Social Relevance of Ecosystem Services Provided by Urban Green Infrastructures: A Mixed Qualitative–Quantitative Case Study Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliometric Network Analysis: Methodology
- -
- Co-occurrence (O)—the number of co-occurrences of two keywords is the number of publications in which both keywords occur together in the title, abstract, or keyword list;
- -
- Total link strength (TLS)—the cumulative strength of the links of an item with other items.
2.2. Scientific Café: Methodology
3. Results
3.1. Bibliometric Network Analysis: Results
3.2. Scientific Café: Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reyes-Riveros, R.; Altamirano, A.; De La Barrera, F.; Rozas-Vásquez, D.; Vieli, L.; Meli, P. Linking public urban green spaces and human well-being: A systematic review. Urban For. Urban Green. 2021, 61, 127105. [Google Scholar] [CrossRef]
- De Meo, I.; Alfano, A.; Cantiani, M.G.; Paletto, A. The Impact of the COVID-19 Pandemic on Citizens’ Attitudes and Behaviors in the Use of Peri-Urban Forests: An Experience from Italy. Sustainability 2023, 15, 2852. [Google Scholar] [CrossRef]
- WHO. Strengthening Preparedness for COVID-19 in Cities and Urban Settings: Interim Guidance for Local Authorities; World Health Organization (WHO): Geneva, Switzerland, 2020. [Google Scholar]
- Capotorti, G.; De Lazzari, V.; Orti, M.A. Local Scale Prioritisation of Green Infrastructure for Enhancing Biodiversity in Peri-Urban Agroecosystems: A Multi-Step Process Applied in the Metropolitan City of Rome (Italy). Sustainability 2019, 11, 3322. [Google Scholar] [CrossRef]
- Cantiani, M.G.; Betta, A.; De Meo, I.; Maino, F.; Paletto, A.; Tamanini, S. Green cities for a better future?—A case study from an Alpine region: The town of Trento. Upland 2019, 4, 41–52. [Google Scholar]
- Hansen, R.; Mattes, A.; Meier, M.; Kurths, A. Reorienting urban green infrastructure planning towards biodiversity—Perspectives and ongoing debates from Germany. Urban For. Urban Green. 2023, 90, 128155. [Google Scholar] [CrossRef]
- Zulian, G.; Marando, F.; Vogt, P.; Barbero Vignola, G.; Babí Almenar, J.; Zurbarán-Nucci, M.; Prince, K. BiodiverCities: A Roadmap to Enhance the Biodiversity and Green Infrastructure of European Cities by 2030, EUR 31224 EN; Publications Office of the European Union: Luxembourg, 2022; JRC129888. [Google Scholar] [CrossRef]
- D’Onofrio, R.; Brownlee, T.; Camaioni, C.; Caprari, G.; Malavolta, S.; Trusiani, E. Learning from Experience to Build Urban Green Infrastructure (UGI) in the Central Adriatic City (Italy) under the Life+A_GreeNet Project. UPLanD 2023, 7, 5–24. [Google Scholar] [CrossRef]
- European Commission. Directorate-General for Environment, Building a Green Infrastructure for Europe; Publications Office: Luxembourg, 2014. [Google Scholar] [CrossRef]
- Gómez-Villarino, M.T.; Gómez-Villarino, M.; Ruiz-Garcia, L. Implementation of Urban Green Infrastructures in Peri-Urban Areas: A Case Study of Climate Change Mitigation in Madrid. Agronomy 2021, 11, 31. [Google Scholar] [CrossRef]
- Esch, T.; Bachofer, F.; Heldens, W.; Hirner, A.; Marconcini, M.; Palacios-Lopez, D.; Roth, A.; Üreyen, S.; Zeidler, J.; Dech, S.; et al. Where We Live—A Summary of the Achievements and Planned Evolution of the Global Urban Footprint. Remote Sens. 2018, 10, 895. [Google Scholar] [CrossRef]
- European Environment Agency. The European Environment-State and Outlook 2020: Knowledge for Transition to a Sustainable Europe; European Environment Agency (EEA): Copenhagen, Denmark, 2020; Volume 60, pp. 391–394. [Google Scholar]
- De Meo, I.; Becagli, C.; Cantiani, M.G.; Casagli, A.; Paletto, A. Citizens’ use of public urban green spaces at the time of the COVID-19 pandemic in Italy. Urban For. Urban Green. 2022, 77, 127739. [Google Scholar] [CrossRef]
- Barton, J.; Pretty, J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 2010, 44, 3947–3955. [Google Scholar] [CrossRef]
- Larabi, F.; Berrichi, M.; Paletto, A. Social Demand for Ecosystem Services Provided by Peri-Urban Forests: The Case Study of the Tlemcen Forest (Algeria). J. Environ. Account Manag. 2021, 9, 19–29. [Google Scholar] [CrossRef]
- MEA. Ecosystems and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Ouyang, X.; Luo, X. Models for Assessing Urban Ecosystem Services: Status and Outlooks. Sustainability 2022, 14, 4725. [Google Scholar] [CrossRef]
- Zou, Z.; Yang, Y.; Qiu, G.Y. Quantifying the Evapotranspiration Rate and Its Cooling Effects of Urban Hedges Based on Three-Temperature Model and Infrared Remote Sensing. Remote Sens. 2019, 11, 202. [Google Scholar] [CrossRef]
- Uribe, C.; Brenes, R.; Hack, J. Potential of retrofitted urban green infrastructure to reduce runoff—A model implementation with site-specific constraints at neighborhood scale. Urban For. Urban Green. 2022, 69, 127499. [Google Scholar] [CrossRef]
- Del Serrone, G.; Peluso, P.; Moretti, L. Evaluation of Microclimate Benefits Due to Cool Pavements and Green Infrastructures on Urban Heat Islands. Atmosphere 2022, 13, 1586. [Google Scholar] [CrossRef]
- Wu, Q.; Huang, Y.; Irga, P.; Kumar, P.; Li, W.; Wei, W.; Shon, H.K.; Lei, C.; Zhou, J.L. X Synergistic control of urban heat island and urban pollution island effects using green infrastructure. J. Environ. Manag. 2022, 370, 122985. [Google Scholar] [CrossRef]
- Pen, L.L.H.; Jim, C.Y. Economic evaluation of green-roof environmental benefits in the context of climate change: The case of Hong Kong. Urban For. Urban Green. 2015, 14, 554–561. [Google Scholar] [CrossRef]
- Hekrle, M.; Liberalesso, T.; Macháč, J.; Matos Silva, C. The economic value of green roofs: A case study using different cost–benefit analysis approaches. J. Clean. Prod. 2023, 413, 137531. [Google Scholar] [CrossRef]
- Giannico, V.; Spano, G.; Elia, M.; D’Este, M.; Sanesi, G.; Lafortezza, R. Green spaces, quality of life, and citizen perception in European cities. Environ. Res. 2021, 196, 110922. [Google Scholar] [CrossRef] [PubMed]
- Ostoić, S.K.; Konijnendijk van den Bosch, C.C.; Vuletić, D.; Stevanov, M.; Živojinović, I.; Mutabdžija-Bećirović, S.; Lazarević, J.; Stojanova, B.; Blagojević, D.; Stojanovska, M.; et al. Citizens’ perception of and satisfaction with urban forests and green space: Results from selected Southeast European cities. Urban For. Urban Green. 2017, 23, 93–103. [Google Scholar] [CrossRef]
- Molari, M.; Dominici, L.; Manso, M.; Matos Silva, C.; Comino, E. A socio-ecological approach to investigate the perception of green walls in cities: A comparative analysis of case studies in Turin and Lisbon. Nat. Based Solut. 2024, 6, 100175. [Google Scholar] [CrossRef]
- Kim, M.; Rupprecht, C.D.D.; Furuya, K. Residents’ Perception of Informal Green Space—A Case Study of Ichikawa City, Japan. Land 2018, 7, 102. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Ni, Z.; Zhang, X.; Xia, B. Benefits of the ecosystem services provided by urban green infrastructures: Differences between perception and measurements. Urban For. Urban Green. 2020, 54, 126774. [Google Scholar] [CrossRef]
- Otte, E.; Rousseau, R. Social network analysis: A powerful strategy, also for the information sciences. J. Inf. Sci. 2002, 28, 441–453. [Google Scholar] [CrossRef]
- Biancolillo, I.; Paletto, A.; Bersier, J.; Keller, M.; Romagnoli, M. A literature review on forest bioeconomy with a bibliometric network analysis. J. For. Sci. 2020, 66, 265–279. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. In Measuring Scholarly Impact: Methods and Practice; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer: Cham, Switzerland, 2014; pp. 285–332. [Google Scholar]
- Nesseth, N.M.; Henson, A.M.; Barriault, C.L. A Framework for Understanding the Nature of Questions Asked by Audience Participants at Science Cafés. Front. Educ. 2021, 6, 674878. [Google Scholar] [CrossRef]
- Dijkstra, A.M. Analysing Dutch Science Cafés to better understand the science-society relationship. J. Sci. Commun. 2017, 16, 1–17. [Google Scholar] [CrossRef]
- Baldessari, S.; Paletto, A.; De Meo, I. Rethinking Public Participation in Forest Policies: A Literature Review of Participatory Techniques. Forests 2024, 15, 1514. [Google Scholar] [CrossRef]
- De Meo, I.; Apostol, E.N.; Kallio, M.; Marongiu, S.; Badea, O.N.; Paletto, A. Scientific Café as a tool to involve civil society in the forestry sector: A methodological approach. Agric. For. Podgor. 2023, 69, 285–301. [Google Scholar] [CrossRef]
- Grilli, G.; Garegnani, G.; Poljanec, A.; Ficko, A.; Vettorato, D.; De Meo, I.; Paletto, A. Stakeholder analysis in the biomass energy development based on the experts’ opinions: The example of Triglav National Park in Slovenia. Folia For. Pol. 2015, 57, 173–186. [Google Scholar] [CrossRef]
- Mitchell, R.; Agle, B.; Wood, D. Towards a theory of stakeholder identification: Defining the principle of who and what really counts. Acad. Manag. Rev. 1997, 22, 853–886. [Google Scholar] [CrossRef]
- Long, A.J.; Nair, P.K.R. Trees outside forests: Agro-, community, and urban forestry. New For. 1999, 17, 145–174. [Google Scholar] [CrossRef]
- IPBES. Summary for Policymakers of the Methodological Assessment Report on the Diverse Values and Valuation of Nature of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Secretariat; Pascual, U., Balvanera, P., Christie, M., Baptiste, B., González-Jiménez, D., Anderson, C.B., Athayde, S., Barton, D.N., Chaplin-Kramer, R., Jacobs, S., et al., Eds.; IPBES: Bonn, Germany, 2022; p. 45. [Google Scholar] [CrossRef]
- Marques, P.; Santos Silva, A.; Quaresma, Y.; Resende Manna, L.; de Magalhães Neto, N.; Mazzoni, R. Home gardens can be more important than other urban green infrastructure for mental well-being during COVID-19 pandemics. Urban For. Urban Green. 2021, 64, 127268. [Google Scholar] [CrossRef]
- Jabbar, M.; Mohd Yusoff, M.; Shafie, A. Assessing the role of urban green spaces for human well-being: A systematic review. GeoJournal 2021, 87, 4405–4423. [Google Scholar] [CrossRef]
- Pasanen, T.P.; White, M.P.; Elliott, L.R.; van den Bosch, M.; Bratman, G.N.; Ojala, A.; Korpela, K.; Fleming, L.E. Urban green space and mental health among people living alone: The mediating roles of relational and collective restoration in an 18-country sample. Environ. Res. 2023, 232, 116324. [Google Scholar] [CrossRef]
- Vujcic, M.; Tomicevic-Dubljevic, J.; Zivojinovic, I.; Toskovic, O. Connection between urban green areas and visitors’ physical and mental well-being. Urban For. Urban Green. 2019, 40, 299–307. [Google Scholar] [CrossRef]
- Zhang, Y.; Mavoa, S.; Zhao, J.; Raphael, D.; Smith, M. The Association between Green Space and Adolescents’ Mental Well-Being: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 6640. [Google Scholar] [CrossRef]
- Kičić, M.; Haase, D.; Marin, A.M.; Vuletić, D.; Krajter Ostoić, S. Perceptions of cultural ecosystem services of tree-based green infrastructure: A focus group participatory mapping in Zagreb, Croatia. Urban For. Urban Green. 2022, 78, 127767. [Google Scholar] [CrossRef]
- Baumeister, C.F.; Gerstenberg, T.; Plieninger, T.; Schraml, U. Exploring cultural ecosystem service hotspots: Linking multiple urban forest features with public participation mapping data. Urban For. Urban Green. 2020, 48, 126561. [Google Scholar] [CrossRef]
- Kim, J.; Son, Y. Assessing and mapping cultural ecosystem services of an urban forest based on narratives from blog posts. Ecol. Indic. 2021, 129, 107983. [Google Scholar] [CrossRef]
- Larcher, F.; Pomatto, E.; Battisti, L.; Gullino, P.; Devecchi, M. Perceptions of Urban Green Areas during the Social Distancing Period for COVID-19 Containment in Italy. Horticulturae 2021, 7, 55. [Google Scholar] [CrossRef]
- Derks, J.; Giessen, L.; Winkel, G. COVID-19-induced visitor boom reveals the importance of forests as critical infrastructure. For. Policy Econ. 2020, 118, 102253. [Google Scholar] [CrossRef]
- Beckmann-Wübbelt, A.; Fricke, A.; Sebesvari, Z.; Yakouchenkova, I.A.; Fröhlich, K.; Saha, S. High public appreciation for the cultural ecosystem services of urban and peri-urban forests during the COVID-19 pandemic. Sustain. Cities Soc. 2021, 74, 103240. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Gundersen, V.; Figari, H.; Nowell, M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 2020, 15, 104075. [Google Scholar] [CrossRef]
- Da Schio, N.; Phillips, A.; Fransen, K.; Wolff, M.; Haase, D.; Krajter Ostoić, S.; Živojinović, I.; Vuletić, D.; Derks, J.; Davies, C.; et al. (The impact of the COVID-19 pandemic on the use of and attitudes to-wards urban forests and green spaces: Exploring the instigators of change in Belgium. Urban For. Urban Green. 2021, 65, 127305. [Google Scholar] [CrossRef]
- Lopez, B.; Kennedy, C.; Field, C.; McPhearson, T. Who benefits from urban green spaces during times of crisis? Perception and use of urban green spaces in New York City during the COVID-19 pandemic. Urban For. Urban Green. 2021, 65, 127354. [Google Scholar] [CrossRef]
- Dushkova, D.; Ignatieva, M.; Konstantinova, A.; Yang, F. Cultural Ecosystem Services of Urban Green Spaces. How and What People Value in Urban Nature? In Advanced Technologies for Sustainable Development of Urban Green Infrastructure; Vasenev, V., Dovletyarova, E., Valentini, R., Cheng, Z., Calfapietra, C., Inostroza, C., Leuchner, M., Eds.; Springer: Cham, Switzerland, 2021; pp. 292–318. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.; Wang, W.J.; Xie, Z. Therapeutic plant landscape design of urban forest parks based on the Five Senses Theory: A case study of Stanley Park in Canada. Int. J. Geoheritage Parks 2022, 10, 97–112. [Google Scholar] [CrossRef]
- Rey Gonzalo, G.; Barrigón Morillas, J.M.; Montes González, D. Perceptions and use of urban green spaces on the basis of size. Urban For. Urban Green. 2019, 46, 126470. [Google Scholar] [CrossRef]
- Paletto, A.; Guerrini, S.; De Meo, I. Exploring visitors’ perceptions of silvicultural treatments to increase the destination attractiveness of peri-urban forests: A case study in Tuscany Region (Italy). Urban For. Urban Green. 2017, 27, 314–323. [Google Scholar] [CrossRef]
- Parsa, V.A.; Salehi, E.; Yavari, A.R.; van Bodegom, P.M. Evaluating the potential contribution of urban ecosystem service to climate change mitigation. In Urban Ecosystems; Jim, C.Y., McKinney, M., Eds.; Springer Science + Business Media: Berlin, Germany, 2019; pp. 989–1006. [Google Scholar] [CrossRef]
- keobilor, J. Urban Green Infrastructure and its effects on Climate Change—A Review. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Artmann, M.; Inostroza, L.; Fan, P. Urban sprawl, compact urban development and green cities. How much do we know, how much do we agree? Ecol. Indic. 2018, 96, 3–9. [Google Scholar] [CrossRef]
- Reinwald, F.; Brandenburg, C.; Gabor, A.; Hinterkoerner, P.; Kainz, A.; Kraus, F.; Ring, Z.; Scharf, B.; Toetzer, T.; Damyanovic, D. Multi-level toolset for steering urban green infrastructure to support the development of climate-proofed cities. Sustainability 2021, 13, 12111. [Google Scholar] [CrossRef]
- Minor, E.S.; Anderson, E.C.; Belaire, J.A.; Garfinkel, M.; Smith, A.D. Urban green infrastructures and ecological networks for urban biodiversity conservation. In Urban Biodiversity; Ossola, A., Niemelä, J., Eds.; From Research to Practice: London, UK; Routledge: London, UK, 2017; pp. 186–199. [Google Scholar]
- Hansen, R.; Olafsson, A.S.; van der Jagt, A.P.N.; Rall, E.; Pauleit, S. Planning multifunctional green infrastructure for compact cities: What is the state of practice? Ecol. Indic. 2019, 96, 99–110. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.; Yang, H.; Liu, Z. Urban green infrastructure affects bird biodiversity in the coastal megalopolis region of Shenzhen city. Appl. Geogr. 2023, 151, 102860. [Google Scholar] [CrossRef]
- Riechers, M.; Barkmann, J.; Tscharntke, T. Perceptions of cultural ecosystem services from urban green. Ecosyst. Serv. 2016, 17, 33–39. [Google Scholar] [CrossRef]
- Slovák, L.; Daněk, J.; Daněk, T. The use of focus groups in cultural ecosystem services research: A systematic review. Humanit. Soc. Sci. Commun. 2023, 10, 45. [Google Scholar] [CrossRef]
- Palacios-Agundez, I.; Casado-Arzuaga, I.; Madariaga, I.; Onaindia, M. The Relevance of Local Participatory Scenario Planning for Ecosystem Management Policies in the Basque Country, Northern Spain. Ecol. Soc. 2013, 18, 7. [Google Scholar] [CrossRef]
Ecosystem Service | Co-Occurrence (O) | Total Link Strength (TLS) |
---|---|---|
Cultural services | ||
Cultural ecosystem services (plural) | 22 | 198 |
Aesthetics | 9 | 124 |
Cultural ecosystem service (singular) | 7 | 118 |
Public health | 9 | 118 |
Quality of life | 10 | 113 |
Landscape | 8 | 99 |
Well-being | 6 | 89 |
Recreation | 9 | 85 |
Recreational activity | 6 | 76 |
Culture | 4 | 65 |
Psychology | 5 | 64 |
Landscape structure | 5 | 59 |
Outdoor recreation | 4 | 46 |
Landscape change | 6 | 40 |
Well-being | 4 | 40 |
Cultural services | 4 | 17 |
Regulating services | ||
Climate change | 26 | 309 |
Carbon sequestration | 11 | 158 |
Air quality | 7 | 114 |
Carbon | 4 | 86 |
Water management | 7 | 93 |
Heat island | 7 | 81 |
Urban heat island | 6 | 56 |
Microclimate | 4 | 55 |
Carbon storage | 4 | 51 |
Supporting services | ||
Biodiversity | 29 | 296 |
Urban biodiversity | 10 | 61 |
Biodiversity conservation | 5 | 59 |
Connectivity | 6 | 59 |
Species diversity | 5 | 52 |
Species richness | 4 | 16 |
Provisioning services | ||
Food production | 6 | 65 |
Biomass | 4 | 61 |
Timber | 5 | 57 |
Ecosystem Services | Key Actions |
---|---|
Regulating services | |
Heat islands mitigation |
|
Climate change adaptation |
|
Cultural services | |
Public health, well-being and quality of life |
|
Aesthetic value |
|
Outdoor recreation |
|
Supporting services | |
Urban biodiversity (flora and fauna) |
|
Ecosystem Services | Scientific Debate | Social Perception |
---|---|---|
Provisioning services | ||
Food production | ++ | o |
Timber and biomass production | + | o |
Regulating services | ||
Heat islands mitigation | +++ | ++++ |
Climate change/Carbon sequestration | ++++ | ++ |
Water management | ++ | o |
Cultural services | ||
Public health, well-being and quality of life | +++ | ++++ |
Aesthetic value | +++ | +++ |
Outdoor recreation | +++ | +++ |
Supporting services | ||
Urban biodiversity (flora and fauna) | ++++ | +++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldessari, S.; De Meo, I.; Cantiani, M.G.; Paletto, A. Social Relevance of Ecosystem Services Provided by Urban Green Infrastructures: A Mixed Qualitative–Quantitative Case Study Approach. Land 2025, 14, 230. https://doi.org/10.3390/land14020230
Baldessari S, De Meo I, Cantiani MG, Paletto A. Social Relevance of Ecosystem Services Provided by Urban Green Infrastructures: A Mixed Qualitative–Quantitative Case Study Approach. Land. 2025; 14(2):230. https://doi.org/10.3390/land14020230
Chicago/Turabian StyleBaldessari, Sofia, Isabella De Meo, Maria Giulia Cantiani, and Alessandro Paletto. 2025. "Social Relevance of Ecosystem Services Provided by Urban Green Infrastructures: A Mixed Qualitative–Quantitative Case Study Approach" Land 14, no. 2: 230. https://doi.org/10.3390/land14020230
APA StyleBaldessari, S., De Meo, I., Cantiani, M. G., & Paletto, A. (2025). Social Relevance of Ecosystem Services Provided by Urban Green Infrastructures: A Mixed Qualitative–Quantitative Case Study Approach. Land, 14(2), 230. https://doi.org/10.3390/land14020230