Research on Groundwater Drought and Sustainability in Badain Jaran Desert and Surrounding Areas Based on GRACE Satellite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. GRACE Data
2.2.2. GLDAS Data
2.2.3. In Situ Data
2.3. Methods
2.3.1. Groundwater Storage Estimation
- (1)
- Water Balance Equation
- (2)
- Water Table Fluctuation Method
2.3.2. Groundwater Drought Evaluation
2.3.3. Groundwater Sustainability Evaluation
3. Results
3.1. Reliability of Satellite Data
3.2. Temporal and Spatial Variability of Groundwater Drought
3.3. Groundwater Resource Sustainability Assessment
3.4. Potential Influencing Factors on Groundwater Storage
4. Discussion
4.1. Monitoring Accuracy of GRACE Satellites
4.2. Spatiotemporal Variations in Groundwater Drought
4.3. Impacts of Climate Change and Human Activities on Groundwater
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GWSA | Groundwater Storage Anomaly |
BJDCA | Badain Jaran Desert and its surrounding areas |
BJD | Badain Jaran Desert |
GGDI | Grace Groundwater Drought Index |
SI | Sustainability Index |
References
- Lin, X.; Li, W.; Bai, X.; Han, L.; Ming, D. Spatial variation in groundwater depletion across China under multiple stresses. Front. Environ. Sci. 2022, 10, 1067766. [Google Scholar] [CrossRef]
- Ruan, Y.; Wu, X. Evaluation of groundwater sustainability in arid regions of Northwest China based on GRACE and GLDAS. Arid Zone Res. 2022, 39, 787–800. (In Chinese) [Google Scholar]
- Xi, H.; Chen, Y.; Zhao, X.; Sindikubwabo, C.; Cheng, W. Safety assessment of fragile environment in Badain Jaran Desert and its surrounding areas based on the DPSIR model. Ecol. Indic. 2023, 146, 109874. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Yu, Y.; Zhao, W.; Yang, Q.; Liu, J. Evaluation of groundwater sustainability in the arid Hexi Corridor of Northwestern China, using GRACE, GLDAS and measured groundwater data products. Sci. Total Environ. 2020, 705, 135829. [Google Scholar] [CrossRef] [PubMed]
- Rateb, A.; Scanlon, B.R.; Pool, D.R.; Sun, A.; Zhang, Z.; Chen, J.; Clark, B.; Faunt, C.C.; Haugh, C.J.; Hill, M.; et al. Comparison of groundwater storage changes from GRACE satellites with monitoring and modeling of major U.S. aquifers. Water Resour. Res. 2020, 56, e2020WR027556. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Mukherjee, A.; Saha, D.; Velicogna, I.; Famiglietti, J.S. Validation of GRACE-based groundwater storage anomaly using in-situ groundwater level measurements in India. J. Hydrol. 2016, 543, 729–738. [Google Scholar] [CrossRef]
- Upadhyay, S.; Shrestha, S.; Loc, H.H.; Mohanasundaram, S.; Dhungana, S.; Lim, S.; Tangdamrongsub, N. Satellite-based estimates of declining groundwater storage in the transboundary Cambodia-Mekong River Delta Aquifer of the Lower Mekong region, Southeast Asia. Hydrogeol. J. 2024, 32, 601–619. [Google Scholar] [CrossRef]
- Ali, S.; Wang, Q.; Liu, D.; Fu, Q.; Mafuzur Rahaman, M.; Abrar Faiz, M.; Cheema, J.M. Estimation of spatio-temporal groundwater storage variations in the Lower Transboundary Indus Basin using GRACE satellite. J. Hydrol. 2022, 605, 127315. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Zhong, M.; Lemoine, J.M.; Biancale, R.; Hsu, H.T.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Long, D.; Scanlon, B.R.; Longuevergne, L.; Sun, A.Y.; Fernando, D.N.; Save, H. GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys. Res. Lett. 2013, 40, 3395–3401. [Google Scholar] [CrossRef]
- Jiao, J.J.; Zhang, X.; Wang, X. Satellite-based estimates of groundwater depletion in the Badain Jaran Desert, China. Sci. Rep. 2015, 5, 8960. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Bloomfield, J.P.; Marchant, B.P.; Bricker, S.H.; Morgan, R.B. Regional analysis of groundwater droughts using hydrograph classification. Hydrol. Earth Syst. Sci. 2015, 19, 4327–4344. [Google Scholar] [CrossRef]
- Wang, N.; Ning, K.; Li, Z.; Wang, Y.; Jia, P.; Ma, L. Holocene high lake levels and pan-lake period on Badain Jaran Desert. Sci. China Earth Sci. 2016, 59, 1633–1641. [Google Scholar] [CrossRef]
- Zhang, H.; Ming, Q. Hydrology and Lake Evolution in the Hyper-Arid Northwest of China and the Formation of Megadunes in the Badain Jaran Desert. Adv. Earth Sci. 2006, 21, 532–538. (In Chinese) [Google Scholar] [CrossRef]
- Yang, X.; Williams, M.A.J. The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China. Catena 2003, 51, 45–60. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, T.; Wang, X. Geomorphology of the megadunes in the Badain Jaran Desert. Geomorphology 2004, 60, 191–203. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, N.; Yu, X.; Zhenmin, N.; Liqiang, Z. Groundwater evaporation estimation based on groundwater dynamics and empirical models: A case study of Sumujilin Lake, Badain Jaran Desert. Arid Zone Res. 2020, 37, 1215–1222. (In Chinese) [Google Scholar] [CrossRef]
- Ma, N.; Wang, N.; Zhao, L.; Zhang, Z.; Dong, C.; Shen, S. Observation of mega-dune evaporation after various rain events in the hinterland of Badain Jaran Desert, China. Chin. Sci. Bull. 2014, 59, 175–182. [Google Scholar] [CrossRef]
- Chen, J.S.; Zhao, X.; Sheng, X.F.; Wang, J.Y.; Gu, W.Z.; Chen, L. Geochemical Information Indicating the Water Recharge to Lakes and Immovable Megadunes in the Badain Jaran Desert. Acta Geol. Sin. Engl. Ed. 2005, 79, 540–546. [Google Scholar] [CrossRef]
- Jin, K.; Rao, W.; Zhang, W.; Zheng, F.; Wang, S. Strontium isotopic and hydrochemical characteristics of shallow groundwater and lake water in the Badain Jaran Desert, North China. Isot. Environ. Health Stud. 2021, 57, 516–534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, N.; Xie, Z.; Ma, X.; Huete, A. Water loss due to increasing planted vegetation over the Badain Jaran Desert, China. Remote Sens. 2018, 10, 134. [Google Scholar] [CrossRef]
- Zhang, H.C.; Chang, F.Q.; Chen, G.J.; Zhen, Q.; Cai, Y.F.; Li, H. Human impact on climate and eco-hydrological systems in the Badain Fijaran desert in northwest China. E3 J. Environ. Res Manag. 2013, 4, 310–317. [Google Scholar]
- Jin, K.; Rao, W.; Wang, S.; Zhang, W.; Zheng, F.; Li, T.; Lu, Y.; Zhang, Q. Stable isotopes (δ18o and δ2h) and chemical characteristics of soil solution in the unsaturated zone of an arid desert. J. Radioanal. Nucl. Chem. 2021, 330, 367–380. [Google Scholar] [CrossRef]
- Chen, R.; Han, C.; Liu, J.; Yang, Y.; Liu, Z.; Wang, L.; Kang, E. Maximum precipitation altitude on the northern flank of the Qilian Mountains, northwest China. Hydrol. Res. 2018, 49, 1696–1710. [Google Scholar] [CrossRef]
- Geng, H.; Pan, B.; Huang, B.; Cao, B.; Gao, H. The spatial distribution of precipitation and topography in the Qilian Shan Mountains, northeastern Tibetan Plateau. Geomorphology 2017, 297, 43–54. [Google Scholar] [CrossRef]
- Gansu Provincial Bureau of Statistics. Population and Labor. In Gansu Statistical Yearbook 1985; China Statistics Press: Beijing, China, 1987; pp. 43–84. [Google Scholar]
- Gansu Provincial Bureau of Statistics; National Bureau of Statistics Gansu Survey Team. Population. In Gansu Development Yearbook 2020; China Statistics Press: Beijing, China, 2021; pp. 300–320. [Google Scholar]
- Zhu, J.; Wang, N.; Chen, H.; Dong, C.; Zhang, H. Study on the boundary and the area of Badain Jaran Desert based on remote sensing imagery. Prog. Geogr. 2010, 29, 1087–1094. (In Chinese) [Google Scholar]
- Niu, Z.; Wang, N.A.; Meng, N.; Liu, J.; Liang, X.; Cheng, H.; Liang, X. Contribution of lake-dune patterning to the dune height of mega-dunes in the Badain Jaran sand sea, Northern China. Remote Sens. 2021, 13, 4915. [Google Scholar] [CrossRef]
- Zhang, Z. Study on the Area Changes of Lakes and Their Driving Factors in the Badain Jaran Desert Based on Remote Sensing Data. Master’s Thesis, Lanzhou University, Lanzhou, China, 2014. (In Chinese). [Google Scholar]
- Niu, Z. Mechanism and Evolutionary Simulation of Mega-Dunes in the Badain Jaran Desert. Master’s Thesis, Lanzhou University, Lanzhou, China, 2022. (In Chinese). [Google Scholar]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Save, H. CSR GRACE and GRACE-FO RL06 Mascon Solutions v02; University of Texas at Austin: Austin, TX, USA, 2020. [Google Scholar]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Nie, N.; Guo, Y. Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations. Sci. Total Environ. 2019, 649, 372–387. [Google Scholar] [CrossRef]
- Su, Y.; Guo, B.; Zhou, Z.; Zhong, Y.; Min, L. Spatio-temporal variations in groundwater revealed by GRACE and its driving factors in the Huang-Huai-Hai Plain, China. Sensors 2020, 20, 922. [Google Scholar] [CrossRef]
- Center for Space Research (CSR). GRACE RL06 Mascons. Available online: https://www2.csr.utexas.edu/grace/RL06_mascons.html (accessed on 5 March 2024).
- Vautard, R.; Yiou, P.; Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Phys. D Nonlinear Phenom. 1992, 58, 95–126. [Google Scholar] [CrossRef]
- Kondrashov, D.; Ghil, M. Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Process. Geophys. 2006, 13, 151–159. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.E.A.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Toll, D. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Global Land Data Assimilation Systems (GLDAS). Goddard Earth Sciences Data and Information Services Center (GES DISC). Available online: https://disc.gsfc.nasa.gov/datasets (accessed on 5 July 2023).
- Rodell, M.; Chao, B.F.; Au, A.Y.; Kimball, J.S.; McDonald, K.C. Global biomass variation and its geodynamic effects: 1982–1998. Earth Interact. 2005, 9, 305–319. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Yang, H.; Di, D.; Zhao, Y.; Liang, Q. Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China Plain. J. Hydrol. 2020, 585, 124849. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; Mcrae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition procedure based on LOESS. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Henry, C.M.; Allen, D.M.; Huang, J. Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data. Hydrogeol. J. 2011, 19, 741–755. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, L.; Yu, X.; Zhang, L.; Wang, N. Estimation of groundwater evapotranspiration using diurnal groundwater level fluctuations under three vegetation covers at the hinterland of the Badain Jaran Desert. Adv. Meteorol. 2020, 2020, 8478140. [Google Scholar] [CrossRef]
- Thomas, B.F.; Famiglietti, J.S.; Landerer, F.W.; Wiese, D.N.; Molotch, N.P.; Argus, D.F. GRACE groundwater drought index: Evaluation of California Central Valley groundwater drought. Remote Sens. Environ. 2017, 198, 384–392. [Google Scholar] [CrossRef]
- Loucks, D.P. Quantifying trends in system sustainability. Hydrol. Sci. J. 1997, 42, 513–530. [Google Scholar] [CrossRef]
- Thomas, B.F.; Caineta, J.; Nanteza, J. Global assessment of groundwater sustainability based on storage anomalies. Geophys. Res. Lett. 2017, 44, 11445–11455. [Google Scholar] [CrossRef]
- Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour. Res. 1982, 18, 14–20. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, Y.; Xu, X.; Huang, Q.; Huo, Z.; Huang, G. Long-term groundwater dynamics affected by intense agricultural activities in oasis areas of arid inland river basins, Northwest China. Agric. Water Manag. 2018, 203, 37–52. [Google Scholar] [CrossRef]
- Palma Nava, A.; González Villarreal, F.J.; Mendoza Mata, A. The development of a managed aquifer recharge project with recycled water for Chihuahua, Mexico. Sustain. Water Resour. Manag. 2018, 4, 371–382. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour. Res. 2007, 43, W03437. [Google Scholar] [CrossRef]
- Yu, X. Study on the dynamic characteristics and recharge sources of water levels in the Badain Jaran Desert lakes region. Master’s Thesis, Lanzhou University, Lanzhou, China, 2020. (In Chinese). [Google Scholar]
- Sen, P.K. Estimates of regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Guo, Y.; Gan, F.; Yan, B.; Bai, J.; Wang, F.; Jiang, R.; Xing, N.; Liu, Q. Evaluation of groundwater storage depletion using GRACE/GRACE Follow-On data with land surface models and its driving factors in Haihe River Basin, China. Sustainability 2022, 14, 1108. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Taylor, R.G. Groundwater storage dynamics in the world’s large aquifer systems from GRACE: Uncertainty and role of extreme precipitation. Earth Syst. Dyn. 2020, 11, 755–774. [Google Scholar] [CrossRef]
- Shao, F.; Wang, W.; He, J. Groundwater–surface water exchange and spatial distribution of arsenic in arid and semi-arid regions: The case of Aksu River in Xinjiang, Northwestern China. Water 2023, 15, 2391. [Google Scholar] [CrossRef]
- Wang, T.Y.; Wang, P.; Zhang, Y.C.; Yu, J.J.; Du, C.Y.; Fang, Y.H. Contrasting groundwater depletion patterns induced by anthropogenic and climate-driven factors on Alxa Plateau, Northwestern China. J. Hydrol. 2019, 576, 262–272. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Hu, X.; Lu, H.; Gong, Y.; Wan, L. Macroscopic characteristics of groundwater flow in the Badain Jaran Desert. J. Desert Res. 2015, 35, 774–782. (In Chinese) [Google Scholar]
- Zhang, J.; Wang, X.; Jia, F.; Li, G.; Dong, Y. New insights into groundwater flow direction in western Alxa, Inner Mongolia. Geosci. Front. 2015, 29, 213–219. (In Chinese) [Google Scholar]
- Ning, W.; Liu, X.; Wang, Z. Characteristics and spatial stratification heterogeneity of temperature and precipitation in the Badain Jaran Desert. J. Univ. Chin. Acad. Sci. 2021, 38, 103–113. (In Chinese) [Google Scholar]
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
Monitoring Well | Satellite Grid | Monitoring Depth (m) | Ground Elevation (m) | Groundwater Type | Correlation Coefficient |
---|---|---|---|---|---|
N1 | 38 | 31.79~75.85 | 1425.04 | Unconfined | 0.720 ** |
N2 | 54 | 0.78~22.32 | 1343.36 | Unconfined | 0.576 ** |
N3-1 | 69 | 18.60~50.99 | 1450.99 | Confined | −0.216 ** |
N3-2 | 69 | 3.60~12.49 | 1450.92 | Unconfined | −0.323 ** |
N4-1 | 70 | 83.10~139.00 | 1388.90 | Confined | 0.420 ** |
N4-2 | 70 | 21.00~80.80 | 1389.29 | Confined | 0.321 ** |
N4-3 | 70 | 1.72~15.00 | 1389.43 | Unconfined | 0.332 ** |
N5-1 | 84 | 138.43~185.00 | 1482.26 | Confined | 0.257 ** |
N5-2 | 84 | 20.00~100.18 | 1482.26 | Confined | 0.286 ** |
N5-3 | 84 | 0.43~11.56 | 1481.93 | Unconfined | 0.440 ** |
N6 | 84 | 8.21~31.23 | 1481.87 | Unconfined | −0.051 |
N7 | 85 | 33.86~100.51 | 1472.54 | Unconfined | 0.344 ** |
N8 | 115 | 218.03~300.11 | 2032.06 | Unconfined | 0.574 ** |
N9 | 225 | 11.15~12.70 | 1511.8 | Unconfined | 0.097 |
N10 | 242 | 2.46~28.99 | 1441.37 | Unconfined | 0.362 ** |
N11 | 276 | 21.83~25.48 | 1320.99 | Unconfined | 0.653 ** |
N12 | 293 | 131.00~282.24 | 1312.75 | Confined | −0.456 ** |
Monitoring Well | Satellite Grid | Ground Elevation (m) | Monitoring Period | Correlation Coefficient |
---|---|---|---|---|
G1 | 152 | 1072.8028 | 2012.08~2019.04 | 0.347 ** |
G2 | 168 | 1084.5119 | 2013.07~2022.06 | 0.373 ** |
G3 | 184 | 1095.1706 | 2013.07~2020.08 | 0.355 ** |
G4 | 184 | 1095.6029 | 2013.07~2018.07 | 0.012 |
G5 | 199 | 1155.3345 | 2013.07~2019.04 | 0.363 ** |
G6 | 200 | 1100.268 | 2011.05~2022.06 | 0.417 ** |
G7 | 200 | 1099.4117 | 2010.08~2020.08 | −0.316 ** |
G8 | 201 | 1096.498 | 2011.05~2019.04 | 0.236 * |
G9 | 216 | 1109.8963 | 2010.08~2020.08 | −0.456 ** |
G10 | 216 | 1122.7239 | 2011.05~2016.06 | 0.097 |
G11 | 216 | 1134.2242 | 2011.05~2022.06 | 0.271 ** |
G12 | 216 | 1127.2672 | 2011.05~2011.10 | 0.306 ** |
G13 | 216 | 1127.5189 | 2011.05~2020.08 | 0.163 |
G14 | 216 | 1133.1019 | 2011.05~2020.08 | 0.284 ** |
G15 | 231 | 1248.6733 | 2010.08~2020.08 | 0.564 ** |
G16 | 232 | 1154.5936 | 2010.08~2020.08 | 0.409 ** |
Indicator | Gaotai County | Linze County | Ganzhou District | Minle County | Yongchang County | Minqin County |
---|---|---|---|---|---|---|
Population | 0.831 ** | 0.635 ** | −0.691 ** | 0.544 * | 0.442 | 0.774 ** |
CTA | −0.876 ** | −0.626 * | −0.503 * | −0.510 * | −0.598 ** | 0.179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, N.; Wang, Y.; Meng, N.; Wang, Y.; Qiao, B.; Lu, R.; Yang, D. Research on Groundwater Drought and Sustainability in Badain Jaran Desert and Surrounding Areas Based on GRACE Satellite. Land 2025, 14, 173. https://doi.org/10.3390/land14010173
Liu X, Wang N, Wang Y, Meng N, Wang Y, Qiao B, Lu R, Yang D. Research on Groundwater Drought and Sustainability in Badain Jaran Desert and Surrounding Areas Based on GRACE Satellite. Land. 2025; 14(1):173. https://doi.org/10.3390/land14010173
Chicago/Turabian StyleLiu, Xiaojun, Naiang Wang, Yixin Wang, Nan Meng, Yuchen Wang, Bin Qiao, Rongzhu Lu, and Dan Yang. 2025. "Research on Groundwater Drought and Sustainability in Badain Jaran Desert and Surrounding Areas Based on GRACE Satellite" Land 14, no. 1: 173. https://doi.org/10.3390/land14010173
APA StyleLiu, X., Wang, N., Wang, Y., Meng, N., Wang, Y., Qiao, B., Lu, R., & Yang, D. (2025). Research on Groundwater Drought and Sustainability in Badain Jaran Desert and Surrounding Areas Based on GRACE Satellite. Land, 14(1), 173. https://doi.org/10.3390/land14010173