A Phased Approach to Urban Stream Restoration Decision-Making in Utoy Creek, Atlanta, Georgia
Abstract
:1. Introduction
2. Study Site
- Restore flow regimes to best attainable conditions achievable in altered urban environments by decreasing peak flows and hydrologic flashiness.
- Improve channel geomorphic conditions.
- Reduce sediment loading from the stream bed and banks.
- Increase instream habitat for a diverse assemblage of local fauna.
- Increase the connectivity of the channel for the movement of aquatic species.
- Improve riparian conditions supportive of a diverse aquatic and riparian community.
3. Methods and Results
3.1. Watershed-Scale Site Screening
3.2. Site-Scale Alternative Analysis
3.3. Watershed-Scale Portfolio Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Booth, D.B.; Bledsoe, B.P. Streams and urbanization. In The Water Environment of Cities; Baker, L.A., Ed.; Springer: Boston, MA, USA, 2009. [Google Scholar] [CrossRef]
- Booth, D.B.; Fischenich, J.C. A channel evolution model to guide sustainable urban stream restoration. Area 2015, 47, 408–421. [Google Scholar] [CrossRef]
- Roy, A.H.; Freeman, M.C.; Freeman, B.J.; Wenger, S.J.; Ensign, W.E.; Meyer, J.L. Investigating hydrologic alteration as a mechanism of fish assemblage shifts in urbanizing streams. J. N. Am. Benthol. Soc. 2005, 24, 656–678. [Google Scholar] [CrossRef]
- Gao, J.; Huang, Y.; Zhi, Y.; Yao, J.; Wang, F.; Yang, W.; Han, L.; Lin, D.; He, Q.; Wei, B.; et al. Assessing the impacts of urbanization on stream ecosystem functioning through investigating litter decomposition and nutrient uptake in a forest and a hyper-eutrophic urban stream. Ecol. Indic. 2022, 138, 108859. [Google Scholar] [CrossRef]
- World Bank. Urban Population. 2024. Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS (accessed on 27 December 2024).
- Bernhardt, E.S.; Palmer, M.A.; Allan, J.D.; Alexander, G.; Barnas, K.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad-Shah, J.; et al. Synthesizing US river restoration efforts. Science 2005, 308, 636–637. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.M.; Dunham, S.; Maas-Hebner, K.G.; Yeakley, J.A.; Schreck, C.; Harte, M.; Molina, N.; Shock, C.C.; Kaczynski, V.W.; Schaeffer, J. A Review of Urban Water Body Challenges and Approaches: (1) Rehabilitation and Remediation. Fisheries 2014, 39, 18–29. [Google Scholar] [CrossRef]
- Walsh, C.J.; Booth, D.B.; Burns, M.J.; Fletcher, T.D.; Hale, R.L.; Hoang, L.N.; Livingston, G.; Rippy, M.A.; Roy, A.H.; Scoggins, M.; et al. Principles for urban stormwater management to protect stream ecosystems. Freshw. Sci. 2016, 35, 398–411. [Google Scholar] [CrossRef]
- Cengiz, B. Urban river landscapes. In Advances in Landscape Architecture; IntechOpen: London, UK, 2013. [Google Scholar]
- McPhearson, T.; Kabisch, N.; Frantzeskaki, N. Nature-Based Solutions for Cities; Edward Elgar Publishing: Northampton, MA, USA, 2023; Available online: https://urbansystemslab.com/nbs-for-cities (accessed on 9 December 2024).
- Scoggins, M.; Booth, D.B.; Fletcher, T.; Fork, M.; Gonzalez, A.; Hale, R.L.; Hawley, R.J.; Roy, A.H.; Bilger, E.E.; Bond, N.; et al. Community-powered urban stream restoration: A vision for sustainable and resilient urban ecosystems. Freshw. Sci. 2022, 41, 404–419. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Yang, C.N. Planning river restoration projects: Social and cultural dimensions. In River Restoration: Managing the Uncertainty in Restoring Physical Habitat; John Wiley & Sons: Chichester, UK, 2008; pp. 43–60. [Google Scholar]
- Martin, D.M.; Lyons, J.E. Monitoring the social benefits of ecological restoration. Restor. Ecol. 2018, 26, 1045–1050. [Google Scholar] [CrossRef]
- Deason, J.P.; Dickey, G.E.; Kinnell, J.C.; Shabman, L.A. Integrated planning framework for urban river rehabilitation. J. Water Resour. Plan. Manag. 2010, 136, 688–696. [Google Scholar] [CrossRef]
- Christman, Z.; Meenar, M.; Mandarano, L.; Hearing, K. Prioritizing Suitable Locations for Green Stormwater Infrastructure Based on Social Factors in Philadelphia. Land 2018, 7, 145. [Google Scholar] [CrossRef]
- Stein, E.D.; Brown, J.S.; Canney, A.; Mirkhanian, M.; Lowman, H.; O’connor, K.; Clark, R. Prioritizing Stream Protection, Restoration and Management Actions Using Landscape Modeling and Spatial Analysis. Water 2022, 14, 1375. [Google Scholar] [CrossRef]
- Yaryan Hall, H.R.; Bledsoe, B.P. Integrated Urban Riverscape Planning: Spatial Prioritization for Environmental Equity. ASCE OPEN Multidiscip. J. Civ. Eng. 2023, 1, 04023004. [Google Scholar] [CrossRef]
- Natural Resources Conservation Service (NRCS). Stream restoration design process. In Part 654 Stream Restoration Design National Engineering Handbook; Natural Resources Conservation Service: Washington, DC, USA, 2007; Chapter 4. [Google Scholar]
- Baird, D.C.; Fotherby, L.; Klumpp, C.C.; Sculock, S.M. Bank Stabilization Design Guidelines; Technical Service Center, U.S. Bureau of Reclamation: Denver, CO, USA, 2015. [Google Scholar]
- Downs, P.W.; Kondolf, G.M. Post-project appraisals in adaptive management of river channel restoration. Environ. Manag. 2002, 29, 477–496. [Google Scholar] [CrossRef] [PubMed]
- Natural Resources Conservation Service (NRCS). Maintenance and monitoring. In Part 654 Stream Restoration Design National Engineering Handbook; Natural Resources Conservation Service: Washington, DC, USA, 2007; Chapter 16. [Google Scholar]
- Larsen, L.G.; Eppinga, M.B.; Passalacqua, P.; Getz, W.M.; Rose, K.A.; Liang, M. Appropriate complexity landscape modeling. Earth-Sci. Rev. 2016, 160, 111–130. [Google Scholar] [CrossRef]
- McDonald-Madden, E.; Baxter, P.W.; Possingham, H.P. Making robust decisions for conservation with restricted money and knowledge. J. Appl. Ecol. 2008, 45, 1630–1638. [Google Scholar] [CrossRef]
- Brunner, G.; Savant, G.; Heath, R.E. Modeler Application Guidance for Steady Versus Unsteady, and 1D Versus 2D Versus 3D Hydraulic Modeling; TD-41; Hydrologic Engineering Center, Institute for Water Resources, US Army Corps of Engineers: Davis, CA, USA, 2020. [Google Scholar]
- Harris, A.; Richards, N.; McKay, S.K. Defining Levels of Effort for Ecological Models; ERDC/TN EMRRP-EM-11; US Army Engineer Research and Development Center: Vicksburg, MS, USA, 2023; Available online: https://erdc-library.erdc.dren.mil/items/57025eeb-f4e3-4a54-9a0c-40a0cb663f64 (accessed on 13 December 2024).
- U.S. Army Corps of Engineers (USACE). Civil Works Cost Engineering; ER 1110-2-1302; Headquarters, US Army Corps of Engineers: Washington, DC, USA, 2016.
- Guimarães, L.F.; Teixeira, F.C.; Pereira, J.N.; Becker, B.R.; Oliveira, A.K.B.; Lima, A.F.; Veról, A.P.; Miguez, M.G. The challenges of urban river restoration and the proposition of a framework towards river restoration goals. J. Clean. Prod. 2021, 316, 128330. [Google Scholar] [CrossRef]
- Jackson, C.R.; Wenger, S.J.; Bledsoe, B.P.; Shepherd, J.M.; Capps, K.A.; Rosemond, A.D.; Paul, M.J.; Welch-Devine, M.; Li, K.; Stephens, T.; et al. Water supply, waste assimilation, and low-flow issues facing the Southeast Piedmont Interstate-85 urban archipelago. JAWRA J. Am. Water Resour. Assoc. 2023, 59, 1146–1161. [Google Scholar] [CrossRef]
- Walker, R.K. Interweaving Geochemical and Geospatial Data to Identify High Concentrations of Metal Contamination from Copper, Lead, and Zinc Within Utoy Creek, Atlanta Ga. Master’s Thesis, Georgia State University, Atlanta, GA, USA, 2016. [Google Scholar] [CrossRef]
- Wohl, E.; Angermeier, P.L.; Bledsoe, B.; Kondolf, G.M.; MacDonnell, L.; Merritt, D.M.; Palmer, M.A.; Poff, N.L.; Tarboton, D. River restoration. Water Resour. Res. 2005, 41, 10. [Google Scholar] [CrossRef]
- McKay, S.K.; Linkov, I.; Fischenich, J.C.; Miller, S.J.; Valverde, L.J. Ecosystem Restoration Objectives and Metrics; ERDC TN-EMRRP-EBA-16; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2012. [Google Scholar]
- U.S. Army Corps of Engineers (USACE). Planning Guidance Notebook; ER-1105-2-100; U.S. Army Corps of Engineers: Washington, DC, USA, 2000.
- City of Atlanta (COA). Utoy Creek Watershed: Stream Assessment Report; Department of Watershed Management, Office of Watershed Protection: Atlanta, GA, USA, 2019. [Google Scholar]
- McKay, S.K.; Pruitt, B.A.; Zettle, B.; Hallberg, N.; Hughes, C.; Annaert, A.; Ladart, M.; McDonald, J. Proctor Creek Ecological Model (PCEM): Phase 1-Site Screening; ERDC/EL TR-18-11; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2018. [Google Scholar]
- McKay, S.K.; Pruitt, B.A.; Zettle, B.A.; Hallberg, N.; Moody, V.; Annaert, A.; Ladart, M.; Hayden, M.; McDonald, J. Proctor Creek Ecological Model (PCEM): Phase 2-Benefits Analysis; ERDC/EL TR-18-11; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2018. [Google Scholar]
- Abera, L.E.; Menichino, G.T.; McKay, S.K. Ecological Modeling for Utoy Creek Watershed Restoration; Appendix to the Utoy Creek Ecosystem Restoration Feasibility Study; USACE Mobile District: Mobile, AL, USA, 2024. [Google Scholar]
- Barbour, M.T.; Gerritsen, J.; Snyder, B.D.; Stribling, J.B. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, 2nd ed.; EPA 841-B-99-002; Office of Water, US Environmental Protection Agency: Washington, DC, USA, 1999. Available online: https://archive.epa.gov/water/archive/web/html/index-14.html (accessed on 9 December 2024).
- Bjorkland, R.; Pringle, C.M.; Newton, B.A. A Stream Visual Assessment Protocol (SVAP) for Riparian Landowners. Environ. Monit. Assess. 2001, 68, 99–125. [Google Scholar] [CrossRef] [PubMed]
- Rankin, E.T. Methods for Assessing Habitat in Flow Waters: Using the Qualitative Habitat Evaluation Index (QHEI); Technical Bulletin EAS/2006-06-1; Ohio Environmental Protection Agency: Columbus, OH, USA, 2006. [Google Scholar]
- McKay, S.K.; Athanasakes, G.; Taylor, S.; Miller, W.; Wagoner, E.; Mattingly, L. Qualitative Habitat Evaluation Index for Louisville Streams (QHEILS); ERDC/TN EMRRP-SR-92; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2024. [Google Scholar]
- Wiest, S.; Hernandez-Abrams, D.D.; McKay, S.K. Review of Riparian Models for Assessing Ecological Impacts and Benefits; ERDC/TN EMRRP-ER-26; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2023. [Google Scholar]
- McKay, S.K. Using social equity to inform urban stream management. In Proceedings of the World Environmental & Water Resources Congress, Atlanta, GA, USA, 5–8 June 2022. [Google Scholar] [CrossRef]
- Díaz-Pascacio, E.; Castillo, M.M.; Jelks, N.T.O. Including equity in urban stream restoration: From historical wrongs to new paradigms. Freshw. Sci. 2022, 41, 539–547. [Google Scholar] [CrossRef]
- Spikes, T.M.; Milligan, R.; Osborne Jelks, N.T.; Ekenga, C.C. Transforming Environmental Advocacy in the Fight to Protect Urban Watersheds: A Case Study of African American-Led Community-Based Groups in Atlanta, GA. Environ. Justice 2024. [Google Scholar] [CrossRef]
- Cluer, B.; Thorne, C. A stream evolution model integrating habitat and ecosystem benefits. River Res. Appl. 2014, 30, 135–154. [Google Scholar] [CrossRef]
- McKay, S.K.; Hernández-Abrams, D.D.; Cushway, K.C.; R Package ‘ecorest’. CRAN Reference Manual. 2024. Available online: https://cran.r-project.org/web/packages/ecorest/ecorest.pdf (accessed on 10 December 2024).
- Robinson, R.; Hansen, W.; Orth, K. Evaluation of Environmental Investments Procedures Manual Interim: Cost Effectiveness and Incremental Cost Analyses; IWR Report 95-R-1; Institute for Water Resources, U.S. Army Corps of Engineers: Alexandria, VA, USA, 1995. [Google Scholar]
- Harman, W.; Starr, R.; Carter, M.; Tweedy, K.; Clemmons, M.; Suggs, K.; Miller, C. A Function-Based Framework for Stream Assessments and Restoration Projects (EPA 843-K-12-006); US Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds: Washington, DC, USA, 2012. [Google Scholar]
- Wiest, S.; Menichino, G.T.; McKay, S.K. Riparian Ecosystem Function Index (REFI); ERDC Technical Report; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, forthcoming.
- Abera, L.; McKay, S.K.; R Package ‘EngrEcon’. CRAN Reference Manual. 2024. Available online: https://cran.r-project.org/web/packages/EngrEcon/EngrEcon.pdf (accessed on 10 December 2024).
- Seigerman, C.K.; McKay, S.K.; Basilio, R.; Biesel, S.A.; Hallemeier, J.; Mansur, A.; Piercy, C.; Rowan, S.; Ubiali, B.; Yeates, E.; et al. Operationalizing equity for integrated water resource management. J. Am. Water Resour. Assoc. 2023, 59, 281–298. [Google Scholar] [CrossRef]
- U.S. Census Bureau. 2020 Census Demographic Profile; U.S. Census Bureau: Suitland, MD, USA, 2020.
- U.S. Census Bureau. American Community Survey (ACS) 5-Year Estimates; U.S. Census Bureau: Suitland, MD, USA, 2022.
- U.S. Census Bureau. Geographic Information Table; U.S. Census Bureau: Suitland, MD, USA, 2023.
- U.S. Army Corps of Engineers (USACE). Regional Economic System (RECONS); Institute for Water Resources: Alexandria, VA, USA, 2024. Available online: https://www.iwr.usace.army.mil/Missions/Economics/Regional-Economic-System-RECONS/How-RECONS-Works/ (accessed on 3 January 2025).
- Riato, L.; Leibowitz, S.G.; Weber, M.H.; Hill, R.A. A multiscale landscape approach for prioritizing river and stream protection and restoration actions. Ecosphere 2023, 14, e4350. [Google Scholar] [CrossRef]
- Coleman, R.A.; Chee, Y.E.; Bond, N.; Rossrakesh, R.; Walsh, C.J. Benefits and challenges of incorporating spatially-explicit quantitative modelling and action prioritisation in Melbourne Water’s Healthy Waterways Strategy. In Proceedings of the 9th Australian Stream Management Conference, Hobart, Australia, 12–15 August 2018; pp. 12–15. [Google Scholar]
- Boyd, J.; Epanchin-Niell, R.; Siikamaki, J. Conservation planning: A review of return on investment analysis. Rev. Environ. Econ. Policy 2015, 9, 23–42. [Google Scholar] [CrossRef]
- Iacona, G.D.; Sutherland, W.J.; Mappin, B.; Adams, V.M.; Armsworth, P.R.; Coleshaw, T.; Cook, C.; Craigie, I.; Dicks, L.V.; Fitzsimons, J.A.; et al. Standardized reporting of the costs of management interventions for biodiversity conservation. Conserv. Biol. 2018, 32, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Hawley, R.J. Making stream restoration more sustainable: A geomorphically, ecologically, and socioeconomically principled approach to bridge the practice with the science. BioScience 2018, 68, 517–528. [Google Scholar] [CrossRef]
- DeJong, A.; Littman, A.; Fischbach, J.; Hemmerling, S.A.; Kane, P.; Haertling, A.; Black, V.; Grismore, A.; Cowan, J. Exploration of Emerging Methods to Assess Equity in USACE Project Planning; The Water Institute, Prepared for the U.S. Army Corps of Engineers: Baton Rouge, LA, USA, 2024. [Google Scholar]
- Murphy, B.M.; Russell, K.L.; Stillwell, C.C.; Hawley, R.; Scoggins, M.; Hopkins, K.G.; Burns, M.J.; Taniguchi-Quan, K.T.; Macneale, K.H.; Smith, R.F. Closing the gap on wicked urban stream restoration problems: A framework to integrate science and community values. Freshw. Sci. 2022, 41, 521–531. [Google Scholar] [CrossRef]
- Prosser, T.; Morison, P.J.; Coleman, R.A. Integrating stormwater management to restore a stream: Perspectives from a waterway management authority. Freshw. Sci. 2015, 34, 1186–1194. [Google Scholar] [CrossRef]
- Linkov, I.; Loney, D.; Cormier, S.; Satterstrom, F.K.; Bridges, T. Weight-of-evidence evaluation in environmental assessment: Review of qualitative and quantitative approaches. Sci. Total Environ. 2011, 407, 5199–5205. [Google Scholar] [CrossRef] [PubMed]
- de Vries, J.; Reed, D.; McKay, S.K.; Bouma, T.; Cunniff, S.E.; Grasmeijer, B.; Mason, P.; Nicholson, A.; Quinn, P.; Smith, J.M. Planning and Implementing NNBF Using a Systems Approach. In International Guidelines on Natural and Nature-Based Features for Flood Risk Management; Bridges, T.S., King, J.K., Simm, J.D., Beck, M.W., Collins, G., Lodder, Q., Mohan, R.K., Eds.; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2021; Chapter 4. [Google Scholar]
- Polvi, L.E.; Lind, L.; Persson, H.; Miranda-Melo, A.; Pilotto, F.; Su, X.; Nilsson, C. Facets and scales in river restoration: Nestedness and interdependence of hydrological, geomorphic, ecological, and biogeochemical processes. J. Environ. Manag. 2020, 265, 110288. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.W.; Mazor, R.D.; Johnson, S.; Wisenbaker, K.; Westfall, J.; Ode, P.R.; Hill, R.; Loflen, C.; Sutula, M.; Stein, E.D. Prioritizing management goals for stream biological integrity within the developed landscape context. Freshw. Sci. 2019, 38, 883–898. [Google Scholar] [CrossRef]
Site Screening | Alternatives Analysis | Portfolio Analysis | |
---|---|---|---|
Scale of Analysis | Watershed | Site | Watershed |
Primary purpose of analysis | Screen out ineffective sites and identify a smaller set for more detailed data collection and analysis | Identify cost-effective restoration actions at focal sites | Develop an effective portfolio of sites for the watershed as a whole |
Key outputs for next phase | Shortened list of candidate sites | Site-scale conceptual restoration plans | Recommended portfolio of actions to request for construction funding |
Formulation of alternatives | Preliminary identification of a conceptual action based largely on stage of channel evolution | Field-based identification of site-specific needs followed by multi-disciplinary dialog to develop 3–4 conceptual alternatives per site | All combinations of sites with recommended actions |
Number of sites | 66 sites reduced to 22 sites for additional analysis | 22 sites investigated, further reduced due to constraints, and combined 8 restoration reaches | 7 reaches recommended for further action and analyzed for additional outcomes |
Number of alternatives | Two at each site: future without project and maximum build out | Four at each site: future without project, maximum build-out, and two intermediate solutions with varying levels of cost/benefit | One per site |
Cost Estimation | Rapid, qualitative cost estimates based on prior unit cost of construction actions | Site-specific, alternative-specific construction cost based on site-level quantities, access, mobilization, adaptive management, and maintenance (but not inclusive of real estate) | Detailed cost estimate (Class 3, USACE 2016) for the recommended actions inclusive of major cost factors (i.e., construction, real estate, maintenance). |
Ecological Benefits | Scoring sites relative to project objectives | Separate instream and riparian models parameterized by a combination of desktop analyses and field measurements and summarized as “habitat units” | Sum of site-scale habitat units for the recommended action |
Treatment of Time | Snapshot with and without project (i.e., no temporal forecast) | Temporal trajectories over 50-year horizon based on years 0, 2, 10, and 50 and annualized over the life of the project | Use of annualized benefits and costs from site-scale recommendations |
Socio-Economic Outcomes | Preliminary scoring for relative comparison among divergent sites | None | Analysis of demographics surrounding sites and regional economic benefits of construction |
Site | Alternative | Ecological Lift (HU) | Construction Cost (USD) | Annualized Cost (USD) | Unit Cost (USD/HU) | Poverty Rate (%) | Unemployed Rate (%) |
---|---|---|---|---|---|---|---|
17F2M | 3 | 6.8 | 799,000 | 55,100 | 7200 | 29 | 6.9 |
17D2E | 1 | 14.6 | 1,071,000 | 71,800 | 4900 | 29 | 6.9 |
17B | 2 | 15.0 | 881,000 | 68,200 | 4500 | 29 | 6.9 |
2A | 1 | 31.4 | 558,000 | 46,300 | 1500 | 8 | 0.4 |
2B | 1 | 24.5 | 394,000 | 40,100 | 1600 | 8 | 0.4 |
3F | 1 | 4.8 | 277,000 | 36,000 | 7500 | 12 | 2.5 |
19A | 2 | 19.9 | 552,000 | 50,500 | 2500 | 20 | 4.0 |
All Sites | 117 | 4,531,000 | 367,900 | 3100 |
Lesson Learned | Importance and Added Value |
---|---|
Use multi-scale analyses | Ensures that local restoration actions align with the broader watershed context and that downstream/upstream influences are adequately accounted for in decisions. |
Document institutional knowledge in written reports as well as with data and model archival | Facilitates consistent decision-making over long project timelines and mitigates the impact of staff turnover by recording assumptions, design rationale, or input from stakeholders. |
Integrate costs early | Avoids advancing alternatives that are not feasible or cost-effective. |
Justify projects through multiple disciplinary lenses | Compiles qualitative and quantitative data for multiple objectives that may help contextualize or justify a particular action. |
Tailor analytical detail to decision needs at each project phase | Facilitates dialog across team members about the merits of a particular piece of information relative to other project uncertainties. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menichino, G.T.; Abera, L.E.; Rickey, T.W., Jr.; Phillips, S.P.; McKay, S.K. A Phased Approach to Urban Stream Restoration Decision-Making in Utoy Creek, Atlanta, Georgia. Land 2025, 14, 449. https://doi.org/10.3390/land14030449
Menichino GT, Abera LE, Rickey TW Jr., Phillips SP, McKay SK. A Phased Approach to Urban Stream Restoration Decision-Making in Utoy Creek, Atlanta, Georgia. Land. 2025; 14(3):449. https://doi.org/10.3390/land14030449
Chicago/Turabian StyleMenichino, Garrett T., Liya E. Abera, Terry W. Rickey, Jr., Stephen P. Phillips, and S. Kyle McKay. 2025. "A Phased Approach to Urban Stream Restoration Decision-Making in Utoy Creek, Atlanta, Georgia" Land 14, no. 3: 449. https://doi.org/10.3390/land14030449
APA StyleMenichino, G. T., Abera, L. E., Rickey, T. W., Jr., Phillips, S. P., & McKay, S. K. (2025). A Phased Approach to Urban Stream Restoration Decision-Making in Utoy Creek, Atlanta, Georgia. Land, 14(3), 449. https://doi.org/10.3390/land14030449