- Jia, P.; Pan, X.; Liu, F.; He, P.; Zhang, W.; Liu, L.; Chen, L. Land use mix in the neighbourhood and childhood obesity. Obes. Rev. 2021, 22, e13098. [Google Scholar] [CrossRef]
- Lam, T.M.; Vaartjes, I.; Grobbee, D.E.; Karssenberg, D.; Lakerveld, J. Associations between the built environment and obesity: An umbrella review. Int. J. Health Geogr. 2021, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Dai, D.; Wang, Y.; Fan, J. Decade-long changes in disparity and distribution of transit opportunity in Shenzhen China: A transportation equity perspective. J. Adv. Transp. 2018, 7127342, 1–16. [Google Scholar] [CrossRef]
Variables | Definition | |
---|---|---|
Dependent variables | Food availability | Value of Reach |
Food accessibility | Value of Gravity | |
Demographic | Middle age (%) | 40~59 years old population percentage |
Age of 70 or above (%) | Age 70 or above population percentage | |
Population density | Total population/area (1000 people/km2) | |
Employment density | Total No. of workers/area (1000 people/km2) | |
Residential | Multi-family houses (%) | No. of multi-family houses/total census output area houses |
Apartment (%) | No. of apartments/total census output area houses | |
Other (%) | No. of other houses/total census output area houses | |
Building age of 20 or above (%) | No. of buildings aged 20 or above/total census output area houses | |
Building age of 10 or less (%) | No. of buildings aged 10 or less/total census output area houses | |
The market price of an apartment | The market price of an apartment per 1 m2 (dong) | |
Land use | Density of commercial area | Total floor area of commercial facility/total census output area |
Density of office area | Total floor area of office facility/total census output area | |
Density of residential area | Total floor area of residential facility/total census output area | |
Density of other areas | Total floor area of other facility/total census output area | |
Density of green area | Total floor area of green/total census output area | |
Land-use mix | Land-use mix of census output area | |
Accessibility | Density of intersection | No. of intersections/census output area (km2) |
Bus stop | Bus stop within 400 m (Y/N) | |
Subway station | Subway station within 400 m (Y/N) | |
Senior welfare center | Senior welfare center within 400 m (Y/N) | |
△ of convenience stores | Change in the number of convenience stores (2018–2015) (Y/N) |
Variables | Obs. | Mean | S.D. | Min. | Max | VIF | |
---|---|---|---|---|---|---|---|
Dependent variables | Food availability | 16,473 | 3.62 | 2.97 | 0 | 26 | - |
Food accessibility | 16,473 | 2.10 | 1.72 | 0 | 14.16 | - | |
Demographic | Middle age (%) | 16,473 | 23.89 | 1.86 | 0 | 47.81 | 1.12 |
Age of 70 or above (%) | 16,473 | 12.53 | 3.03 | 0 | 45.87 | 1.22 | |
Population density | 16,473 | 43.91 | 26.87 | 0.03 | 307.65 | 1.49 | |
Employment density | 16,473 | 11.25 | 45.72 | 0 | 2504.43 | 1.13 | |
Residential | Multi-family houses (%) | 16,473 | 32.83 | 35.03 | 0 | 100 | 4.42 |
Apartment (%) | 16,473 | 46.58 | 46.73 | 0 | 100 | 5.89 | |
Other (%) | 16,473 | 4.29 | 12.77 | 0 | 100 | 1.66 | |
Building age of 20 or above (%) | 16,473 | 50.47 | 38.67 | 0 | 100 | 1.45 | |
Building age of 10 or less (%) | 16,473 | 19.7 | 28.5 | 0 | 100 | 1.41 | |
Land use | Density of commercial area | 16,473 | 0 | 0.01 | 0 | 0.59 | 1.46 |
Density of office area | 16,473 | 0 | 0.02 | 0 | 0.98 | 1.27 | |
Density of residential area | 16,473 | 0.02 | 0.01 | 0 | 0.35 | 1.18 | |
Density of other areas | 16,473 | 0 | 0.02 | 0 | 1.42 | 1.21 | |
Density of green area | 16,473 | 0.01 | 0.07 | 0 | 3.99 | 1.03 | |
Land-use mix | 16,473 | 0.29 | 0.3 | 0 | 1 | 1.98 | |
Accessibility | Density of intersection | 16,473 | 23.18 | 66.68 | 0 | 2066.26 | 1.02 |
Bus stop | 16,473 | 0.99 | 0.11 | 0 | 1 | 1.06 | |
Subway station | 16,473 | 0.33 | 0.47 | 0 | 1 | 1.04 | |
Senior welfare center | 16,473 | 0.11 | 0.31 | 0 | 1 | 1.01 | |
△ of convenience store (Reach) | 16,473 | 0.62 | 0.49 | 0 | 1 | 1.05 |
Variables | Seoul | Lower-Income | Upper-Income | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Coef. | z | Coef. | z | Coef. | z | |||||
Demographic | Middle age | 0.006 | * | 1.79 | 0.010 | ** | 2.37 | −0.002 | −0.32 | |
Age of 70 or above | −0.017 | *** | −7.71 | −0.017 | *** | −5.50 | −0.014 | *** | −4.35 | |
Population density | 0.005 | *** | 18.40 | 0.005 | *** | 13.10 | 0.005 | *** | 12.57 | |
Employment density | 0.001 | *** | 3.85 | 0.001 | ** | 2.53 | 0.001 | *** | 2.98 | |
Residential | Multi-family houses | −0.004 | *** | −10.63 | −0.005 | *** | −10.54 | −0.002 | *** | −4.77 |
Apartment | −0.008 | *** | −27.25 | −0.009 | *** | −20.50 | −0.008 | *** | −18.14 | |
Other | 0.001 | 1.41 | 0.000 | −0.23 | 0.001 | 1.74 | ||||
Bldg. age of 20 or above | −0.054 | ** | −2.78 | −0.089 | *** | −3.30 | −0.012 | −0.44 | ||
Bldg. age of 10 or less | 0.000 | −0.95 | 0.000 | 0.68 | −0.001 | ** | −2.16 | |||
Land use | Commercial | 1.555 | *** | 3.10 | 1.396 | * | 1.83 | 2.027 | *** | 2.94 |
Office | −0.228 | −0.73 | −0.322 | −0.57 | −0.032 | −0.08 | ||||
Residential | −1.908 | *** | −3.30 | −3.564 | *** | −3.34 | −0.927 | −1.33 | ||
Other | −1.460 | *** | −4.34 | −1.615 | *** | −3.11 | −1.311 | *** | −2.97 | |
Green | −0.520 | *** | −4.00 | −0.214 | −1.59 | −1.386 | *** | −5.04 | ||
Land-use mix | 0.143 | *** | 5.27 | 0.173 | *** | 4.76 | 0.089 | ** | 2.20 | |
Accessibility | Density of intersection | 0.000 | 1.19 | 0.000 | ** | −2.02 | 0.000 | −0.52 | ||
Bus stop | 1.339 | *** | 14.83 | 1.431 | *** | 11.13 | 1.257 | *** | 9.92 | |
Subway station | 0.079 | *** | 6.14 | 0.064 | *** | 3.57 | 0.105 | *** | 5.65 | |
Senior welfare center | 0.062 | *** | 3.33 | 0.128 | *** | 5.20 | −0.027 | −0.95 | ||
△ of convenience store | 0.344 | *** | 27.03 | 0.324 | *** | 18.86 | 0.365 | *** | 19.41 | |
Constant | 0.010 | 0.08 | −0.051 | −0.28 | 0.000 | 0.61 | ||||
Number of observations | 16,473 | 8270 | 8203 | |||||||
LR chi-squared | 3310.66 *** | 1678.41 *** | 1657.16 *** | |||||||
Pseudo R2 | 0.0427 | 0.0425 | 0.0437 | |||||||
AIC | 74,247.74 | 37,848.39 | 36,308.33 | |||||||
BIC | 74,417.35 | 38,002.84 | 36,462.61 |
Variables | Seoul | Lower Income | Upper Income | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Coef. | t | Coef. | t | Coef. | t | |||||
Demographic | Middle age | 0.018 | *** | 2.59 | 0.030 | *** | 3.19 | −0.002 | −0.16 | |
Age of 70 or above | −0.035 | *** | −7.68 | −0.037 | *** | −5.57 | −0.026 | *** | −4.21 | |
Population density | 0.009 | *** | 16.44 | 0.010 | *** | 11.64 | 0.009 | *** | 11.66 | |
Employment density | 0.001 | *** | 3.11 | 0.001 | * | 1.74 | 0.001 | *** | 2.79 | |
Residential | Multi-family houses | −0.009 | *** | −12.59 | −0.012 | *** | −11.40 | −0.007 | *** | −6.77 |
Apartment | −0.017 | *** | −26.42 | −0.018 | *** | −19.27 | −0.016 | *** | −18.35 | |
Other | 0.001 | 0.49 | −0.001 | −0.42 | 0.001 | 0.67 | ||||
Bldg. age of 20 or above | −0.052 | −1.36 | −0.112 | ** | −1.98 | 0.009 | 0.18 | |||
Bldg. age of 10 or less | 0.000 | 0.94 | 0.001 | 1.59 | 0.000 | −0.48 | ||||
Land use | Commercial | 3.146 | *** | 3.08 | 2.902 | * | 1.82 | 4.398 | *** | 3.20 |
Office | −0.795 | −1.26 | −1.178 | −0.93 | −0.426 | −0.59 | ||||
Residential | −4.052 | *** | −3.46 | −7.802 | *** | −3.45 | −2.143 | −1.58 | ||
Other | −2.516 | *** | −4.24 | −3.013 | ** | −2.89 | −2.218 | *** | −3.10 | |
Green | −0.757 | *** | −4.04 | −0.505 | * | −1.93 | −1.058 | *** | −3.93 | |
Land-use mix | 0.247 | *** | 4.31 | 0.342 | *** | 4.21 | 0.111 | 1.38 | ||
Accessibility | Density of intersection | 0.000 | 0.85 | 0.001 | * | 1.80 | 0.000 | −0.99 | ||
Bus stop | 1.111 | *** | 10.12 | 1.489 | *** | 8.75 | 0.833 | *** | 5.85 | |
Subway station | 0.153 | *** | 5.70 | 0.122 | *** | 3.09 | 0.207 | *** | 5.70 | |
Senior welfare center | 0.093 | ** | 2.36 | 0.259 | *** | 4.63 | −0.101 | * | −1.80 | |
△ of convenience store | 0.663 | *** | 25.80 | 0.665 | *** | 17.95 | 0.654 | *** | 18.47 | |
Constant | 1.223 *** | 5.25 | 0.852 *** | 2.61 | 1.667 *** | 4.95 | ||||
Number of observations | 16,473 | 8270 | 8203 | |||||||
F | 159.06 *** | 80.51 *** | 79.94 *** | |||||||
R2 | 0.1620 | 0.1633 | 0.1634 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seong, T.; Lee, S. Spatial Disparity of Neighborhood Food Environment by Socioeconomic Status: Application of Urban Network Analysis. Land 2024, 13, 865. https://doi.org/10.3390/land13060865
Seong T, Lee S. Spatial Disparity of Neighborhood Food Environment by Socioeconomic Status: Application of Urban Network Analysis. Land. 2024; 13(6):865. https://doi.org/10.3390/land13060865
Chicago/Turabian StyleSeong, Taekyung, and Sugie Lee. 2024. "Spatial Disparity of Neighborhood Food Environment by Socioeconomic Status: Application of Urban Network Analysis" Land 13, no. 6: 865. https://doi.org/10.3390/land13060865
APA StyleSeong, T., & Lee, S. (2024). Spatial Disparity of Neighborhood Food Environment by Socioeconomic Status: Application of Urban Network Analysis. Land, 13(6), 865. https://doi.org/10.3390/land13060865