Evaluation Index System of Rural Ecological Revitalization in China: A National Empirical Study Based on the Driver-Pressure-State-Impact-Response Framework
Abstract
:1. Introduction
2. Conceptualization and Theoretical Framework
2.1. Conceptualization of Rural Ecological Revitalization
2.2. DPSIR Framework and Indicators
3. Material and Methods
3.1. Sample Selection and Data
3.2. Entropy Method
3.2.1. Normalization of Indicators
3.2.2. Definition of Index Weight
- Define Entropy:
- 2.
- Define Entropy Weight:
- 3.
- Calculate the Weighted Decision Matrix:
3.3. TOPSIS Method
3.4. Exploratory Spatial Data Analysis Based on Moran’s I Spatial Autocorrelation
4. Results
4.1. Indicators and Weights
4.2. Evaluation of RER Levels
4.2.1. Evaluation of RER Levels by Province
4.2.2. Evaluation of RER Levels by Subsystem
4.3. Spatial Autocorrelation Analysis of RER Levels
5. Discussion
5.1. Weighted Evaluation Indicators and Their Reasons
5.2. Distinguished Provincial RER Levels
5.3. Strong Spatial Autocorrelations
5.4. Policy Suggestion
- From the perspective of indicator weighting, it is imperative to implement more targeted policies for the rural ecological state subsystem and the response subsystem. Firstly, it is necessary to continue to carry out rural living environment improvement actions and promote the effective strengthening of rural sewage treatment, garbage disposal, and other work. At the same time, a long-term supervision and assessment mechanism needs to be established to ensure that all measures achieve actual results. In addition, adhere to ecological restoration projects, further promote long-term governance mechanisms, establish comprehensive ecological restoration measures, and enhance comprehensive ecological management capabilities. Lastly, strengthen the protection of nature reserves, give full play to their ecological and economic value, and promote the overall improvement of the rural ecological environment.
- Based on the provincial RER subsystem levels and rankings, it is evident that each province should develop specific policies or initiatives tailored to the unique characteristics of their respective RER subsystems. Given the substantial disparities in overall RER and subsystem scores across regions, relevant authorities must reallocate policy resources according to the ecological deficiencies within their rural areas and adopt more modern technologies and collaborative management networks to improve their RER levels significantly.
- The spatial correlation results underscore the necessity for coordinated governance across regions to achieve comprehensive improvements in RER levels, with different regional clustering types corresponding to distinct governance models. However, to attain coordinated governance of the ecological environment, it is imperative to further clarify the rights and responsibilities of diverse governmental and non-governmental entities. Additionally, establishing a cross-province ecological governance cooperation mechanism and formulating unified, comprehensive ecological monitoring indicators are equally crucial.
6. Conclusions and Limitations
6.1. Conclusions
- Based on a robust theoretical framework (DPSIR), this study developed an evaluation system with five subsystems, twelve secondary indicators, and thirty-three tertiary indicators. Unlike previous studies that focused on ecological achievements, the evaluation tool of this study presents a complex, multi-attribute, and multi-level system, which helps to comprehensively measure the RER development level in specific dimensions.
- By employing the entropy weight method, this study managed to objectively determine the weights of each indicator based on a national dataset and established the validity of the index system for evaluation works. The developed evaluation index system can be used for future long-term evaluation and yearly monitoring of RER development at the national and provincial levels.
- This study used the TOPSIS method based on Euclidean distance to generate composite evaluation scores for the overall and subsystem RER levels of each province. Those scores and ranking information can be an effective diagnosis tool to identify strengths and weaknesses of RER development in each province. Then, the development strategies and priorities can be adjusted accordingly. More adaptive policies and public resources can be more efficiently allocated to increase the overall RER levels.
- This study revealed the geospatial autocorrelation of RER levels on global and local dimensions. On the global dimension, both overall RER levels and individual subsystems’ RER levels have positive geospatial autocorrelations. This represents a tendency for nearby provinces to exhibit relatively similar RER levels. This trend is also confirmed by the low–low and high–high patterns of autocorrelations in the local dimensions. Given that geospatial aggregations frequently exist across different subsystems, it is recommended that hot spots (high–high areas) establish demonstration sites to expand the positive driving role; cold spots (low–low areas) need more attention and supportive policies to remove obstacles to improving RER levels.
6.2. Limitation and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Westlund, H.; Zheng, X.; Liu, Y. Bottom-up initiatives and revival in the face of rural decline: Case studies from China and Sweden. J. Rural Stud. 2016, 47, 506–513. [Google Scholar] [CrossRef]
- The World Bank. World Bank Open Data. Available online: https://data.worldbank.org (accessed on 24 May 2024).
- FAO. FAO Framework on Rural Extreme Poverty. Towards Reaching Target 1.1 of the Sustainable Development Goals|Policy Support and Governance|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1201664/ (accessed on 24 May 2024).
- Augère-Granier, M.L.; McEldowney, J. EU Rural Development Policy Impact, Challenges and Outlook; European Parliamentary Research Service: Brussels, Belgium, 2021. [Google Scholar]
- Berkhout, P.; Hart, K.; Kuhmonen, T. EU Rural Development Policies: Present and Future. In EU Bioeconomy Economics and Policies: Volume II; Dries, L., Heijman, W., Jongeneel, R., Purnhagen, K., Wesseler, J., Eds.; Palgrave Advances in Bioeconomy: Economics and Policies; Springer International Publishing: Cham, Switzerland, 2019; pp. 213–241. ISBN 978-3-030-28641-5. [Google Scholar]
- Cohen, S.A.; Greaney, M.L. Aging in Rural Communities. Curr. Epidemiol. Rep. 2022, 10, 1–16. [Google Scholar] [CrossRef]
- McIntyre, A.C.; Cody, S.L.; Ezemenaka, C.J.; Johnson, K.; Mugoya, G.; Foster, P. HIV Knowledge, Risk Factors, and Utilization of Services in the US Rural Deep South. J. Racial Ethn. Health Disparities 2023, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Congmou, Z.; Li, Y.; Dong, B.; Tan, K.; Deng, X. Agricultural space function transitions in rapidly urbanizing areas and their impacts on habitat quality: An urban–Rural gradient study. Environ. Impact Assess. Rev. 2023, 99, 107019. [Google Scholar] [CrossRef]
- Préau, C.; Tournebize, J.; Lenormand, M.; Alleaume, S.; Boussada, V.G.; Luque, S. Habitat connectivity in agricultural landscapes improving multi-functionality of constructed wetlands as nature-based solutions. Ecol. Eng. 2022, 182, 106725. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, Q.; Zhan, L.; Jiang, G.; Si, H. Understanding the nonpoint source pollution loads’ spatiotemporal dynamic response to intensive land use in rural China. J. Environ. Manag. 2022, 315, 115066. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, S.; Hou, X.; Sun, Y.; Beazley, R. Air pollution and cause-specific mortality: A comparative study of urban and rural areas in China. Chemosphere 2021, 262, 127884. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Hu, C.; Yuan, J.; Zhang, A.; Liu, X. Toward an ecological civilization: Exploring changes in China’s land use policy over the past 35 years using text mining. J. Clean. Prod. 2023, 427, 139265. [Google Scholar] [CrossRef]
- CAP at a Glance—European Commission. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-glance_en (accessed on 22 July 2024).
- Jaeger, J.; McLaughlin, K.; Neuberger, J.; Dellesky, C. Does Biden’s American Jobs Plan Stack Up on Climate and Jobs? World Resources Institute: Washington, DC, USA, 2021. [Google Scholar]
- Saha, D.; Rudee, A.; Leslie-Bole, H.; Cyrs, T. The Economic Benefits of the New Climate Economy in Rural America; World Resources Institute: Washington, DC, USA, 2021. [Google Scholar]
- Cabinet Office. Current Condition and Future Development of Regional Revitalisation; Cabinet Office: London, UK, 2019. [Google Scholar]
- Dilley, L.; Gkartzios, M.; Odagiri, T. Developing counterurbanisation: Making sense of rural mobility and governance in Japan. Habitat Int. 2022, 125, 102595. [Google Scholar] [CrossRef]
- Yang, G.; Gui, Q.; Liu, J.; Chen, X.; Cheng, S. Spatial-temporal evolution and driving factors of ecological security in China based on DPSIR-DEA model: A case study of the Three Gorges reservoir area. Ecol. Indic. 2023, 154, 110777. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, N.; Chen, K.; Wu, C. Intensification of compound temperature extremes by rapid urbanization under static and dynamic Urban-rural division: A comparative case study in Hunan Province, Central-South China. Sci. Total Environ. 2024, 908, 168325. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Wang, D.; Lu, H.; Liu, G. Temporal and spatial heterogeneity of land use, urbanization, and ecosystem service value in China: A national-scale analysis. J. Clean. Prod. 2023, 418, 137911. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, S.; Yung, E.H.K.; Chan, E.H.W.; Luan, B.; Chen, Y. On the urban compactness to ecosystem services in a rapidly urbanising metropolitan area: Highlighting scale effects and spatial non–stationary. Environ. Impact Assess. Rev. 2023, 98, 106975. [Google Scholar] [CrossRef]
- Rogers, S.; Wang, Z.J.-H.; He, J. Farmers’ practices and the political ecology of agrochemicals in rural China. Geoforum 2023, 141, 103751. [Google Scholar] [CrossRef]
- Yin, Q.; Sui, X.; Ye, B.; Zhou, Y.; Li, C.; Zou, M.; Zhou, S. What role does land consolidation play in the multi-dimensional rural revitalization in China? A research synthesis. Land Use Policy 2022, 120, 106261. [Google Scholar] [CrossRef]
- He, S.; Zhang, Y. Reconceptualising the rural through planetary thinking: A field experiment of sustainable approaches to rural revitalisation in China. J. Rural Stud. 2022, 96, 42–52. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Y.; Li, M. The emergence of counter-urbanisation in China: Can it be a pathway for rural revitalisation? Habitat Int. 2024, 144, 102998. [Google Scholar] [CrossRef]
- Hansen, M.H.; Li, H.; Svarverud, R. Ecological civilization: Interpreting the Chinese past, projecting the global future. Glob. Environ. Change 2018, 53, 195–203. [Google Scholar] [CrossRef]
- Geng, Q.; Lo, K. Global ecological civilization: An analysis of macro-level policies of the Belt and Road Initiative. Res. Glob. 2023, 7, 100141. [Google Scholar] [CrossRef]
- Wei, F.; Cui, S.; Liu, N.; Chang, J.; Ping, X.; Ma, T.; Xu, J.; Swaisgood, R.R.; Locke, H. Ecological civilization: China’s effort to build a shared future for all life on Earth. Natl. Sci. Rev. 2021, 8, nwaa279. [Google Scholar] [CrossRef]
- Liu, Y. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, N. The spatial and temporal evolution of coordinated ecological and socioeconomic development in the provinces along the Silk Road Economic Belt in China. Sustain. Cities Soc. 2019, 47, 101466. [Google Scholar] [CrossRef]
- Zhu, C.; Lin, Y.; Zhang, J.; Gan, M.; Xu, H.; Li, W.; Yuan, S.; Wang, K. Exploring the relationship between rural transition and agricultural eco-environment using a coupling analysis: A case study of Zhejiang Province, China. Ecol. Indic. 2021, 127, 107733. [Google Scholar] [CrossRef]
- Ye, X.; Chuai, X. Have rural settlement changes harmed ecosystem carbon in China? Appl. Geogr. 2023, 153, 102917. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y. Exploring the effects of rural human settlement on rural development: Evidence from Xianju County in Zhejiang Province, China. Environ. Dev. 2023, 46, 100845. [Google Scholar] [CrossRef]
- Huang, A.; Liu, B.; Zhang, A.; Zhan, J. Coordinated development of rural habitat in China: A study of measurement, spatio-temporal evolution and convergence. J. Clean. Prod. 2023, 398, 136651. [Google Scholar] [CrossRef]
- Zhang, R.; Yuan, Y.; Li, H.; Hu, X. Improving the framework for analyzing community resilience to understand rural revitalization pathways in China. J. Rural Stud. 2022, 94, 287–294. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, P.; Zhu, Y.; Zhang, H. Study on comprehensive evaluation of human settlements quality in Qinghai Province, China. Ecol. Indic. 2023, 154, 110520. [Google Scholar] [CrossRef]
- Li, X.; Lei, L. Evaluating rural sustainable land use from a system perspective based on the ecosystem service value. Reg. Sustain. 2023, 4, 96–114. [Google Scholar] [CrossRef]
- Montalvo-Navarrete, J.M.; Lasso-Palacios, A.P. Energy access sustainability criteria definition for Colombian rural areas. Renew. Sustain. Energy Rev. 2024, 189, 113922. [Google Scholar] [CrossRef]
- Gainsbury, A.M.; Santos, E.G.; Wiederhecker, H. Does urbanization impact terrestrial vertebrate ectotherms across a biodiversity hotspot? Sci. Total Environ. 2022, 835, 155446. [Google Scholar] [CrossRef] [PubMed]
- Renard, D.; Rhemtulla, J.M.; Bennett, E.M. Historical dynamics in ecosystem service bundles. Proc. Natl. Acad. Sci. USA 2015, 112, 13411–13416. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, X.; Liu, X.; Wang, W.; Wang, L. Assessing agricultural non-point source pollution loads in typical basins of upper Yellow River by incorporating critical impacting factors. Process Saf. Environ. Prot. 2023, 177, 17–28. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, L.; Tang, Y.; Jiang, Y. Understanding and evaluating the resilience of rural human settlements with a social-ecological system framework: The case of Chongqing Municipality, China. Land Use Policy 2024, 136, 106966. [Google Scholar] [CrossRef]
- Sun, X.; Chu, D.; Li, Q.; Shi, Y.; Lu, L.; Bi, A. Dynamic successive assessment of Rural Human Settlements Environment in China. Ecol. Indic. 2023, 157, 111177. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Yang, X.; Zhang, Z.; Gao, S.; Zhou, Q.; Zhuo, Y.; Wen, X.; Guo, Z. Evaluating urban ecological civilization and its obstacle factors based on integrated model of PSR-EVW-TOPSIS: A case study of 13 cities in Jiangsu Province, China. Ecol. Indic. 2021, 133, 108431. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, J.; Li, D.; Liu, H.; Xie, Y.; Song, T.; Luo, S. Evaluation of the ecological civilization index of China based on the double benchmark progressive method. J. Clean. Prod. 2019, 222, 511–519. [Google Scholar] [CrossRef]
- Yusheng, K.; Ntarmah, A.H. Developing a rural ecological assessment index for Jiangsu Province, China. J. Nat. Conserv. 2021, 64, 126093. [Google Scholar] [CrossRef]
- Augusiak, J.; Van Den Brink, P.J.; Grimm, V. Merging validation and evaluation of ecological models to ‘evaludation’: A review of terminology and a practical approach. Ecol. Model. 2014, 280, 117–128. [Google Scholar] [CrossRef]
- Meng, F.; Guo, J.; Guo, Z.; Lee, J.C.K.; Liu, G.; Wang, N. Urban ecological transition: The practice of ecological civilization construction in China. Sci. Total Environ. 2021, 755, 142633. [Google Scholar] [CrossRef]
- Hu, X.; Ma, C.; Huang, P.; Guo, X. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection—A case of Weifang City, China. Ecol. Indic. 2021, 125, 107464. [Google Scholar] [CrossRef]
- Chen, H.; Xu, J.; Zhang, K.; Guo, S.; Lv, X.; Mu, X.; Yang, L.; Song, Y.; Hu, X.; Ma, Y.; et al. New insights into the DPSIR model: Revealing the dynamic feedback mechanism and efficiency of ecological civilization construction in China. J. Clean. Prod. 2022, 348, 131377. [Google Scholar] [CrossRef]
- Čustović, H.; Kovačević, Z.; Tvica, M. Rural Ecology; University of Sarajevo: Sarajevo, Bosnia and Herzegovina, 2013; ISBN 978-9958-597-35-0. [Google Scholar]
- Cao, L.; Xu, X. Rural Ecological Revitalization: Overall Objectives, Key Tasks and Promotion Countermeasures. Adm. Reform 2022, 11, 14–22. (In Chinese) [Google Scholar] [CrossRef]
- Bao, X. Rural Ecological Revitalization: Overall Objectives, Key Tasks and Promotion Countermeasures. Huxiang Forum Chin. 2023, 36, 45–55. [Google Scholar] [CrossRef]
- Nie, X.; Li, X.; Lyu, C.; Su, Y.; Wang, H. Can ecological compensation based on the transfer of development rights (TDR) improve ecosystem service value? A multi-scenario simulation. Land Use Policy 2024, 138, 107024. [Google Scholar] [CrossRef]
- Liu, Y.; Zang, Y.; Yang, Y. China’s rural revitalization and development: Theory, technology and management. J. Geogr. Sci. 2020, 30, 1923–1942. [Google Scholar] [CrossRef]
- Yang, X.N.; Zhang, M. Reflections on the Promotion of Farmers’ Ecological Consciousness at This Stage. In Proceedings of the 2021 6th International Conference on Social Sciences and Economic Development (ICSSED 2021), Nanjing, China, 12–14 March 2021; pp. 138–142. [Google Scholar]
- Liu, S.; Dong, Y.; McConkey, K.R.; Tran, L.-S.P.; Wang, F.; Liu, H.; Wu, G. Scientific concept and practices of life community of mountains, rivers, forests, farmlands, lakes, grasslands, and deserts in China. Ambio 2023, 52, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Hou, L. SDGs-oriented evaluation of the sustainability of rural human settlement environment in Zhejiang, China. Heliyon 2023, 9, e13492. [Google Scholar] [CrossRef]
- Yu, Y.; Yin, S.; Zhang, A. Clean energy-based rural low carbon transformation considering the supply and demand of new energy under government participation: A three-participators game model. Energy Rep. 2022, 8, 12011–12025. [Google Scholar] [CrossRef]
- Zu, J.; Hao, J.M.; Chen, L.; Zhang, Y.B.; Wang, J.; Kang, L.T.; Guo, J.H. Analysis on trinity connotation and approach to protect quantity, quality and ecology of cultivated land. J. China Agric. Univ. Chin. 2018, 23, 84–95. [Google Scholar] [CrossRef]
- Chen, C.; Woods, M.; Chen, J.; Liu, Y.; Gao, J. Globalization, state intervention, local action and rural locality reconstitution—A case study from rural China. Habitat Int. 2019, 93, 102052. [Google Scholar] [CrossRef]
- Schjønning, P.; Van Den Akker, J.J.H.; Keller, T.; Greve, M.H.; Lamandé, M.; Simojoki, A.; Stettler, M.; Arvidsson, J.; Breuning-Madsen, H. Driver-Pressure-State-Impact-Response (DPSIR) Analysis and Risk Assessment for Soil Compaction—A European Perspective. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2015; Volume 133, pp. 183–237. ISBN 978-0-12-803052-3. [Google Scholar]
- Lai, S.; Sha, J.; Eladawy, A.; Li, X.; Wang, J.; Kurbanov, E.; Lin, Z.; Wu, L.; Han, R.; Su, Y.-C. Evaluation of ecological security and ecological maintenance based on pressure-state-response (PSR) model, case study: Fuzhou city, China. Hum. Ecol. Risk Assess. Int. J. 2022, 28, 734–761. [Google Scholar] [CrossRef]
- Gari, S.R.; Newton, A.; Icely, J.D. A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean Coast. Manag. 2015, 103, 63–77. [Google Scholar] [CrossRef]
- Niemeijer, D.; De Groot, R.S. Framing environmental indicators: Moving from causal chains to causal networks. Environ. Dev. Sustain. 2008, 10, 89–106. [Google Scholar] [CrossRef]
- Hazarika, N.; Nitivattananon, V. Strategic assessment of groundwater resource exploitation using DPSIR framework in Guwahati city, India. Habitat Int. 2016, 51, 79–89. [Google Scholar] [CrossRef]
- Jolly, C.L. Four theories of population change and the environment. Popul. Environ. 1994, 16, 61–90. [Google Scholar] [CrossRef]
- Sherbinin, A.D.; Carr, D.; Cassels, S.; Jiang, L. Population and Environment. Annu. Rev. Environ. Resour. 2007, 32, 345–373. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Sánchez-Rodríguez, R.; Fragkias, M. The New Geography of Contemporary Urbanization and the Environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef]
- Ju, K.; Wang, J.; Wei, X.; Li, H.; Xu, S. A comprehensive evaluation of the security of the water-energy-food systems in China. Sustain. Prod. Consum. 2023, 39, 145–161. [Google Scholar] [CrossRef]
- Langemeyer, J.; Gómez-Baggethun, E.; Haase, D.; Scheuer, S.; Elmqvist, T. Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environ. Sci. Policy 2016, 62, 45–56. [Google Scholar] [CrossRef]
- Zheng, F.; Guo, X.; Tang, M.; Zhu, D.; Wang, H.; Yang, X.; Chen, B. Variation in pollution status, sources, and risks of soil heavy metals in regions with different levels of urbanization. Sci. Total Environ. 2023, 866, 161355. [Google Scholar] [CrossRef] [PubMed]
- Li, Z. Assessing potential soil pollution from plant waste disposal: A modeling analysis of pesticide contamination. Sci. Total Environ. 2024, 907, 167859. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, F.; Lun, F.; Gao, Y.; Ao, J.; Zhou, J. Research on a diagnostic system of rural vitalization based on development elements in China. Land Use Policy 2020, 92, 104421. [Google Scholar] [CrossRef]
- Chen, S.; Yao, S. Evaluation and dynamic prediction of ecological security from the perspective of sustainable development: A case study of Shaanxi Province, China. Environ. Sci. Pollut. Res. 2022, 29, 42331–42346. [Google Scholar] [CrossRef]
- Chu, V.H.Y.; Lam, W.-F.; Williams, J.M. Building robustness for rural revitalization: A social-ecological system perspective. J. Rural Stud. 2023, 101, 103042. [Google Scholar] [CrossRef]
- Behzadian, M.; Khanmohammadi Otaghsara, S.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Haining, R. Spatial Autocorrelation. In International Encyclopedia of the Social & Behavioral Sciences; Elsevier: Amsterdam, The Netherlands, 2015; pp. 105–110. ISBN 978-0-08-097087-5. [Google Scholar]
- Shaikh, S.F.E.A.; See, S.C.; Richards, D.; Belcher, R.N.; Grêt-Regamey, A.; Galleguillos Torres, M.; Carrasco, L.R. Accounting for spatial autocorrelation is needed to avoid misidentifying trade-offs and bundles among ecosystem services. Ecol. Indic. 2021, 129, 107992. [Google Scholar] [CrossRef]
- Xu, K.; Fang, Y. Spatial differentiation and type identification of rural territorial multi-functions in Liaoning Province. Geogr. Res. 2019, 38, 482–495. (In Chinese) [Google Scholar]
- Wang, Y.; Lv, W.; Wang, M.; Chen, X.; Li, Y. Application of improved Moran’s I in the evaluation of urban spatial development. Spat. Stat. 2023, 54, 100736. [Google Scholar] [CrossRef]
- Xiao, W.; Lv, X.; Zhao, Y.; Sun, H.; Li, J. Ecological resilience assessment of an arid coal mining area using index of entropy and linear weighted analysis: A case study of Shendong Coalfield, China. Ecol. Indic. 2020, 109, 105843. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, X. Evaluating water resource carrying capacity in Pearl River-West River economic Belt based on portfolio weights and GRA-TOPSIS-CCDM. Ecol. Indic. 2024, 161, 111942. [Google Scholar] [CrossRef]
- Long, H.; Ma, L.; Zhang, Y.; Qu, L. Multifunctional rural development in China: Pattern, process and mechanism. Habitat Int. 2022, 121, 102530. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, X.; Zhao, B.; Xiong, X.; Li, Y.; Zhang, M. Evaluation of ecological carrying capacity in Yangtze River Economic Belt and analysis of its spatial pattern evolution. Ecol. Indic. 2022, 144, 109535. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.; Wang, J.; Liu, F.; Cole, J.; Sha, J.; Jiao, Y.; Zhou, J. The establishment of an eco-environmental evaluation model for southwest China and eastern South Africa based on the DPSIR framework. Ecol. Indic. 2022, 145, 109687. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, L. Characteristics and driving factors of rural livelihood transition in the east coastal region of China: A case study of suburban Shanghai. J. Rural Stud. 2016, 43, 145–158. [Google Scholar] [CrossRef]
- He, L.; Zhang, X.; Zhang, X. Urbanization with the pursuit of efficiency and ecology: Theory and evidence from China. Environ. Impact Assess. Rev. 2023, 103, 107274. [Google Scholar] [CrossRef]
- Wu, M.; Liu, Y.; Xu, Z.; Yan, G.; Ma, M.; Zhou, S.; Qian, Y. Spatio-temporal dynamics of China’s ecological civilization progress after implementing national conservation strategy. J. Clean. Prod. 2021, 285, 124886. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, D.; Jiang, Q. Chinese Freshwater aquaculture: A comparative analysis of the competitiveness on regional aquaculture industries. Aquac. Fish. 2022, 9, 860–870. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Q.; Xue, W.; Xu, Z. Impacts of nature reserves on local residents’ income in China. Ecol. Econ. 2022, 199, 107494. [Google Scholar] [CrossRef]
- Cheng, Q.; Cheng, X.; Ma, K.; Zhao, X.; Qu, J. Offering the win-win solutions between ecological conservation and livelihood development: National parks in Qinghai, China. Geogr. Sustain. 2020, 1, 251–255. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, X.; Wei, Z.; Chen, Z.; Zhou, H. Progress, problems, and key directions for establishing the first national park demonstration province in Qinghai, China. Int. J. Geoheritage Parks 2021, 9, 526–541. [Google Scholar] [CrossRef]
- World Sesources Institute Aqueduct Water Risk Atlas. Available online: https://www.wri.org/applications/aqueduct/water-risk-atlas/#/?advanced=false&basemap=hydro&indicator=w_awr_def_tot_cat&lat=48.20514863274843&lng=105.73243260383607&mapMode=view&month=1&opacity=0.5&ponderation=DEF&predefined=false&projection=absolute&scenario=optimistic&scope=baseline&threshold&timeScale=annual&year=baseline&zoom=3 (accessed on 18 June 2024).
- Wang, Y.; Wang, Y.; Su, X.; Qi, L.; Liu, M. Evaluation of the comprehensive carrying capacity of interprovincial water resources in China and the spatial effect. J. Hydrol. 2019, 575, 794–809. [Google Scholar] [CrossRef]
- Lv, B.; Liu, C.; Li, T.; Meng, F.; Fu, Q.; Ji, Y.; Hou, R. Evaluation of the water resource carrying capacity in Heilongjiang, eastern China, based on the improved TOPSIS model. Ecol. Indic. 2023, 150, 110208. [Google Scholar] [CrossRef]
- Yan, H.; Lin, Y.; Chen, Q.; Zhang, J.; He, S.; Feng, T.; Wang, Z.; Chen, C.; Ding, J. A Review of the Eco-Environmental Impacts of the South-to-North Water Diversion: Implications for Interbasin Water Transfers. Engineering 2023, 30, 161–169. [Google Scholar] [CrossRef]
- GIZ. China PE Mulch Film Application Status Analysis Report; GIZ: Beijing, China, 2021. [Google Scholar]
- Dong, H.; Yang, G.; Zhang, Y.; Yang, Y.; Wang, D.; Zhou, C. Recycling, disposal, or biodegradable-alternative of polyethylene plastic film for agricultural mulching? A life cycle analysis of their environmental impacts. J. Clean. Prod. 2022, 380, 134950. [Google Scholar] [CrossRef]
- Duan, L.; Wang, L. How does the construction of China’s ecological civilization affect the health burden of urban and rural residents? Chin. J. Popul. Resour. Environ. 2022, 20, 369–382. [Google Scholar] [CrossRef]
- Fu, C.; Cao, Y.; Tong, J. Biases towards water pollution treatment in Chinese rural areas—A field study in villages at Shandong Province of China. Sustain. Futur. 2020, 2, 100006. [Google Scholar] [CrossRef]
- Yang, Y. Coupling coordination analysis of rural production-living-ecological space in the Beijing-Tianjin-Hebei region. Ecol. Indic. 2020, 117, 106512. [Google Scholar] [CrossRef]
- Ma, X.; Hua, Y. Research on the Construction of Evaluation Index System for Rural Ecological Revitalization Effectiveness—Based on the Comparison of Jiangsu, Zhejiang and Anhui Provinces. Chin. J. Agric. Resour. Reg. Plan. 2021, 42, 60–67. [Google Scholar]
- Liu, L.; Wang, X.; Meng, X.; Cai, Y. The coupling and coordination between food production security and agricultural ecological protection in main food-producing areas of China. Ecol. Indic. 2023, 154, 110785. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment Ecological Progress on the Qinghai-Tibet Plateau. Available online: https://english.mee.gov.cn/Resources/publications/Whitep/202012/t20201210_812354.shtml (accessed on 14 May 2024).
- UNDP. C-PAR 2 Indigenous Peoples Plan (August 1st).docx; UNDP: New York, NY, USA, 2022. [Google Scholar]
- Liu, Y.; Lü, Y.; Zhao, M.; Fu, B. Integrative analysis of biodiversity, ecosystem services, and ecological vulnerability can facilitate improved spatial representation of nature reserves. Sci. Total Environ. 2023, 879, 163096. [Google Scholar] [CrossRef]
- Zhu, L.; Lo, K. Eco-socialism and the political ecology of forest conservation in the Greater Khingan Range, China. Polit. Geogr. 2022, 93, 102533. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Jia, J.; Yang, H. Relationship between multifunctionality and rural sustainable development: Insights from 129 counties of the Sichuan Province, China. Resour. Environ. 2022, 20, 285–294. [Google Scholar] [CrossRef]
- Tao, J.; Wang, Z.; Xu, Y.; Zhao, B.; Liu, J. Can the digital economy boost rural residents’ income? Evidence from China based on the spatial Durbin model. Econ. Anal. Policy 2024, 81, 856–872. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Zhou, Y. Assessing urban resilience in China from the perspective of socioeconomic and ecological sustainability. Environ. Impact Assess. Rev. 2023, 102, 107163. [Google Scholar] [CrossRef]
- Jing, N.; Cai, W. Analysis on the spatial distribution of logistics industry in the developed East Coast Area in China. Ann. Reg. Sci. 2010, 45, 331–350. [Google Scholar] [CrossRef]
- Tu, R.; Wan, A.; Chen, H.; Liu, Y.; Qi, X. Rural landscape comprehensive evaluation system and case study based on environmental value-added. Environ. Dev. Sustain. 2024, 1–20. [Google Scholar] [CrossRef]
- Sun, C.; Wu, Y.; Zou, W.; Zhao, L.; Liu, W. A Rural Water Poverty Analysis in China Using the DPSIR-PLS Model. Water Resour. Manag. 2018, 32, 1933–1951. [Google Scholar] [CrossRef]
- Wei, Y.; Zhu, X.; Li, Y.; Yao, T.; Tao, Y. Influential factors of national and regional CO2 emission in China based on combined model of DPSIR and PLS-SEM. J. Clean. Prod. 2019, 212, 698–712. [Google Scholar] [CrossRef]
Subsystem | Secondary Indicators | Tertiary Indicators | Direction | Unit | Weights | Data Source |
---|---|---|---|---|---|---|
Driver subsystem (0.113) | Economic development drivers (0.077) | Per capita disposable income of rural residents. | + | % | 0.04732 | A |
Rural Engel coefficient. | − | % | 0.01602 | B | ||
Total output value index of agriculture, forestry, animal husbandry, and fisheries. | + | % | 0.01366 | A | ||
Social development drivers (0.036) | Population density. | − | Population in the research area/total area (10 k person/10 k hm2). | 0.00699 | A | |
Urbanization rate of resident population. | − | (%) | 0.02892 | A and B | ||
Pressure subsystem (0.130) | Agricultural production (0.050) | Multiple cropping intensity. | − | The total area of crops sown (or transplanted) throughout the year/total cropland area (%). | 0.01886 | B |
* Livestock husbandry intensity. | − | Scale of livestock and poultry farming (hog farming)/total cropland area (10 k/10 k hm2). | 0.00705 | A and I | ||
Inland aquaculture intensity. | − | Aquaculture production/total aquaculture area (10 k t/10 k hm2) | 0.02371 | A and B | ||
Resource consumption pressure (0.040) | Rural electricity consumption. | − | (1 b kWh). | 0.01076 | B | |
Fuel consumption per capita in rural areas. | − | Agricultural diesel usage/total cropland area (10 k t/10 k hm2). | 0.01445 | B, C, and E | ||
Water use per unit of agriculture. | − | Total water use in agriculture/total cropland area (10 k t/10 k hm2). | 0.01458 | B and C | ||
Environmental carrying pressure (0.041) | Sulfur dioxide emissions to air. | − | (10 k t). | 0.01649 | A, B, and C | |
Ammonia nitrogen emissions from agricultural sources. | − | (10 k t). | 0.02446 | A, B, C, and I | ||
State subsystem (0.271) | Rural production and living state (0.144) | Water resources per capita. | + | Total water resources/population in the research area (10 b m3/person). | 0.10419 | A, B, and C |
Percentage of sandy cropland area. | − | Sandy cropland/total cropland area (%). | 0.03971 | B and C | ||
Rural ecosystems state (0.127) | Percentage of forest cover. | + | Forest area/total research area (%). | 0.00953 | B and C | |
Percentage of area in nature reserves. | + | Area of sandy soil/total cropland area (%). | 0.11731 | B and C | ||
Impact subsystem (0.148) | Soil ecological impacts (0.051) | Agricultural mulch film used per unit of total planted area of crops. | − | Agricultural film usage/total cropland area (10 k t/10 k hm2). | 0.00861 | B and C |
Intensity of pesticide use. | − | Pesticide usage/total cropland area (10 k t/10 k hm2). | 0.02633 | B and C | ||
Intensity of fertilizer use. | − | Chemical fertilizer usage/total cropland area (10 k t/10 k hm2). | 0.01614 | B and C | ||
Water ecological impacts (0.051) | Chemical oxygen demand from agricultural sources. | − | (10 k t). | 0.02393 | A B C | |
Surface water quality of class III or above compliance rate. | + | (%). | 0.02694 | F | ||
Climate ecological impacts (0.046) | Number of days with air quality at or better than level two. | + | Number of days with air quality at level 2/Days of the year (%). | 0.02444 | B, F, and C | |
Percentage of total area of crops affected by natural disasters. | − | (%). | 0.02187 | A, B, and C | ||
Response subsystem (0.338) | Technology response (0.108) | Comprehensive utilization rate of straw. | + | (%). | 0.01104 | B, E, F, and H |
Agricultural mulch film recycling rate. | + | (%). | 0.00948 | B, E, F, and H | ||
Comprehensive livestock and poultry manure utilization rate. | + | (%). | 0.05458 | B, E, F, and H | ||
Percentage of irrigated land with water-saving devices. | + | Total area irrigated by water-saving facilities/total cropland area (%). | 0.03293 | B | ||
Socioeconomic response (0.230) | Rural domestic sewage treatment rate. | + | (%). | 0.07644 | B, E, F, and H | |
Sanitary latrine coverage rate. | + | (%). | 0.02586 | B, E, F, and H | ||
Ratio of local financial expenditure on environmental protection to total budgetary expenditure. | + | Local financial expenditure on environmental protection/local finance general budget expenditure (%). | 0.03751 | D | ||
Proportion of afforestation area in the year. | + | Total afforestation area/total research area (%). | 0.04840 | B | ||
Proportion of newly added soil and water loss prevention area. | + | Additional area for soil erosion control/area of soil erosion in previous years (%). | 0.04150 | B |
Region | D+ | D− | Ci | Ranking |
---|---|---|---|---|
Qinghai | 0.116 | 0.177 | 0.604 | 1 |
Shanghai | 0.156 | 0.133 | 0.461 | 2 |
Beijing | 0.167 | 0.126 | 0.43 | 3 |
Zhejiang | 0.163 | 0.119 | 0.422 | 4 |
Chongqing | 0.164 | 0.107 | 0.394 | 5 |
Fujian | 0.168 | 0.102 | 0.378 | 6 |
Tianjin | 0.18 | 0.108 | 0.375 | 7 |
Sichuan | 0.16 | 0.093 | 0.366 | 8 |
Gansu | 0.164 | 0.094 | 0.365 | 9 |
Hainan | 0.171 | 0.09 | 0.346 | 10 |
Shaanxi | 0.174 | 0.09 | 0.341 | 11 |
Jiangsu | 0.181 | 0.091 | 0.335 | 12 |
Jilin | 0.173 | 0.086 | 0.333 | 13 |
Guizhou | 0.181 | 0.089 | 0.33 | 14 |
Jiangxi | 0.175 | 0.086 | 0.33 | 15 |
Guangxi | 0.18 | 0.087 | 0.327 | 16 |
Ningxia | 0.175 | 0.084 | 0.323 | 17 |
Hebei | 0.186 | 0.087 | 0.319 | 18 |
Yunnan | 0.172 | 0.08 | 0.319 | 19 |
Hunan | 0.176 | 0.082 | 0.317 | 20 |
Xinjiang | 0.175 | 0.081 | 0.315 | 21 |
Heilongjiang | 0.171 | 0.079 | 0.315 | 22 |
Shandong | 0.185 | 0.078 | 0.297 | 23 |
Liaoning | 0.178 | 0.075 | 0.297 | 24 |
Guangdong | 0.185 | 0.077 | 0.295 | 25 |
Hubei | 0.18 | 0.074 | 0.291 | 26 |
Shanxi | 0.197 | 0.078 | 0.285 | 27 |
Inner Mongolia | 0.187 | 0.07 | 0.271 | 28 |
Henan | 0.186 | 0.068 | 0.267 | 29 |
Anhui | 0.191 | 0.065 | 0.254 | 30 |
Region | Driver Subsystem | Pressure Subsystem | State Subsystem | Impact Subsystem | Response Subsystem | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ci | Rank | Ci | Rank | Ci | Rank | Ci | Rank | Ci | Rank | |
Beijing | 0.559 | 3 | 0.675 | 8 | 0.148 | 22 | 0.493 | 24 | 0.757 | 1 |
Tianjin | 0.487 | 6 | 0.680 | 7 | 0.071 | 28 | 0.509 | 22 | 0.544 | 5 |
Hebei | 0.507 | 4 | 0.553 | 23 | 0.083 | 26 | 0.435 | 28 | 0.446 | 9 |
Shanxi | 0.326 | 24 | 0.697 | 5 | 0.077 | 27 | 0.420 | 29 | 0.372 | 14 |
Inner Mongolia | 0.348 | 16 | 0.643 | 12 | 0.130 | 23 | 0.474 | 25 | 0.266 | 28 |
Liaoning | 0.365 | 12 | 0.632 | 14 | 0.188 | 16 | 0.414 | 30 | 0.333 | 20 |
Jilin | 0.341 | 18 | 0.756 | 2 | 0.219 | 11 | 0.567 | 18 | 0.346 | 17 |
Heilongjiang | 0.325 | 26 | 0.658 | 11 | 0.291 | 3 | 0.494 | 23 | 0.222 | 30 |
Shanghai | 0.578 | 2 | 0.659 | 10 | 0.232 | 9 | 0.678 | 10 | 0.612 | 2 |
Jiangsu | 0.503 | 5 | 0.518 | 26 | 0.070 | 29 | 0.645 | 11 | 0.447 | 8 |
Zhejiang | 0.643 | 1 | 0.688 | 6 | 0.201 | 14 | 0.707 | 7 | 0.609 | 3 |
Anhui | 0.349 | 15 | 0.626 | 15 | 0.124 | 24 | 0.562 | 20 | 0.239 | 29 |
Fujian | 0.411 | 8 | 0.547 | 25 | 0.223 | 10 | 0.603 | 14 | 0.538 | 6 |
Jiangxi | 0.355 | 14 | 0.558 | 22 | 0.236 | 7 | 0.700 | 8 | 0.350 | 16 |
Shandong | 0.413 | 7 | 0.550 | 24 | 0.060 | 30 | 0.466 | 26 | 0.432 | 10 |
Henan | 0.368 | 11 | 0.620 | 16 | 0.093 | 25 | 0.462 | 27 | 0.324 | 22 |
Hubei | 0.355 | 13 | 0.473 | 28 | 0.181 | 18 | 0.545 | 21 | 0.318 | 23 |
Hunan | 0.373 | 9 | 0.491 | 27 | 0.209 | 12 | 0.631 | 13 | 0.344 | 18 |
Guangdong | 0.373 | 10 | 0.424 | 30 | 0.183 | 17 | 0.588 | 15 | 0.341 | 19 |
Guangxi | 0.338 | 19 | 0.459 | 29 | 0.241 | 4 | 0.715 | 6 | 0.330 | 21 |
Hainan | 0.301 | 29 | 0.582 | 19 | 0.232 | 8 | 0.579 | 16 | 0.390 | 13 |
Chongqing | 0.329 | 23 | 0.610 | 17 | 0.180 | 19 | 0.804 | 2 | 0.544 | 4 |
Sichuan | 0.345 | 17 | 0.563 | 20 | 0.238 | 6 | 0.721 | 5 | 0.415 | 11 |
Guizhou | 0.297 | 30 | 0.562 | 21 | 0.192 | 15 | 0.745 | 3 | 0.355 | 15 |
Yunnan | 0.326 | 25 | 0.583 | 18 | 0.241 | 5 | 0.693 | 9 | 0.284 | 25 |
Shaanxi | 0.330 | 22 | 0.724 | 4 | 0.160 | 20 | 0.569 | 17 | 0.458 | 7 |
Gansu | 0.311 | 28 | 0.744 | 3 | 0.334 | 2 | 0.739 | 4 | 0.270 | 27 |
Qinghai | 0.315 | 27 | 0.784 | 1 | 0.800 | 1 | 0.906 | 1 | 0.283 | 26 |
Ningxia | 0.331 | 21 | 0.638 | 13 | 0.154 | 21 | 0.566 | 19 | 0.407 | 12 |
Xinjiang | 0.333 | 20 | 0.665 | 9 | 0.203 | 13 | 0.644 | 12 | 0.290 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, G.; Wei, Z.; Zheng, H.; Zhu, L. Evaluation Index System of Rural Ecological Revitalization in China: A National Empirical Study Based on the Driver-Pressure-State-Impact-Response Framework. Land 2024, 13, 1270. https://doi.org/10.3390/land13081270
Han G, Wei Z, Zheng H, Zhu L. Evaluation Index System of Rural Ecological Revitalization in China: A National Empirical Study Based on the Driver-Pressure-State-Impact-Response Framework. Land. 2024; 13(8):1270. https://doi.org/10.3390/land13081270
Chicago/Turabian StyleHan, Guang, Zehao Wei, Huawei Zheng, and Liqun Zhu. 2024. "Evaluation Index System of Rural Ecological Revitalization in China: A National Empirical Study Based on the Driver-Pressure-State-Impact-Response Framework" Land 13, no. 8: 1270. https://doi.org/10.3390/land13081270
APA StyleHan, G., Wei, Z., Zheng, H., & Zhu, L. (2024). Evaluation Index System of Rural Ecological Revitalization in China: A National Empirical Study Based on the Driver-Pressure-State-Impact-Response Framework. Land, 13(8), 1270. https://doi.org/10.3390/land13081270