The Effects of Rainfall and Terracing–Mulch Combinations on Soil Erosion in a Loess Hilly Area, China: Insights from Plot Simulations and WEPP Modeling
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Experimental Setup
2.3. Rainfall Simulation Experiments
2.4. Data Collection Procedure and Analysis
2.5. WEPP Model
WEPP Model Parameter Files
3. Results
3.1. Water Erosion Modeling for Terracing–Mulch Combinations
3.2. Erosion Response to Terracing and Mulching Combinations
3.3. Incremental Changes in Runoff and Soil Loss Across Rainfall Transitions
4. Discussion
4.1. Comparison of Effects for Various Terracing–Mulch Combinations Under Different Rainfall Intensities
4.2. The Effect of Mulching on Water Erosion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, D.; Wei, W.; Chen, L. Effects of terracing on soil properties in three key mountainous regions of China. Geogr. Sustain. 2021, 2, 195–206. [Google Scholar] [CrossRef]
- Petrescu-Mag, R.M.; Petrescu, D.C.; Azadi, H. A social perspective on soil functions and quality improvement: Romanian farmers’ perceptions. Geoderma 2020, 380, 114573. [Google Scholar] [CrossRef]
- Teixeira, W.G.; Víctor Hugo Alvarez, V.; Neves, J.C.L. New methods for estimating lime requirement to attain desirable pH values in Brazilian soils. Rev. Bras. Cienc. Solo 2020, 44, e0200008. [Google Scholar] [CrossRef]
- Montanarella, L. Agricultural policy: Govern our soils. Nature 2015, 528, 32–33. [Google Scholar] [CrossRef] [PubMed]
- Zuazo, V.D.; Pleguezuelo, C.R.; Peinado, F.M.; De Graaff, J.; Martínez, J.F.; Flanagan, D. Environmental impact of introducing plant covers in the taluses of terraces: Implications for mitigating agricultural soil erosion and runoff. Catena 2011, 84, 79–88. [Google Scholar] [CrossRef]
- Khan, M.N.; Gong, Y.; Hu, T.; Lal, R.; Zheng, J.; Justine, M.F.; Azhar, M.; Che, M.; Zhang, H. Effect of slope, rainfall intensity and mulch on erosion and infiltration under simulated rain on purple soil of south-western Sichuan province, China. Water 2016, 8, 528. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, L.; Wang, X. The effect of slope length on sediment yield by rainfall impact under different land use types. Water Resour. 2016, 43, 478–485. [Google Scholar] [CrossRef]
- Zheng, F.; Zhang, X.J.; Wang, J.; Flanagan, D.C. Assessing applicability of the WEPP hillslope model to steep landscapes in the northern Loess Plateau of China. Soil Tillage Res. 2020, 197, 104492. [Google Scholar] [CrossRef]
- Peng, T.; Wang, S.-J. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. Catena 2012, 90, 53–62. [Google Scholar] [CrossRef]
- Zhang, W.; Xing, S.; Hou, X. Evaluation of soil erosion and ecological rehabilitation in Loess Plateau region in Northwest China using plutonium isotopes. Soil Tillage Res. 2019, 191, 162–170. [Google Scholar] [CrossRef]
- Li, P.; Mu, X.; Holden, J.; Wu, Y.; Irvine, B.; Wang, F.; Gao, P.; Zhao, G.; Sun, W. Comparison of soil erosion models used to study the Chinese Loess Plateau. Earth-Sci. Rev. 2017, 170, 17–30. [Google Scholar] [CrossRef]
- Hu, X.; Næss, J.S.; Iordan, C.M.; Huang, B.; Zhao, W.; Cherubini, F. Recent global land cover dynamics and implications for soil erosion and carbon losses from deforestation. Anthropocene 2021, 34, 100291. [Google Scholar] [CrossRef]
- Guimarães, D.V.; Silva, M.L.N.; Beniaich, A.; Pio, R.; Gonzaga, M.I.S.; Avanzi, J.C.; Bispo, D.F.A.; Curi, N. Dynamics and losses of soil organic matter and nutrients by water erosion in cover crop management systems in olive groves, in tropical regions. Soil Tillage Res. 2021, 209, 104863. [Google Scholar] [CrossRef]
- Pimentel, D. Soil erosion: A food and environmental threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Tarigan, R.A. Impact of Climate Change on Soil Erosion. Agrotekma J. Agroteknologi Dan Ilmu Pertan. 2022, 7, 28–35. [Google Scholar] [CrossRef]
- Moges, D.M.; Kmoch, A.; Bhat, H.G.; Uuemaa, E. Future soil loss in highland Ethiopia under changing climate and land use. Reg. Environ. Change 2020, 20, 32. [Google Scholar] [CrossRef]
- Starkel, L. Climatically controlled terraces in uplifting mountain areas. Quat. Sci. Rev. 2003, 22, 2189–2198. [Google Scholar] [CrossRef]
- Wei, W.; Chen, D.; Wang, L.; Daryanto, S.; Chen, L.; Yu, Y.; Lu, Y.; Sun, G.; Feng, T. Global synthesis of the classifications, distributions, benefits and issues of terracing. Earth-Sci. Rev. 2016, 159, 388–403. [Google Scholar] [CrossRef]
- Liang, K.; Qi, J.; Liu, E.; Jiang, Y.; Li, S.; Meng, F.-R. Estimated potential impacts of soil and water conservation terraces on potato yields under different climate conditions. J. Soil Water Conserv. 2019, 74, 225–234. [Google Scholar] [CrossRef]
- Chen, D.; Wei, W.; Chen, L. Effects of terracing practices on water erosion control in China: A meta-analysis. Earth-Sci. Rev. 2017, 173, 109–121. [Google Scholar] [CrossRef]
- Rashid, M.; Alvi, S.; Kausar, R.; Akram, M.I. The effectiveness of soil and water conservation terrace structures for improvement of crops and soil productivity in rainfed terraced system. Pak. J. Agric. Sci. 2016, 53, 241–248. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, X.; Xie, Z.; Wang, Y. Effects of gravel-sand mulch on the runoff, erosion, and nutrient losses in the Loess Plateau of north-western China under simulated rainfall. Soil Water Res. 2021, 16, 22–28. [Google Scholar] [CrossRef]
- Li, X.-Y. Gravel–sand mulch for soil and water conservation in the semiarid loess region of northwest China. Catena 2003, 52, 105–127. [Google Scholar] [CrossRef]
- Iqbal, R.; Raza, M.A.S.; Valipour, M.; Saleem, M.F.; Zaheer, M.S.; Ahmad, S.; Toleikiene, M.; Haider, I.; Aslam, M.U.; Nazar, M.A. Potential agricultural and environmental benefits of mulches—A review. Bull. Natl. Res. Cent. 2020, 44, 75. [Google Scholar] [CrossRef]
- Kader, M.A.; Singha, A.; Begum, M.A.; Jewel, A.; Khan, F.H.; Khan, N.I. Mulching as water-saving technique in dryland agriculture. Bull. Natl. Res. Cent. 2019, 43, 147. [Google Scholar] [CrossRef]
- Borrelli, P.; Poesen, J.; Vanmaercke, M.; Ballabio, C.; Hervás, J.; Maerker, M.; Scarpa, S.; Panagos, P. Monitoring gully erosion in the European Union: A novel approach based on the Land Use/Cover Area frame survey (LUCAS). Int. Soil Water Conserv. Res. 2022, 10, 17–28. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Gilley, J.E.; Franti, T.G. Water Erosion Prediction Project (WEPP): Development history, model capabilities, and future enhancements. Trans. ASABE 2007, 50, 1603–1612. [Google Scholar] [CrossRef]
- Flanagan, D.; Nearing, M. USDA-Water Erosion Prediction Project: Hillslope profile and watershed model documentation. NSERL Rep. 1995, 10, 1196–47097. [Google Scholar]
- Shen, Z.; Gong, Y.; Li, Y.; Liu, R. Analysis and modeling of soil conservation measures in the Three Gorges Reservoir Area in China. Catena 2010, 81, 104–112. [Google Scholar] [CrossRef]
- Pandey, A.; Himanshu, S.K.; Mishra, S.K.; Singh, V.P. Physically based soil erosion and sediment yield models revisited. Catena 2016, 147, 595–620. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Seeger, M.; Iserloh, T.; González, J.M.S.; Ruiz-Sinoga, J.D.; Ries, J.B. Rainfall-simulated quantification of initial soil erosion processes in sloping and poorly maintained terraced vineyards-Key issues for sustainable management systems. Sci. Total Environ. 2019, 660, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Pan, D.; Yang, Y. Effects of terracing measures on water retention of pinus Tabulaeformis forest in the dryland loess hilly region of China. Agric. For. Meteorol. 2021, 308, 108544. [Google Scholar] [CrossRef]
- Montenegro, A.d.A.; Abrantes, J.; De Lima, J.; Singh, V.; Santos, T. Impact of mulching on soil and water dynamics under intermittent simulated rainfall. Catena 2013, 109, 139–149. [Google Scholar] [CrossRef]
- Fan, D.; Jia, G.; Wang, Y.; Yu, X. The effectiveness of mulching practices on water erosion control: A global meta-analysis. Geoderma 2023, 438, 116643. [Google Scholar] [CrossRef]
- Zhu, R.; Yu, Y.; Zhao, J.; Liu, D.; Cai, S.; Feng, J.; Rodrigo-Comino, J. Evaluating the applicability of the water erosion prediction project (WEPP) model to runoff and soil loss of sandstone reliefs in the Loess Plateau, China. Int. Soil Water Conserv. Res. 2023, 11, 240–250. [Google Scholar] [CrossRef]
- Wang, C.; Fu, X.; Zhang, X.; Wang, X.; Zhang, G.; Gong, Z. Modeling soil erosion dynamic processes along hillslopes with vegetation impact across different land uses on the Loess Plateau of China. Catena 2024, 243, 108202. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, X.; Yan, S.; Chen, H. Estimating soil erosion response to land use/cover change in a catchment of the Loess Plateau, China. Int. Soil Water Conserv. Res. 2018, 6, 13–22. [Google Scholar] [CrossRef]
- Fu, B.; Wang, Y.; Xu, P.; Yan, K. Assessment of the performance of WEPP in purple soil area with simulated rainfall experiments. J. Mt. Sci. 2012, 9, 570–579. [Google Scholar] [CrossRef]
- Wei, W.; Chen, L.; Fu, B. Effects of rainfall change on water erosion processes in terrestrial ecosystems: A review. Prog. Phys. Geogr. 2009, 33, 307–318. [Google Scholar] [CrossRef]
- Zhang, F.; Xing, Z.; Zhao, C.; Deng, J.; Yang, B.; Tian, Q.; Rees, H.W.; Badreldin, N. Characterizing long-term soil and water erosion and their interactions with various conservation practices in the semi-arid Zulihe basin, Dingxi, Gansu, China. Ecol. Eng. 2017, 106, 458–470. [Google Scholar] [CrossRef]
- Li, Y.; Shi, W.; Aydin, A.; Beroya-Eitner, M.A.; Gao, G. Loess genesis and worldwide distribution. Earth-Sci. Rev. 2020, 201, 102947. [Google Scholar] [CrossRef]
- Nong, Y.; Yin, C.; Yi, X.; Ren, J.; Chien, H. Farmers’ adoption preferences for sustainable agriculture practices in Northwest China. Sustainability 2020, 12, 6269. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching practices for reducing soil water erosion: A review. Earth-Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Jordán, A.; Zavala, L.M.; Gil, J. Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena 2010, 81, 77–85. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, P.; Chen, X.; Helmers, M.J.; Zhou, X. Runoff and sediment yield under simulated rainfall on hillslopes in the Loess Plateau of China. Soil Res. 2013, 51, 50–58. [Google Scholar] [CrossRef]
- He, J.; Li, X.; Jia, L.; Gong, H.; Cai, Q. Experimental study of rill evolution processes and relationships between runoff and erosion on clay loam and loess. Soil Sci. Soc. Am. J. 2014, 78, 1716–1725. [Google Scholar] [CrossRef]
- Sutherland, R.A.; Ziegler, A.D. Hillslope runoff and erosion as affected by rolled erosion control systems: A field study. Hydrol. Process. Int. J. 2006, 20, 2839–2855. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Chen, W.; Wei, W.; Deo, R.C. The influence of structural factors on stormwater runoff retention of extensive green roofs: New evidence from scale-based models and real experiments. J. Hydrol. 2019, 569, 230–238. [Google Scholar] [CrossRef]
- Liu, S.; Dong, Y.; Li, D.; Liu, Q.; Wang, J.; Zhang, X. Effects of different terrace protection measures in a sloping land consolidation project targeting soil erosion at the slope scale. Ecol. Eng. 2013, 53, 46–53. [Google Scholar] [CrossRef]
- Shen, Z.; Gong, Y.; Li, Y.; Hong, Q.; Xu, L.; Liu, R. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area. Agric. Water Manag. 2009, 96, 1435–1442. [Google Scholar] [CrossRef]
- Foster, G.R.; Lane, L.J. User Requirements: USDA, Water Erosion Prediction Project (WEPP) Draft 6.3; NSERL Report (USA). 1987. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19971913094 (accessed on 16 February 2025).
- Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 2014, 6, 10–25. [Google Scholar] [CrossRef]
- Rutebuka, J.; Uwimanzi, A.M.; Nkundwakazi, O.; Kagabo, D.M.; Mbonigaba, J.J.M.; Vermeir, P.; Verdoodt, A. Effectiveness of terracing techniques for controlling soil erosion by water in Rwanda. J. Environ. Manag. 2021, 277, 111369. [Google Scholar] [CrossRef] [PubMed]
- Dorren, L.; Rey, F. A review of the effect of terracing on erosion. In Briefing Papers of the 2nd SCAPE Workshop; SCAPE: New York, NY, USA, 2004. [Google Scholar]
- Feng, J.; Wei, W.; Pan, D. Effects of rainfall and terracing-vegetation combinations on water erosion in a loess hilly area, China. J. Environ. Manag. 2020, 261, 110247. [Google Scholar] [CrossRef] [PubMed]
- Sharda, V.; Dogra, P.; Sena, D. Comparative economic analysis of inter-crop based conservation bench terrace and conventional systems in a sub-humid climate of India. Resour. Conserv. Recycl. 2015, 98, 30–40. [Google Scholar] [CrossRef]
- Taye, G.; Poesen, J.; Wesemael, B.V.; Vanmaercke, M.; Teka, D.; Deckers, J.; Goosse, T.; Maetens, W.; Nyssen, J.; Hallet, V. Effects of land use, slope gradient, and soil and water conservation structures on runoff and soil loss in semi-arid Northern Ethiopia. Phys. Geogr. 2013, 34, 236–259. [Google Scholar] [CrossRef]
- Taye, G.; Vanmaercke, M.; Poesen, J.; Van Wesemael, B.; Tesfaye, S.; Teka, D.; Nyssen, J.; Deckers, J.; Haregeweyn, N. Determining RUSLE P-and C-factors for stone bunds and trenches in rangeland and cropland, North Ethiopia. Land Degrad. Dev. 2018, 29, 812–824. [Google Scholar] [CrossRef]
- Nyssen, J.; Poesen, J.; Descheemaeker, K.; Haregeweyn, N.; Haile, M.; Moeyersons, J.; Frankl, A.; Govers, G.; Munro, N.; Deckers, J. Effects of region-wide soil and water conservation in semi-arid areas: The case of northern Ethiopia. Z. Fur Geomorphol. 2008, 52, 291. [Google Scholar] [CrossRef]
- Wang, P.; Wang, K.; Li, T.; Li, Y. Regulation effects of reverse-slope level terrace on the runoff and sediment yield in sloping farmland. Chin. J. Appl. Ecol. 2011, 22, 1261. [Google Scholar]
- Fu, S.; Liu, B.; Zhang, G.; Lu, B.; Ye, Z. Fish-scale pits reduce runoff and sediment. Trans. ASABE 2010, 53, 157–162. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, B.; Hill, R.L.; Wu, S.; Dong, Q.; Sun, L.; Zhang, K. Fish-scale pit effects on erosion and water runoff dynamics when positioned on a soil slope in the Loess Plateau region, China. Land Degrad. Dev. 2019, 30, 1813–1827. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Jiao, J.-Y.; Su, Y.; Chen, Y. The efficiency of large-scale afforestation with fish-scale pits for revegetation and soil erosion control in the steppe zone on the hill-gully Loess Plateau. Catena 2014, 115, 159–167. [Google Scholar] [CrossRef]
- Prats, S.A.; Abrantes, J.R.; Crema, I.P.; Keizer, J.J.; de Lima, J.L. Runoff and soil erosion mitigation with sieved forest residue mulch strips under controlled laboratory conditions. For. Ecol. Manag. 2017, 396, 102–112. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Lewis, S.A.; Wagenbrenner, J.W.; Ashmun, L.E.; Brown, R.E. Post-fire mulching for runoff and erosion mitigation: Part I: Effectiveness at reducing hillslope erosion rates. Catena 2013, 105, 75–92. [Google Scholar] [CrossRef]
- Jabran, K.; Ullah, E.; Hussain, M.; Farooq, M.; Zaman, U.; Yaseen, M.; Chauhan, B. Mulching improves water productivity, yield and quality of fine rice under water-saving rice production systems. J. Agron. Crop Sci. 2015, 201, 389–400. [Google Scholar] [CrossRef]
- Zhang, S.; Li, P.; Yang, X.; Wang, Z.; Chen, X. Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize. Soil Tillage Res. 2011, 112, 92–97. [Google Scholar] [CrossRef]
- Sadeghi, S.; Gholami, L.; Sharifi, E.; Khaledi Darvishan, A.; Homaee, M. Scale effect on runoff and soil loss control using rice straw mulch under laboratory conditions. Solid Earth 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Wang, C.; Ma, J.; Wang, Y.; Li, Z.; Ma, B. The influence of wheat straw mulching and straw length on infiltration, runoff and soil loss. Hydrol. Process. 2022, 36, e14561. [Google Scholar] [CrossRef]
Rainfall Intensities (mm/h) | Rainfall Duration (min) | Storm Amount (mm) |
---|---|---|
60 | 30 | 29.99 |
90 | 30 | 45.01 |
120 | 30 | 59.89 |
150 | 30 | 75.02 |
Soil Properties at 300 mm | Control Plot | Terraced Plots |
---|---|---|
Clay (%) | 11.5 | 11.5 |
Sand (%) | 4 | 4 |
Rock fragments (%) | 0 | 0 |
Organic matter (%) | 2 | 2 |
Initial saturation level (%) | 30 | 35 |
Albedo | 0.23 | 0.25 |
Interrill erodibility (106 kg s m4) | 6.5 | 7.5 |
Rill erodibility (s m1) | 0.04 | 0.04 |
Critical shear stress (Pa) | 3.5 | 3.7 |
Eff. Hydr. conductivity (mm/h) | 3.5 | 2.25 |
Metric | R2 | NSE | RMSE | PBIAS |
---|---|---|---|---|
Runoff | 0.97 | 0.95 | 3.14 | 5 |
Soil loss | 0.86 | 0.83 | 1.54 | 8.4 |
Combinations | Rainfall Intensities (mm/h) | |||
---|---|---|---|---|
60 | 90 | 120 | 150 | |
C | 11.19 ± 0.691 a | 21.24 ± 1.04 a | 29.78 ± 0.85 a | 45.65 ± 0.62 a |
FSPs-M | 3.71 ± 0.66 bc | 12.67 ± 0.25 bd | 23.3 ± 0.88 b | 43.24 ± 0.68 b |
LBTr-M | 1.71 ± 0.29 b | 9.33 ± 0.67 c | 17.49 ± 0.57 c | 40.25 ± 0.82 c |
NTr-M | 5.79 ± 0.57 c | 13.68 ± 0.14 d | 24.79 ± 0.82 b | 44.16 ± 1.63 ab |
TTr-M | 2.29 ± 0.48 b | 10.6 ± 0.43 bc | 20.73 ± 1.48 d | 40.51 ± 1.33 c |
ZTr-M | 3.14 ± 0.76 b | 11.59 ± 0.20 bc | 21.11± 1.02 d | 39.84 ± 0.86 c |
Combinations | Rainfall Intensities (mm/h) | |||
---|---|---|---|---|
60 | 90 | 120 | 150 | |
C | 0.14 ± 0.01 a | 0.47 ± 0.05 a | 8.5 ± 0.05 a | 14.55 ± 0.27 a |
FSPs-M | 0.02 ± 0.01 a | 0.1 ± 0.01 b | 4.04 ± 0.30 b | 7.5 ± 0.28 b |
LBTr-M | 0.01 ± 0.01 a | 0.02 ± 0.01 b | 0.57 ± 0.11 c | 1.3 ± 0.18 c |
NTr-M | 0.03 ± 0.01 a | 0.14 ± 0.01 b | 4.65 ± 0.29 d | 8.28 ± 0.49 d |
TTr-M | 0.01 ± 0.01 a | 0.03 ± 0.01 b | 1.12 ± 0.16 e | 2.19 ± 0.07 e |
ZTr-M | 0.01 ± 0.01 a | 0.05 ± 0.01 b | 1.46 ± 0.18 e | 2.77 ± 0.33 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ame, M.A.; Wei, W.; Zhang, S.; Liu, W.; Chen, L. The Effects of Rainfall and Terracing–Mulch Combinations on Soil Erosion in a Loess Hilly Area, China: Insights from Plot Simulations and WEPP Modeling. Land 2025, 14, 432. https://doi.org/10.3390/land14020432
Ame MA, Wei W, Zhang S, Liu W, Chen L. The Effects of Rainfall and Terracing–Mulch Combinations on Soil Erosion in a Loess Hilly Area, China: Insights from Plot Simulations and WEPP Modeling. Land. 2025; 14(2):432. https://doi.org/10.3390/land14020432
Chicago/Turabian StyleAme, Michael Aliyi, Wei Wei, Shuming Zhang, Wen Liu, and Liding Chen. 2025. "The Effects of Rainfall and Terracing–Mulch Combinations on Soil Erosion in a Loess Hilly Area, China: Insights from Plot Simulations and WEPP Modeling" Land 14, no. 2: 432. https://doi.org/10.3390/land14020432
APA StyleAme, M. A., Wei, W., Zhang, S., Liu, W., & Chen, L. (2025). The Effects of Rainfall and Terracing–Mulch Combinations on Soil Erosion in a Loess Hilly Area, China: Insights from Plot Simulations and WEPP Modeling. Land, 14(2), 432. https://doi.org/10.3390/land14020432