Vegetation Succession Patterns at Sperry Glacier’s Foreland, Glacier National Park, MT, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fieldwork Preparation and Methodology
2.3. Derived GIS Variables and Vegetation Indices
2.4. Vegetation Indices Calculation
Independent Variables | Source | Description/Justification |
---|---|---|
Terrain Age Ranges | Existing Geospatial Dataset | Dates of terrain exposure based on glacier margin date lines for analysis of vegetation over time [38,39]. |
Drainage | Field | Drainage was categorized into poor and moderate drainage. Water availability is important for plant germination and survival [67]. |
Observed Concavity | Field | Concavity was classified into concave, convex, straight, and undulating. Concavity can create safe sites [25]. |
Landform feature | Field | Landform features were classified into moraines, Roche moutonnée, and others. These features may influence safe site availability. |
% Fines–Sand | Field | The percent cover of surface fragments under 2 mm in size. These small surface fragments may contain nutrients and preserve moisture [26]. |
% Gravel–Cobble | Field | The percent cover of surface fragments from 2 to 256 mm in size. Gravel and cobble provide safe sites [25,26]. |
% Boulder | Field | The percent cover of surface fragments greater than 256 mm in size. Boulders provide shade and shelter from wind [26]. |
Process Domain | Field | The main glacial process that shaped the landscape, classified as depositional or erosional [71]. |
Northness | GIS-Derived | A cosine transformation of aspect, which may influence vegetation cover and composition [20]. |
Eastness | GIS-Derived | A sine transformation of aspect, which may influence vegetation cover and composition [20]. |
Slope (°) | GIS-Derived | A measure of the steepness of the surface. Steep slopes cause instability and may hinder vegetation development [6,26]. |
Topographic Position Index | GIS-Derived | The relative position/elevation of a location. This position influences erosion and soil development [63,64]. |
Flow Accumulation | GIS-Derived | The accumulated weight of water flow into each raster cell of a landscape. Flow accumulation influences the water supply in each plot. |
Area Solar Radiation (WH/m2) | GIS-Derived | A measure of insolation, or solar exposure. Solar radiation may increase dehiscence or change plant composition [12,67]. |
Profile Curvature (1/100 m) | GIS-Derived | The curvature parallel to the direction of the maximum slope. Profile curvature influences the acceleration and deceleration of flow [65]. |
Tangential Curvature (1/100 m) | GIS-Derived | The curvature perpendicular to the direction of the maximum slope. Tangential curvature influences the convergence and divergence of flow [66]. |
2.5. Statistical Analyses
3. Results
3.1. Floristics and Chronosequence Patterns
3.2. Generalized Linear Models
4. Discussion
4.1. Community Composition
4.2. Diversity and Cover Change Across the Chronosequence
4.3. Biophysical Site Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matthews, J.A. The Ecology of Recently-Deglaciated Terrain: A Geoecological Approach to Glacier Forelands; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Fickert, T. Glacier Forelands-Unique Field Laboratories for the Study of Primary Succession of Plants. In Glacier Evolution in a Changing World; Godone, D., Ed.; InTech: Rijeka, Croatia, 2017; pp. 125–146. [Google Scholar]
- Bosson, J.-B.; Huss, M.; Cauvy-Fraunié, S.; Clément, J.-C.; Costes, G.; Fischer, M.; Poulenard, J.; Arthaud, F. Future Emergence of New Ecosystems Caused by Glacial Retreat. Nature 2023, 620, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Fickert, T.; Schwaizer, G.; Patzelt, G.; Groß, G. Vegetation Dynamics in Alpine Glacier Forelands Tackled from Space. Sci. Rep. 2019, 9, 13918. [Google Scholar] [CrossRef] [PubMed]
- Ficetola, G.F.; Marta, S.; Guerrieri, A.; Gobbi, M.; Ambrosini, R.; Fontaneto, D.; Zerboni, A.; Poulenard, J.; Caccianiga, M.; Thuiller, W. Dynamics of Ecological Communities Following Current Retreat of Glaciers. Annu. Rev. Ecol. Evol. Syst. 2021, 52, 405–426. [Google Scholar] [CrossRef]
- Lambert, C.B.; Resler, L.M.; Shao, Y.; Butler, D.R. Vegetation Change as Related to Terrain Factors at Two Glacier Forefronts, Glacier National Park, Montana, USA. J. Mt. Sci. 2020, 17, 1–15. [Google Scholar] [CrossRef]
- Erschbamer, B.; Schlag, R.N.; Winkler, E. Colonization Processes on a Central Alpine Glacier Foreland. J. Veg. Sci. 2008, 19, 855–862. [Google Scholar] [CrossRef]
- Cazzolla Gatti, R.; Dudko, A.; Lim, A.; Velichevskaya, A.I.; Lushchaeva, I.V.; Pivovarova, A.V.; Ventura, S.; Lumini, E.; Berruti, A.; Volkov, I.V. The Last 50 Years of Climate-induced Melting of the Maliy Aktru Glacier (Altai Mountains, Russia) Revealed in a Primary Ecological Succession. Ecol. Evol. 2018, 8, 7401–7420. [Google Scholar] [CrossRef]
- Matthews, J.A.; Vater, A.E. Pioneer Zone Geo-Ecological Change: Observations from a Chronosequence on the Storbreen Glacier Foreland, Jotunheimen, Southern Norway. CATENA 2015, 135, 219–230. [Google Scholar] [CrossRef]
- Losapio, G.; Cerabolini, B.E.L.; Maffioletti, C.; Tampucci, D.; Gobbi, M.; Caccianiga, M. The Consequences of Glacier Retreat Are Uneven Between Plant Species. Front. Ecol. Evol. 2021, 8, 616562. [Google Scholar] [CrossRef]
- Mori, A.S.; Osono, T.; Uchida, M.; Kanda, H. Changes in the Structure and Heterogeneity of Vegetation and Microsite Environments with the Chronosequence of Primary Succession on a Glacier Foreland in Ellesmere Island, High Arctic Canada. Ecol. Res. 2008, 23, 363–370. [Google Scholar] [CrossRef]
- Schumann, K.; Gewolf, S.; Tackenberg, O. Factors Affecting Primary Succession of Glacier Foreland Vegetation in the European Alps. Alp. Bot. 2016, 126, 105–117. [Google Scholar] [CrossRef]
- Eichel, J.; Draebing, D.; Winkler, S.; Meyer, N. Similar Vegetation-geomorphic Disturbance Feedbacks Shape Unstable Glacier Forelands across Mountain Regions. Ecosphere 2023, 14, e4404. [Google Scholar] [CrossRef]
- Young, K. Ecology of Land Cover Change in Glaciated Tropical Mountains. Rev. Peru. Biol. 2014, 21, 259–270. [Google Scholar] [CrossRef]
- Cauvy-Fraunié, S.; Dangles, O. A Global Synthesis of Biodiversity Responses to Glacier Retreat. Nat. Ecol. Evol. 2019, 3, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, R.; Eichel, J.; Bradley, J.A.; Benning, L.G. How Allogenic Factors Affect Succession in Glacier Forefields. Earth-Sci. Rev. 2021, 218, 103642. [Google Scholar] [CrossRef]
- Chapin, F.S.; Walker, L.R.; Fastie, C.L.; Sharman, L.C. Mechanisms of Primary Succession Following Deglaciation at Glacier Bay, Alaska. Ecol. Monogr. 1994, 64, 149–175. [Google Scholar] [CrossRef]
- Walker, L.R.; Wardle, D.A.; Bardgett, R.D.; Clarkson, B.D. The Use of Chronosequences in Studies of Ecological Succession and Soil Development. J. Ecol. 2010, 98, 725–736. [Google Scholar] [CrossRef]
- Andreis, C.; Caccianiga, M.; Cerabolini, B. Vegetation and Environmental Factors during Primary Succession on Glacier Forelands: Some Outlines from the Italian Alps. Plant Biosyst. 2001, 135, 295–310. [Google Scholar] [CrossRef]
- Glausen, T.G.; Tanner, L.H. Successional Trends and Processes on a Glacial Foreland in Southern Iceland Studied by Repeated Species Counts. Ecol. Process. 2019, 8, 11. [Google Scholar] [CrossRef]
- Pickett, S.T.A. Space-for-Time Substitution as an Alternative to Long-Term Studies. In Long-Term Studies in Ecology: Approaches and Alternatives; Likens, G.E., Ed.; Springer: New York, NY, USA, 1989; pp. 110–135. [Google Scholar]
- Malanson, G.P.; Butler, D.R.; Fagre, D.B.; Walsh, S.J.; Tomback, D.F.; Daniels, L.D.; Resler, L.M.; Smith, W.K.; Weiss, D.J.; Peterson, D.L. Alpine Treeline of Western North America: Linking Organism-to-Landscape Dynamics. Phys. Geogr. 2007, 28, 378–396. [Google Scholar] [CrossRef]
- Carrara, P.E.; McGimsey, R.G. The Late-Neoglacial Histories of the Agassiz and Jackson Glaciers, Glacier National Park, Montana. Arct. Alp. Res. 1981, 13, 183–196. [Google Scholar] [CrossRef]
- Resler, L.M. Geomorphic Controls of Spatial Pattern and Process at Alpine Treeline. Prof. Geogr. 2006, 58, 124–138. [Google Scholar] [CrossRef]
- Jumpponen, A.; Väre, H.; Mattson, K.G.; Ohtonen, R.; Trappe, J.M. Characterization of ‘Safe Sites’ for Pioneers in Primary Succession on Recently Deglaciated Terrain. J. Ecol. 1999, 87, 98–105. [Google Scholar] [CrossRef]
- Perez, F. Phytogeomorphic Influence of Stone Covers and Boulders on Plant Distribution and Slope Processes in High-Mountain Areas. Geogr. Compass 2009, 3, 1774–1803. [Google Scholar] [CrossRef]
- Raven, P.; Evert, R.; Eichhorn, S. Biology of Plants, 7th ed.; WH Freedman and Company Worth Publishers: New York, NY, USA, 1999. [Google Scholar]
- Grohmann, C.; Hartmann, J.N.; Kovalev, A.; Gorb, S.N. Dandelion Diaspore Dispersal: Frictional Anisotropy of Cypselae of Taraxacum officinale Enhances Their Interlocking with the Soil. Plant Soil 2019, 440, 399–408. [Google Scholar] [CrossRef]
- Bayle, A. A Recent History of Deglaciation and Vegetation Establishment in a Contrasted Geomorphological Context, Glacier Blanc, French Alps. J. Maps 2020, 16, 766–775. [Google Scholar] [CrossRef]
- Fickert, T. Common Patterns and Diverging Trajectories in Primary Succession of Plants in Eastern Alpine Glacier Forelands. Diversity 2020, 12, 191. [Google Scholar] [CrossRef]
- Raffl, C.; Mallaun, M.; Mayer, R.; Erschbamer, B. Vegetation Succession Pattern and Diversity Changes in a Glacier Valley, Central Alps, Austria. Arct. Antarct. Alp. Res. 2006, 38, 421–428. [Google Scholar] [CrossRef]
- Moreau, M.; Laffly, D.; Joly, D.; Brossard, T. Analysis of Plant Colonization on an Arctic Moraine since the End of the Little Ice Age Using Remotely Sensed Data and a Bayesian Approach. Remote Sens. Environ. 2005, 99, 244–253. [Google Scholar] [CrossRef]
- Rydgren, K.; Halvorsen, R.; Töpper, J.P.; Njøs, J.M. Glacier Foreland Succession and the Fading Effect of Terrain Age. J. Veg. Sci. 2014, 25, 1367–1380. [Google Scholar] [CrossRef]
- Pauli, H.; Gottfried, M.; Reiter, K.; Klettner, C.; Grabherr, G. Signals of Range Expansions and Contractions of Vascular Plants in the High Alps: Observations (1994–2004) at the GLORIA* Master Site Schrankogel, Tyrol, Austria. Glob. Change Biol. 2007, 13, 147–156. [Google Scholar] [CrossRef]
- Brown, J.; Harper, J.; Humphrey, N. Cirque Glacier Sensitivity to 21st Century Warming: Sperry Glacier, Rocky Mountains, USA. Glob. Planet. Change 2010, 74, 91–98. [Google Scholar] [CrossRef]
- Goff, P.; Butler, D.R. James Dyson (1948) Shrinkage of Sperry and Grinnell Glaciers, Glacier National Park, Montana. Geographical Review 38(1): 95–103. Prog. Phys. Geogr. 2016, 40, 616–621. [Google Scholar] [CrossRef]
- Johnson, A. Grinnell and Sperry Glaciers, Glacier National Park, Montana: A Record of Vanishing Ice, Professional Paper, Report 1180; U.S. Geological Survey: Reston, VA, USA, 1980. [Google Scholar]
- Key, C.H.; Fagre, D.B.; Menicke, R.K. Glacier Retreat in Glacier National Park, Montana. US Geol. Surv. Prof. Pap. 2002, 1386, 365. [Google Scholar]
- Fagre, D.; McKeon, L.; Dick, L.; Fountain, A. Glacier Margin Time Series (1966, 1998, 2005, 2015) of the Named Glaciers of Glacier National Park, MT, USA; US Geological Survey Data Release: Reston, VA, USA, 2017. [Google Scholar]
- Walker, L.; Del Moral, R. Primary Succession and Ecosystem Rehabilitation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Matthes, F.E. Committee on Glaciers, 1939–40. Eos Trans. Am. Geophys. Union 1940, 21, 396–406. [Google Scholar]
- Hall, M.H.; Fagre, D.B. Modeled Climate-Induced Glacier Change in Glacier National Park, 1850–2100. BioScience 2003, 53, 131–140. [Google Scholar] [CrossRef]
- Selkowitz, D.J.; Fagre, D.B.; Reardon, B.A. Interannual Variations in Snowpack in the Crown of the Continent Ecosystem. Hydrol. Process. 2002, 16, 3651–3665. [Google Scholar] [CrossRef]
- Carrara, P.E. Late Quaternary Glacial and Vegetative History of the Glacier National Park Region, Montana; USGPO: Pueblo, CO, USA, 1989. [Google Scholar]
- Dyson, J.L. Shrinkage of Sperry and Grinnell Glaciers, Glacier National Park, Montana. Geogr. Rev. 1948, 38, 95–103. [Google Scholar] [CrossRef]
- Wang, T.; Hamann, A.; Spittlehouse, D.; Carroll, C. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America. PloS ONE 2016, 11, e0156720. [Google Scholar] [CrossRef] [PubMed]
- Whipple, J.W. Geologic Map of Glacier National Park, Montana; U.S. Geological Survey: Reston, VA, USA, 1992.
- Carrara, P.E.; McGimsey, R.G. Map Showing Distribution of Moraines and Extent of Glaciers from the Mid-19th Century to 1979 in the Mount Jackson Area, Glacier National Park, Montana; U.S. Geological Survey: Reston, VA, USA, 1988.
- Lesica, P. Flora of Glacier National Park, Montana; Oregon State University Press: Corvallis, OR, USA, 2002. [Google Scholar]
- Mauer, B.; Williams, T. An Analysis of Potential Sensitive Plant Species for Long-Term Monitoring in Glacier National Park. UW-Natl. Park Serv. Res. Stn. Annu. Rep. 1991, 15, 105–114. [Google Scholar] [CrossRef]
- Stibal, M.; Bradley, J.A.; Edwards, A.; Hotaling, S.; Zawierucha, K.; Rosvold, J.; Lutz, S.; Cameron, K.A.; Mikucki, J.A.; Kohler, T.J. Glacial Ecosystems Are Essential to Understanding Biodiversity Responses to Glacier Retreat. Nat. Ecol. Evol. 2020, 4, 686–687. [Google Scholar] [CrossRef]
- Fickert, T.; Friend, D.; Molnia, B.; Grüninger, F.; Richter, M. Vegetation Ecology of Debris-Covered Glaciers (DCGs)—Site Conditions, Vegetation Patterns and Implications for DCGs Serving as Quaternary Cold-and Warm-Stage Plant Refugia. Diversity 2022, 14, 114. [Google Scholar] [CrossRef]
- Kondo, K.; Tsuchiya, M.; Sanada, S. Evaluation of Effect of Micro-Topography on Design Wind Velocity. J. Wind Eng. Ind. Aerodyn. 2002, 90, 1707–1718. [Google Scholar] [CrossRef]
- Damm, C. A Phytosociological Study of Glacier National Park, Montana, USA, with Notes on the Syntaxonomy of Alpine Vegetation in Western North America. Ph.D. Thesis, Georg-August Universitaet, Goettingen, Germany, 2001. [Google Scholar]
- Schulz, B. Sampling and Estimation Procedures for the Vegetation Diversity and Structure Indicator; US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR, USA, 2009.
- Godínez-Alvarez, H.; Herrick, J.E.; Mattocks, M.; Toledo, D.; Van Zee, J. Comparison of Three Vegetation Monitoring Methods: Their Relative Utility for Ecological Assessment and Monitoring. Ecol. Indic. 2009, 9, 1001–1008. [Google Scholar] [CrossRef]
- Sullivan, S.K. Glacier NP Wildflowers. 2022. Available online: https://play.google.com/store/apps/details?id=com.wildflowersearch.glwildflowers&hl=en_US&gl=US (accessed on 1 July 2022).
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Brown, D.G. Comparison of Vegetation-Topography Relationships at the Alpine Treeline Ecotone. Phys. Geogr. 1994, 15, 125–145. [Google Scholar] [CrossRef]
- Guisan, A.; Theurillat, J.; Kienast, F. Predicting the Potential Distribution of Plant Species in an Alpine Environment. J. Veg. Sci. 1998, 9, 65–74. [Google Scholar] [CrossRef]
- Smith-Mckenna, E.K.; Resler, L.M.; Tomback, D.F.; Zhang, H.; Malanson, G.P. Topographic Influences on the Distribution of White Pine Blister Rust in Pinus albicaulis Treeline Communities. Écoscience 2013, 20, 215–229. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 8.0. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Román-Sánchez, A.; Vanwalleghem, T.; Peña, A.; Laguna, A.; Giráldez, J.V. Controls on Soil Carbon Storage from Topography and Vegetation in a Rocky, Semi-Arid Landscapes. Geoderma 2018, 311, 159–166. [Google Scholar] [CrossRef]
- Temme AJ, A.M.; Heckmann, T.; Harlaar, P. Silent Play in a Loud Theatre—Dominantly Time-Dependent Soil Development in the Geomorphically Active Proglacial Area of the Gepatsch Glacier, Austria. CATENA 2016, 147, 40–50. [Google Scholar] [CrossRef]
- Buckley, A. Understanding Curvature Raster. ArcGIS Blog. Available online: https://www.esri.com/arcgis-blog/products/product/imagery/understanding-curvature-rasters/ (accessed on 1 July 2022).
- Kopp, S.; New Surface Analysis Capabilities in ArcGIS Pro 2.7. ArcGIS Blog. Available online: https://www.esri.com/arcgis-blog/products/arcgis-pro/analytics/new-slope-aspect-curvature/ (accessed on 1 July 2022).
- Erschbamer, B.; Caccianiga, M.S. Glacier Forelands: Lessons of Plant Population and Community Development. Prog. Bot. 2017, 78, 259–284. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Moore, J.C. Diversity, Taxonomic versus Functional. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Academic Press: Waltham, MA, USA, 2013; pp. 648–656. [Google Scholar]
- Ortiz-Burgos, S. Shannon-Weaver Diversity Index. In Encyclopedia of Estuaries; Kennish, M.J., Ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 572–573. [Google Scholar]
- Eichel, J. Vegetation Succession and Biogeomorphic Interactions in Glacier Forelands. In Geomorphology of Proglacial Systems: Landform and Sediment Dynamics in Recently Deglaciated Alpine Landscapes; Heckmann, T., Morche, D., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 327–349. [Google Scholar]
- Ahmad, I.; Milella, L.; Alotaibi, G. Oxyria digyna: A Review on the Nutritional Value, Phytochemistry and Ethnopharmacology. PHYTONutrients 2022, 1, 2–16. [Google Scholar] [CrossRef]
- Billault-Penneteau, B.; Sandré, A.; Folgmann, J.; Parniske, M.; Pawlowski, K. Dryas as a Model for Studying the Root Symbioses of the Rosaceae. Front. Plant Sci. 2019, 10, 661. [Google Scholar] [CrossRef] [PubMed]
- Bowman, W.D. Inputs and Storage of Nitrogen in Winter Snowpack in an Alpine Ecosystem. Arct. Alp. Res. 1992, 24, 211–215. [Google Scholar] [CrossRef]
- Björk, R.G.; Molau, U. Ecology of Alpine Snowbeds and the Impact of Global Change. Arct. Antarct. Alp. Res. 2007, 39, 34–43. [Google Scholar] [CrossRef]
- Soudzilovskaia, N.; Onipchenko, V.; Cornelissen, J.; Aerts, R. Biomass Production, N:P Ratio and Nutrient Limitation in a Caucasian Alpine Tundra Plant Community. J. Veg. Sci. 2005, 16, 399–406. [Google Scholar] [CrossRef]
- Jump, A.S.; Peñuelas, J. Running to Stand Still: Adaptation and the Response of Plants to Rapid Climate Change. Ecol. Lett. 2005, 8, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, A.; Meneses, R.I.; Rabatel, A.; Soruco, A.; Dangles, O.; Anthelme, F. Time Lag between Glacial Retreat and Upward Migration Alters Tropical Alpine Communities. Perspect. Plant Ecol. Evol. Syst. 2018, 30, 89–102. [Google Scholar] [CrossRef]
- Jones, G.A.; Henry, G.H.R. Primary Plant Succession on Recently Deglaciated Terrain in the Canadian High Arctic. J. Biogeogr. 2003, 30, 277–296. [Google Scholar] [CrossRef]
- Llambí, L.D.; Melfo, A.; Gámez, L.E.; Pelayo, R.C.; Cárdenas, M.; Rojas, C.; Torres, J.E.; Ramírez, N.; Huber, B.; Hernández, J. Vegetation Assembly, Adaptive Strategies and Positive Interactions During Primary Succession in the Forefield of the Last Venezuelan Glacier. Front. Ecol. Evol. 2021, 9, 657755. [Google Scholar] [CrossRef]
- Brown, J.H. Why Are There so Many Species in the Tropics? J. Biogeogr. 2014, 41, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Eichel, J.; Krautblatter, M.; Schmidtlein, S.; Dikau, R. Biogeomorphic Interactions in the Turtmann Glacier Forefield, Switzerland. Geomorphology 2013, 201, 98–110. [Google Scholar] [CrossRef]
- Dawes, M.A.; Hagedorn, F.; Handa, I.T.; Streit, K.; Ekblad, A.; Rixen, C.; Körner, C.; Hättenschwiler, S. An Alpine Treeline in a Carbon Dioxide-Rich World: Synthesis of a Nine-Year Free-Air Carbon Dioxide Enrichment Study. Oecologia 2013, 171, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Föllmi, K.B.; Hosein, R.; Arn, K.; Steinmann, P. Weathering and the Mobility of Phosphorus in the Catchments and Forefields of the Rhône and Oberaar Glaciers, Central Switzerland: Implications for the Global Phosphorus Cycle on Glacial–Interglacial Timescales. Geochim. Cosmochim. Acta 2009, 73, 2252–2282. [Google Scholar] [CrossRef]
- Agustina, R.; Nicolás, M.R.; Luis, E.B.; Guido, B.; Eleonora, C. Rock Glacier and Solifluction Lobes Groundwater as Nutrient Sources and Refugia for Unique Macroinvertebrate Assemblages in a Mountain Ecosystem of the North Patagonian Andes. Aquat. Sci. 2024, 86, 11. [Google Scholar] [CrossRef]
- Körner, C. The Nutritional Status of Plants from High Altitudes: A Worldwide Comparison. Oecologia 1989, 81, 379–391. [Google Scholar] [CrossRef]
- Körner, C. Carbon Limitation in Trees. J. Ecol. 2003, 91, 4–17. [Google Scholar] [CrossRef]
- Cutler, N. Long-Term Primary Succession: A Comparison of Non-Spatial and Spatially Explicit Inferential Techniques. Plant Ecol. 2010, 208, 123–136. [Google Scholar] [CrossRef]
- Apple, M.; Ricketts, M.; Martin, A.; Moritz, D. Distance from Retreating Snowfields Influences Alpine Plant Functional Traits at Glacier National Park, Montana. In Mountain Landscapes in Transition; Springer: Cham, Switzerland, 2022; pp. 331–348. [Google Scholar]
- Anthelme, F.; Carrasquer, I.; Ceballos, J.L.; Peyre, G. Novel Plant Communities after Glacial Retreat in Colombia:(Many) Losses and (Few) Gains. Alp. Bot. 2022, 132, 211–222. [Google Scholar] [CrossRef]
Floristic Synopsis | ||
Families: | 25 | |
Genera: | 46 | |
Species: | 93 | |
Identified to Species: | 62 | |
Native: | 62 | |
Status Under Review: | 3 | |
Endemic: | 3 | |
Prevalent Families | # of Plots | Avg. VC (%) |
Poaceae | 39 | 2.19 ± 4.76 |
Asteraceae | 36 | 1.34 ± 3.02 |
Polygonaceae | 22 | 0.24 ± 0.39 |
Cyperaceae | 21 | 0.60 ± 1.58 |
Plantaginaceae | 18 | 0.79 ± 2.40 |
Saxifragaceae | 18 | 0.66 ± 2.35 |
Prevalent Species | # of Plots | Avg. VC (%) |
Oxyria digyna (L.) Hill | 21 | 0.23 ± 0.39 |
Senecio fremontii Torr. & A. Gray | 18 | 0.22 ± 0.49 |
Penstemon ellipticus J.M. Coult. & Fisher | 16 | 0.76 ± 2.41 |
Epilobium anagallidifolium Lam. | 14 | 0.13 ± 0.27 |
Saxifraga bronchialis L. | 11 | 0.56 ± 2.31 |
Arnica latifolia Bong. | 9 | 0.25 ± 0.82 |
Other Prevalent Groups | # of Plots | Avg. VC (%) |
Moss: | 34 | 0.87 ± 1.79 |
Lichen: | 17 | 1.30 ± 5.03 |
Terrain Age Ranges | # Plots | SR | SD | SE | Avg SR ± StDev | Avg SD ± StDev | Avg SE ± StDev | Avg VC ± StDev | Sp. Turnover | Abs. Turnover |
---|---|---|---|---|---|---|---|---|---|---|
1850–1901 | 11 | 49 | 3.15 | 0.81 | 9.91 ± 0.32 | 1.74 ± 0.043 | 0.80 ± 0.015 | 22.59 ± 1.57 | 63.75 | 51 |
1901–1927 | 18 | 59 | 3.17 | 0.78 | 7.78 ± 0.28 | 1.53 ± 0.031 | 0.84 ± 0.008 | 12.89 ± 0.71 | 69.44 | 50 |
1927–1959 | 7 | 35 | 2.88 | 0.81 | 9.14 ± 0.41 | 1.77 ± 0.041 | 0.83 ± 0.018 | 17.14 ± 1.60 | 73.81 | 31 |
1959–1993 | 12 | 18 | 2.42 | 0.84 | 3.67 ± 0.21 | 1.06 ± 0.059 | 0.94 ± 0.011 | 2.50 ± 0.19 | 61.54 | 16 |
1993–2022 | 13 | 18 | 2.50 | 0.87 | 3.31 ± 0.28 | 0.86 ± 0.069 | 0.95 ± 0.012 | 2.85 ± 0.33 | n/a | n/a |
Equation | AIC | BIC | D.F. | Res. Dev. | |
Best Model: | SR~Drainage + Terrain Age + Observed Concavity + Process Domain | 316.49 | 338 | 51 | 100.95 |
Null Model: | Formula = SR~1 | 429.86 | 432 | 60 | 232.32 |
Estimate | Std. Error | Pr(>|z|) | |||
Intercept | 2.01 | 0.19 | <2 × 10−16 * | ||
Erosional | −0.47 | 0.17 | 0.0049 * | ||
Poor Drainage | −0.37 | 0.16 | 0.022 * | ||
Convex | −0.66 | 0.17 | 0.00012 * | ||
Straight | −0.32 | 0.14 | 0.026 * | ||
Undulating | −0.32 | 0.14 | 0.021 * | ||
1850–1901 | 0.71 | 0.19 | 0.00025 * | ||
1901–1927 | 0.76 | 0.18 | 2.4 × 10−5 * | ||
1927–1959 | 0.82 | 0.2 | 5.7 × 10−5 * | ||
1959–1993 | 0.22 | 0.22 | 0.32 |
Equation | AIC | BIC | D.F. | Res. Dev. | |
Best Model: | SD~Drainage + Observed Concavity | 41.10 | 52.7 | 46 | 5.28 |
Null Model: | Formula = SD~1 | 58.06 | 61.9 | 50 | 8.62 |
Estimate | Std. Error | Pr(>|z|) | |||
Intercept | 1.92 | 0.09 | <2 × 10−16 * | ||
Poor Drainage | −0.36 | 0.1 | 0.00043 * | ||
Convex | −0.44 | 0.14 | 0.0028 * | ||
Straight | 0.04 | 0.13 | 0.77 | ||
Undulating | −0.19 | 0.12 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryant, A.; Resler, L.M.; Gielstra, D.; Pingel, T. Vegetation Succession Patterns at Sperry Glacier’s Foreland, Glacier National Park, MT, USA. Land 2025, 14, 306. https://doi.org/10.3390/land14020306
Bryant A, Resler LM, Gielstra D, Pingel T. Vegetation Succession Patterns at Sperry Glacier’s Foreland, Glacier National Park, MT, USA. Land. 2025; 14(2):306. https://doi.org/10.3390/land14020306
Chicago/Turabian StyleBryant, Ami, Lynn M. Resler, Dianna Gielstra, and Thomas Pingel. 2025. "Vegetation Succession Patterns at Sperry Glacier’s Foreland, Glacier National Park, MT, USA" Land 14, no. 2: 306. https://doi.org/10.3390/land14020306
APA StyleBryant, A., Resler, L. M., Gielstra, D., & Pingel, T. (2025). Vegetation Succession Patterns at Sperry Glacier’s Foreland, Glacier National Park, MT, USA. Land, 14(2), 306. https://doi.org/10.3390/land14020306