Spatial Reconstruction and Determinants of Industrial Land in China’s Urban Expansion: A Theoretical Framework
Abstract
:1. Introduction
2. Theoretical Framework
3. Study Area, Data, and Methodology
3.1. Study Area
3.2. Data Sources
3.3. Research Method
3.4. Variables and Data
3.4.1. Dependent Variables and Data
3.4.2. Explanatory Variables and Data
4. Results
4.1. Evolution Characteristics of Industrial Land
4.2. Major Determinants of Industrial Land Conversion
5. Discussion
5.1. Government Forces
5.2. Market Forces
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | NIMBY (Not in my backyard) effect refers to the situation where residents or local entities, fearing that construction projects (such as landfills, nuclear power plants, manufacturing, funeral homes, etc.) will bring numerous negative impacts on their health, environmental quality, and property values, develop a sentiment of aversion. |
References
- Leigh, N.G.; Hoelzel, N.Z. Smart Growth’s Blind Side. J. Am. Plan. Assoc. 2012, 78, 87–103. [Google Scholar] [CrossRef]
- Karen, C. The Highest and Best Use? Urban Industrial Land and Job Creation. Econ. Dev. Q. 2014, 28, 300–313. [Google Scholar]
- Green, J.W. Zoning for Jobs-Industrial Land Preservation in the Nation’s Largest Cities. OSF Prepr. 2018, 1–18. Available online: https://econpapers.repec.org/paper/osfosfxxx/ud345.htm (accessed on 19 January 2025).
- Scott, A.J. Locational Patterns and Dynamics of Industrial Activity in the Modern Metropolis. Urban Stud. 1982, 19, 111–142. [Google Scholar] [CrossRef]
- Lester, T.W.; Kaza, N.; Kirk, S. Making Room for Manufacturing: Understanding Industrial Land Conversion in Cities. J. Am. Plan. Assoc. 2014, 79, 295–313. [Google Scholar] [CrossRef]
- Balsas, C.J.L. Reconsidering Industrial Policy in Eastern New York, U.S.A. Urban Res. Pract. 2020, 15, 505–528. [Google Scholar] [CrossRef]
- Hudalah, D.; Firman, T. Beyond Property: Industrial Estates and Post-suburban Transformation in Jakarta Metropolitan Region. Cities 2011, 29, 40–48. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, X.; Wang, Y.; Li, J.; Zhang, Y.; Gao, Z.; Zhang, G. Commuting Pattern Recognition of Industrial Parks Using Mobile Phone Signaling Data: A Case Study of Nanjing, China. Land 2024, 13, 1605. [Google Scholar] [CrossRef]
- Frantál, B.; Greer-Wootten, B.; Klusáek, P.; Krejčí, T.; Kunc, J.; Martinát, S. Exploring spatial patterns of urban brownfields regeneration: The case of Brno, Czech Republic. Cities 2015, 44, 9–18. [Google Scholar] [CrossRef]
- Ferm, J. Beyond the Post-Industrial City: Valuing and Planning for Industry in London. Urban Stud. 2017, 54, 3380–3398. [Google Scholar] [CrossRef]
- Walker, R. Industry Builds the City: The Suburbanization of Manufacturing in the San Francisco Bay Area, 1850–1940. J. Hist. Geogr. 2001, 27, 36–57. [Google Scholar] [CrossRef]
- Simon, C.J. Analysis of Manufacturer Location and Relocation in the Cleveland Metropolitan Area: 1966–1971. Am. Econ. 1980, 24, 35–42. [Google Scholar] [CrossRef]
- Steed, G.P.F. Intrametropolitan Manufacturing: Spatial Distribution and Locational Dynamics in Greater Vancouver. Can. Geogr. 1973, 17, 235–258. [Google Scholar] [CrossRef]
- Lewis, R.D. A City Transformed: Manufacturing Districts and Suburban Growth in Montreal, 1850–1929. J. Hist. Geogr. 2001, 27, 20–35. [Google Scholar] [CrossRef]
- Molle, W.T.M. Industrial mobility-A Review of Empirical Studies and An Analysis of the Migration of Industry from the City of Amsterdam. Reg. Stud. 1977, 11, 323–335. [Google Scholar] [CrossRef]
- Lloyd, P.E.; Mason, C.M. Manufacturing Industry in the Inner City: A Case Study of Greater Manchester. Trans. Inst. Br. Geogr. 1978, 3, 66–90. [Google Scholar] [CrossRef]
- Walker, R.; Lewis, R.D. Beyond the Crabgrass Frontier Industry and the Spread of North American Cities, 1850–1950. J. Hist. Geogr. 2001, 27, 3–19. [Google Scholar] [CrossRef]
- Ferm, J.; Jones, E. London’s Industrial Land: Cause for Concern? University College London: London, UK, 2015; Available online: https://discovery.ucl.ac.uk/id/eprint/1461419 (accessed on 12 October 2024).
- Keeble, D.E. Industrial Decentralization and the Metropolis: The North-West London Case. Trans. Inst. Br. Geogr. 1968, 44, 1–54. [Google Scholar] [CrossRef]
- Muller, E.K.; Groves, P.A. The Emergence of Industrial Districts in Mid-Nineteenth Century Baltimore. Geogr. Rev. 1979, 69, 159–178. [Google Scholar] [CrossRef]
- Neuss, L.V. Globalization and Deindustrialization in Advanced Countries. Struct. Chang. Econ. Dyn. 2018, 45, 49–63. [Google Scholar] [CrossRef]
- Vu, K.; Haraguchi, N.; Amann, J. Deindustrialization in Developed Countries Amid Accelerated Globalization: Patterns, Influencers, and Policy insights. Struct. Chang. Econ. Dyn. 2021, 59, 454–469. [Google Scholar] [CrossRef]
- Wolf-Powers, L. Up-Zoning New York City’s Mixed-Use Neighborhoods. J. Plan. Educ. Res. 2005, 24, 379–393. [Google Scholar] [CrossRef]
- Grodach, C.; Gibson, C.R. Advancing Manufacturing?: Blinkered Visions in U.S. and Australian Urban Policy. Urban Policy Res. 2018, 37, 279–293. [Google Scholar] [CrossRef]
- Asabere, P.K.; Huffman, F.E. Zoning and Industrial Land Values: The Case of Philadelphia. Real Estate Econ. 1991, 19, 154–160. [Google Scholar] [CrossRef]
- Davis, J.; Renski, H. Do Industrial Preservation Policies Protect and Promote Urban Industrial Activity? Examining the Impact of New York City’s Industrial Business Zone Program. J. Am. Plan. Assoc. 2020, 86, 431–442. [Google Scholar] [CrossRef]
- Ferm, J.; Panayotopoulos-Tsiros, D.; Griffiths, S. Planning urban manufacturing, industrial building typologies, and built environments: Lessons from inner London. Urban Plan. 2021, 6, 350–367. [Google Scholar] [CrossRef]
- Zhang, R.; Yan, W. The 50-year Spatial Transition of Suburban Industrial Parks and Impacts on Sustainable Urbanization in the Tokyo Metropolitan Area. Sustain. Cities Soc. 2024, 113, 105679. [Google Scholar] [CrossRef]
- Wu, Y.; Wei, Y.D.; Li, H. Firm Suburbanization in the Context of Urban Sprawl Neighborhood Effect and Sectoral Difference. Prof. Geogr. 2020, 72, 598–617. [Google Scholar] [CrossRef]
- Zhang, L.; Yue, W.; Liu, Y.; Fan, P.; Wei, Y.D. Suburban industrial land development in transitional China: Spatial restructuring and determinants. Cities 2018, 78, 96–107. [Google Scholar] [CrossRef]
- Gao, B.; Liu, W.; Dunford, M. State Land Policy, Land Markets and Geographies of Manufacturing: The Case of Beijing, China. Land Use Policy 2014, 36, 1–12. [Google Scholar] [CrossRef]
- Fan, P.; Yue, W.; Zhang, J.; Huang, H.; Messina, J.; Verburg, P.H.; Qi, J.; Moore, N.; Ge, J. The Spatial Restructuring and Determinants of Industrial Landscape in a Mega City Under Rapid Urbanization. Habitat Int. 2020, 95, 102099. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Gu, X. Reduction of Industrial Land Beyond Urban Development Boundary in Shanghai: Differences in Policy Responses and Impact on Towns and Villages. Land Use Policy 2019, 82, 620–630. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, D.; Huang, L.; Wen, H.; Zhao, G.; Zhan, D. Spatial Distribution and Influential Factors of Industrial Land Productivity in China’s Rapid Urbanization. J. Clean. Prod. 2019, 234, 1287–1295. [Google Scholar] [CrossRef]
- Dai, B.; Gu, X.; Xie, B. Policy Framework and Mechanism of Life Cycle Management of Industrial Land (LCMIL) in China. Land Use Policy 2020, 99, 104997. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Dong, J.; Chi, W.; Zhang, C. The Rapid and Massive Urban and Industrial Land Expansions in China between 1990 and 2010: A CLUD-based Analysis of Their Trajectories, Patterns, and Drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Ruaral Development of the People’s Republic of China. China City Construction Statistical Yearbook 2020. 2021. Available online: https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/tjxx/jstjnj/index.html (accessed on 14 January 2025).
- Huang, Z.; Du, X. Government Intervention and Land Misallocation: Evidence from China. Cities 2017, 60, 323–332. [Google Scholar] [CrossRef]
- Lin, J.; Li, X.; Shen, J. Industrial Land Protection and Allocation Efficiency: Evidence from Guangdong, China. Land 2024, 13, 2081. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y. Ambiguous Property Rights as A Double-Edged Sword: A Case Study of Industrial Land Redevelopment in Shanghai, China. Cities 2022, 126, 103686. [Google Scholar] [CrossRef]
- Gao, J.; Qiao, W.; Ji, Q.; Yu, C.; Sun, J.; Ma, Z. Intensive-use-oriented Identification and Optimization of Industrial Land Readjustment During Transformation and Development: A Case Study of Huai’an, China. Habitat Int. 2021, 118, 102451. [Google Scholar] [CrossRef]
- Cheng, J. Analysis of the Factors Influencing Industrial Land Leasing in Beijing of China Based on the District-level data. Land Use Policy 2022, 122, 106389. [Google Scholar] [CrossRef]
- Hang, X.; Lin, Y.; Wu, Y.; Skitmore, M. Industrial Land Price Between China’s Pearl River Delta and Southeast Asian Regions: Competition or Coopetition? Land Use Policy 2017, 61, 575–586. [Google Scholar] [CrossRef]
- Yuan, F.; Wei, Y.D.; Xiao, W. Land Marketization, Fiscal Decentralization, and the Dynamics of Urban Land Prices in Transitional China. Land Use Policy 2019, 89, 104208. [Google Scholar] [CrossRef]
- Gao, J.; Chen, W.; Yuan, F. Spatial Restructuring and the Logic of Industrial Land Redevelopment in Urban China: I. Theoretical Considerations. Land Use Policy 2017, 68, 604–613. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Tang, B.; Wong, S.W. From Project to Policy: Adaptive Reuse and Urban Industrial Land Restructuring in Guangzhou City, China. Cities 2018, 82, 68–76. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, B.; Wu, J. Value Capture in Industrial Land Renewal Under the Public Leasehold System: A Policy Comparison in China. Land Use Policy 2019, 84, 59–69. [Google Scholar] [CrossRef]
- Huang, L.; Shahtahmassebi, A.; Gan, M.; Deng, J.; Wang, J.; Wang, K. Characterizing Spatial Patterns and Driving Forces of Expansion and Regeneration of Industrial Regions in the Hangzhou Megacity, China. J. Clean. Prod. 2020, 253, 119959. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H. Spatial–Temporal Evolution and Driving Factors of Industrial Land Marketization in Chengdu–Chongqing Economic Circle. Land 2024, 13, 972. [Google Scholar] [CrossRef]
- Tan, X.; Chen, W.; Cao, H.; Li, Q.; Zhang, S. Identifying Spatiotemporal Characteristics and Driving Factors of Industrial Land Use Morphology in China. Expert Syst. Appl. 2024, 235, 121231. [Google Scholar] [CrossRef]
- Yan, G.; Wang, S. Coexistence and Transformation from Urban Industrial Land to Green Space in Decentralization of Megacities: A Case Study of Daxing District, Beijing, China. Ecol. Indic. 2023, 156, 111120. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, K.; Li, J.; Pang, G.; Meng, Y. The Characteristics and Spatial Effects of the Spatio-Temporal Pattern Evolution of Industrial Land in Xi’an. China City Plan. Rev. 2022, 31, 6–16. [Google Scholar]
- Cao, H.; Chen, W.; Tan, X.; Li, Q. Identification and Driving Mechanism of the Industrial Land Use Transition in China. Habitat Int. 2023, 138, 102848. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, S.; Zhao, K.; Quan, F. Evolution Mode, Influencing Factors, and Socioeconomic Value of Urban Industrial Land Management in China. Land 2022, 11, 1580. [Google Scholar] [CrossRef]
- Weber, A. Theory of the Location of Industries; University of Chicago Press: Chicago, IL, USA, 1929. [Google Scholar]
- Will, R.A. Federal Influences on Industrial Location: How Extensive? Land Econ. 1964, 40, 49–57. [Google Scholar] [CrossRef]
- Blair, J.P.; Premus, R. Major Factors in Industrial Location: A Review. Econ. Dev. Q. 2016, 1, 72–85. [Google Scholar] [CrossRef]
- Gripaios, P. Industrial Decline in London: An Examination of its Causes. Urban Stud. 1977, 14, 181–189. [Google Scholar] [CrossRef]
- Stahura, J.M. Determinants of Suburban Job Change in Retailing, Wholesaling, Service and Manufacturing Industries: 1960–1972. Sociol. Focus 1982, 15, 347–357. [Google Scholar] [CrossRef]
- Park, J.I.; Leigh, N.G. Urban Industrial Land Loss and Foreign Direct Investment-related Manufacturing Job Sprawl: An Atlanta, Georgia MSA Case Study. J. Urban Technol. 2017, 24, 95–113. [Google Scholar] [CrossRef]
- Tian, L.; Ge, B.; Li, Y. Impacts of State-led and Bottom-up Urbanization on Land Use Change in the Peri-urban Areas of Shanghai: Planned Growth or Uncontrolled Sprawl? Cities 2017, 60, 476–486. [Google Scholar] [CrossRef]
- Wang, K.; Li, G.; Liu, H. Location Choice of Industrial Land Reduction in Metropolitan Area: Evidence from Shanghai in China. Growth Chang. 2020, 51, 1837–1859. [Google Scholar] [CrossRef]
- Xi’an Municipal Bureau of Statistics. Xi’an Statistical Yearbook 2020. 2021. Available online: http://tjj.xa.gov.cn/tjnj/2020/zk/indexch.htm (accessed on 14 January 2025).
- Xi’an Natural Resources and Planning Bureau (Municipal Forestry Bureau). Xi’an City Master Plan. 2024. Available online: http://zygh.xa.gov.cn/ywpd/cxghgsgb/ghgsgb/1.html (accessed on 14 January 2025).
- Cheng, A. The Proposals and Suggestions Study to Some Problems of Planning Management in Xian High-Tech Development Industries Zone; Xi’an University of Architecture and Technology: Xi’an, China, 2006. (In Chinese) [Google Scholar]
- Ferm, J.; Jones, E. Mixed-use ‘regeneration’ of employment land in the post-industrial city: Challenges and realities in London. Eur. Plan. Stud. 2016, 24, 1913–1936. [Google Scholar] [CrossRef]
- Curran, W. ‘From the Frying Pan to the Oven’: Gentrification and the Experience of Industrial Displacement in Williamsburg, Brooklyn. Urban Stud. 2007, 44, 1427–1440. [Google Scholar] [CrossRef]
- Geng, T.; Mao, Y.; Li, J.; Chen, H. Spatio-Temporal Characteristics and Driving Mechanism of Xi’an Urban Expansion. Econ. Geogr. 2019, 39, 62–70. Available online: https://kns.cnki.net/kcms2/article/abstract?v=1i9K2Vab0pPbrdUfWhmhVB2LhAWHRn3wRc8zZF-5Ul4btQQjd3EuD2YFJ8Ex0YmmLYkSJxF61rcG5wLm5NQYLKu1F5C-I9sQ3071p3LEKrJ22hJeIfaYITB8q8WYjijhHO2STHbB1DNVCkuoDQ8-10tx7Y9r7QkGHjRGyO8qk4tMtPfQFmhMiUliW-EJB0ud3Z395TCTUovRCiR6hK9xEA==&uniplatform=NZKPT (accessed on 19 January 2025).
- Keeble, D.E. Industrial Migration from North-west London, 1940–1964. Urban Stud. 1965, 2, 15–32. [Google Scholar] [CrossRef]
- Wang, H. Spatial Impacts of New Economies and the Implications for City Planning and Decision-making. Geogr. Res. 2007, 26, 577–589. [Google Scholar]
- Park, J.I. Re-urbanization Pattern of Manufacturing and Characteristics of Urban Manufacturing in South Korea. Cities 2023, 137, 104330. [Google Scholar] [CrossRef]
Variables | Description | Data Sources | Data Processing |
---|---|---|---|
DZ | Whether or not it is in a national or provincial development zone (yes = 1) | Xi’an urban master plan and development master plan | Draw the boundaries of development zones in different periods. |
RAI | Distance from the railway freight station (m) | Remote sensing image data | Calculate the Euclidean distance from the explanatory variable to the nearest railway freight station. |
EXP | Distance from the high-speed entrance and exit (m) | Remote sensing image data | Calculate the Euclidean distance from the explanatory variable to the nearest high-speed entrance and exit. |
MAI | Distance from major roads (m) | Remote sensing image data | Calculate the Euclidean distance from the explanatory variable to the nearest main road. |
BLP | Industrial land price (CNY/m2) | China land price monitoring network, benchmark land price map of Xi’an and Xixian New Area | Draw the benchmark land price map of industrial land in different periods. |
PVIR | Land value increment (CNY/m2) | China land price monitoring network, benchmark land price map of Xi’an and Xixian New Area | The difference between the benchmark land price for residential use at T2 time and the benchmark land price for industrial use at T1 time. |
PVIB | Land value increment (CNY/m2) | China land price monitoring network, benchmark land price map of Xi’an and Xixian New Area | The difference between the benchmark land price for commercial services at T2 time and the industrial benchmark land price at T1 time. |
POT | Percentage of available land (%) | Remote sensing image data, urban cadastral data, etc. | Establish a buffer zone with a radius of 1 km and calculate the percentage of land potentially converted to industrial use in the buffer zone. |
DEN | Existing industrial land density (%) | Remote sensing image data, urban cadastral data, etc. | Establish a buffer zone with a radius of 1 km and calculate the percentage of existing industrial land in the buffer zone. |
RES | Existing residential land density (%) | Remote sensing image data, urban cadastral data, etc. | Establish a buffer zone with a radius of 1 km and calculate the percentage of existing residential land in the buffer zone. |
Year | 1994 | 2007 | 2013 | 2019 | |
---|---|---|---|---|---|
Zone I | Area (km2) | 0.34 | 0.08 | 0.04 | 0.00 |
Proportion (%) | 0.62 | 0.07 | 0.03 | 0.00 | |
Zone II | Area (km2) | 11.32 | 7.83 | 2.28 | 1.34 |
Proportion (%) | 20.57 | 7.21 | 1.80 | 1.26 | |
Zone III | Area (km2) | 33.25 | 64.11 | 52.69 | 25.41 |
Proportion (%) | 60.43 | 58.99 | 41.61 | 23.83 | |
Zone IV | Area (km2) | 10.11 | 36.65 | 71.62 | 79.86 |
Proportion (%) | 18.38 | 33.73 | 56.56 | 74.91 | |
Total | Area (km2) | 55.02 | 108.67 | 126.63 | 106.61 |
Proportion (%) | 100 | 100 | 100 | 100 |
Gain Model | Loss Model | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | β | SD | p | Exp (β) | Variable | β | SD | p | Exp (β) |
DZ | 1.347 | 0.583 | 0.021 | 3.845 | DZ | −0.565 | 0.774 | 0.466 | 0.569 |
RAY | 0.000 | 0.000 | 0.333 | 1.000 | RAY | 0.000 | 0.000 | 0.309 | 1.000 |
MAI | −0.002 | 0.001 | 0.019 | 0.998 | MAI | −0.003 | 0.003 | 0.219 | 0.997 |
BLP | −0.080 | 0.033 | 0.015 | 0.923 | EXP | 0.000 | 0.000 | 0.988 | 1.000 |
DEN | 0.101 | 0.028 | 0.000 | 1.107 | PVIR | 0.002 | 0.001 | 0.001 | 1.002 |
RES | 0.025 | 0.044 | 0.567 | 1.025 | POT | −0.004 | 0.019 | 0.831 | 0.996 |
Constant | 0.402 | 0.752 | 0.593 | 1.495 | DEN | −0.061 | 0.023 | 0.009 | 0.941 |
RES | −0.008 | 0.029 | 0.799 | 0.993 | |||||
Constant | −0.805 | 1.851 | 0.663 | 0.447 |
Gain Model | Loss Model | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | β | SD | p | Exp (β) | Variable | β | SD | p | Exp (β) |
DZ | −0.945 | 0.408 | 0.020 | 0.389 | DZ | −0.330 | 0.260 | 0.204 | 0.719 |
EXP | 0.000 | 0.000 | 0.007 | 1.000 | EXP | 0.000 | 0.000 | 0.260 | 1.000 |
MAI | −0.006 | 0.001 | 0.000 | 0.994 | MAI | −0.001 | 0.001 | 0.195 | 0.999 |
RAY | 0.000 | 0.000 | 0.073 | 1.000 | RAY | 0.000 | 0.000 | 0.117 | 1.000 |
BLP | −0.005 | 0.002 | 0.009 | 0.995 | POT | −0.012 | 0.009 | 0.189 | 0.988 |
POT | 0.052 | 0.014 | 0.000 | 1.053 | DEN | −0.077 | 0.011 | 0.000 | 0.926 |
DEN | 0.115 | 0.026 | 0.000 | 1.122 | PVIB | 0.000 | 0.000 | 0.046 | 1.000 |
RES | −0.001 | 0.042 | 0.981 | 0.999 | Constant | 1.372 | 0.577 | 0.017 | 3.943 |
Constant | 0.025 | 1.594 | 0.987 | 1.025 |
Gain Model | Loss Model | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | β | SD | p | Exp (β) | Variable | β | SD | p | Exp (β) |
DZ | 1.733 | 0.411 | 0.000 | 5.657 | DZ | −1.448 | 1.024 | 0.157 | 0.235 |
EXP | 0.000 | 0.000 | 0.003 | 1.000 | EXP | 0.000 | 0.000 | 0.891 | 1.000 |
MAI | −0.002 | 0.001 | 0.012 | 0.998 | MAI | 0.003 | 0.002 | 0.310 | 1.003 |
RAY | 0.000 | 0.000 | 0.166 | 1.000 | RAY | 0.000 | 0.000 | 0.003 | 1.000 |
BLP | −0.015 | 0.003 | 0.000 | 0.985 | POT | −0.028 | 0.020 | 0.156 | 0.972 |
POT | 0.025 | 0.008 | 0.002 | 1.025 | DEN | −0.081 | 0.029 | 0.006 | 0.922 |
DEN | 0.107 | 0.023 | 0.000 | 1.112 | RES | 1.715 | 0.412 | 0.000 | 5.557 |
RES | 0.041 | 0.032 | 0.193 | 1.042 | PVIR | 0.002 | 0.000 | 0.002 | 1.002 |
Constant | 2.339 | 1.427 | 0.101 | 10.370 | PVIB | −0.004 | 0.001 | 0.000 | 0.996 |
Constant | 6.669 | 3.643 | 0.067 | 787.345 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Liu, K.; Li, J.; Zhai, J. Spatial Reconstruction and Determinants of Industrial Land in China’s Urban Expansion: A Theoretical Framework. Land 2025, 14, 213. https://doi.org/10.3390/land14020213
Zhao D, Liu K, Li J, Zhai J. Spatial Reconstruction and Determinants of Industrial Land in China’s Urban Expansion: A Theoretical Framework. Land. 2025; 14(2):213. https://doi.org/10.3390/land14020213
Chicago/Turabian StyleZhao, Dan, Kewei Liu, Jianwei Li, and Jiagang Zhai. 2025. "Spatial Reconstruction and Determinants of Industrial Land in China’s Urban Expansion: A Theoretical Framework" Land 14, no. 2: 213. https://doi.org/10.3390/land14020213
APA StyleZhao, D., Liu, K., Li, J., & Zhai, J. (2025). Spatial Reconstruction and Determinants of Industrial Land in China’s Urban Expansion: A Theoretical Framework. Land, 14(2), 213. https://doi.org/10.3390/land14020213