Navigating Flooding Challenges in Historical Urban Contexts: Integrating Nature-Based Solutions with Spatial Multi-Criteria Assessments in Quanzhou
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Exposure Module
2.2.1. Normalized Difference Vegetation Index (NDVI)
2.2.2. Building Congestion Degree (BCD)
2.2.3. Road Network Density (RND)
2.2.4. Surface Runoff Coefficient (SRC)
2.2.5. Particulate Matter 2.5 (PM2.5)
2.2.6. Temperature
2.3. Vulnerability Module
2.3.1. Cultural Heritage Indicators
2.3.2. Educational and Health Infrastructure
2.3.3. Gross Domestic Product (GDP) and Population Density
2.4. Spatial Multi-Criteria Evaluation (SMCE)
- (1)
- Criteria Selection: A literature review and expert consultations informed the selection of criteria relevant to flood exposure and vulnerability. Criteria included the NDVI, BCD, RND, SRC, PM2.5, temperature, cultural heritage indicators, educational and health infrastructure, GDP, and population density.
- (2)
- Data Standardization: Each dataset was normalized to a uniform scale (0–1), ensuring comparability. A suitability range was established for each indicator based on its role in flood risk and mitigation.
- (3)
- Weight Assignment: An integrated weighting scheme combining the Analytic Hierarchy Process (AHP) and Entropy Weighting (EW) was employed [48]. AHP accounted for expert judgment [49], while EW provided an objective basis derived from data variability [50]. The final weight for each criterion was computed using Equation (1):
- (4)
- Mapping and Aggregation: Weighted criteria were aggregated using a linear additive model to generate composite exposure and vulnerability maps. A combined flood risk map was developed by overlaying these layers.
- (5)
- Validation of Results: The SMCE results were cross-verified against recorded flood incidents over the past decade.
2.5. Spatial Allocation of Nature-Based Solutions Applied in Historical Urban Landscapes
3. Results
3.1. Exposure and Vulnerability Modeling
3.1.1. Exposure Mapping
3.1.2. Vulnerability Mapping
3.1.3. Priority Townships Located for Nature-Based Solutions Through Mapping
3.2. Spatial Planning of Nature-Based Solutions in Historical Urban Landscapes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Zhang, H.; Chen, W.; Huang, G. Urbanization and climate change impacts on future flood risk in the Pearl River Delta under shared socioeconomic pathways. Sci. Total Environ. 2021, 762, 143144. [Google Scholar] [CrossRef]
- Marzeion, B.; Levermann, A. Loss of cultural world heritage and currently inhabited places to sea-level rise. Environ. Res. Lett. 2014, 9, 034001. [Google Scholar] [CrossRef]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Zhang, D.; Zhang, Y.; Su, J.; Zhou, S.; Bakhshipour, A.E.; Tan, S.K. Assessing hydrological performance for optimized integrated grey-green infrastructure in response to climate change based on shared socio-economic pathways. Sustain. Cities Soc. 2023, 91, 104436. [Google Scholar] [CrossRef]
- Su, J.; Wang, M.; Razi, M.A.M.; Dom, N.M.; Sulaiman, N.; Tan, L.W. A Bibliometric Review of Nature-Based Solutions on Urban Stormwater Management. Sustainability 2023, 15, 7281. [Google Scholar] [CrossRef]
- Ruangpan, L.; Vojinovic, Z.; Di Sabatino, S.; Leo, L.S.; Capobianco, V.; Oen, A.M.P.; McClain, M.E.; Lopez-Gunn, E. Nature-based solutions for hydro-meteorological risk reduction: A state-of-the-art review of the research area. Nat. Hazards Earth Syst. Sci. 2020, 20, 243–270. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016; Volume 97, pp. 2016–2036. [Google Scholar]
- Dick, J.; Miller, J.D.; Carruthers-Jones, J.; Dobel, A.J.; Carver, S.; Garbutt, A.; Hester, A.; Hails, R.; Magreehan, V.; Quinn, M. How are nature based solutions contributing to priority societal challenges surrounding human well-being in the United Kingdom: A systematic map protocol. Environ. Evid. 2019, 8, 37. [Google Scholar] [CrossRef]
- IUCN Global Standard for Nature-Based Solutions. A User-Friendly Framework for the Verification, Design and Scaling up of NbS. 2020. Available online: https://iucn.org/our-work/topic/iucn-global-standard-nature-based-solutions (accessed on 29 November 2023).
- Gregg, B.; Shiao, T.; Kammeyer, C.; Diringer, S.; Vigerstol, K.; Naabia, O.A.; Michael, M.; Carla, M.Z.; Wendy, L.; Dekker, T. Benefit Accounting of Nature-Based Solutions for Watersheds: Guide; United Nations CEO Water Mandate and Pacific Institute: Oakland, CA, USA, 2021. [Google Scholar]
- Almenar, J.B.; Elliot, T.; Rugani, B.; Philippe, B.; Gutierrez, T.N.; Sonnemann, G.; Geneletti, D. Nexus between nature-based solutions, ecosystem services and urban challenges. Land Use Policy 2021, 100, 104898. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Zhang, D.; Zheng, Y.; Li, S.; Tan, S.K. Life-cycle cost analysis and resilience consideration for coupled grey infrastructure and low-impact development practices. Sustain. Cities Soc. 2021, 75, 103358. [Google Scholar] [CrossRef]
- Toxopeus, H.; Polzin, F. Reviewing financing barriers and strategies for urban nature-based solutions. J. Environ. Manag. 2021, 289, 112371. [Google Scholar] [CrossRef]
- Ershad Sarabi, S.; Han, Q.; Romme, A.G.L.; de Vries, B.; Wendling, L. Key enablers of and barriers to the uptake and implementation of nature-based solutions in urban settings: A review. Resources 2019, 8, 121. [Google Scholar] [CrossRef]
- Miranda, F.N.; Ferreira, T.M. A simplified approach for flood vulnerability assessment of historic sites. Nat. Hazards 2019, 96, 713–730. [Google Scholar] [CrossRef]
- Su, J.; Wang, M.; Zhang, D.; Yuan, H.; Zhou, S.; Wang, Y.; Razi, M.A.M. Integrating technical and societal strategies in Nature-based Solutions for urban flood mitigation in Guangzhou, a heritage city. Ecol. Indic. 2024, 162, 112030. [Google Scholar] [CrossRef]
- Wang, J. Problems and solutions in the protection of historical urban areas. Front. Archit. Res. 2012, 1, 40–43. [Google Scholar] [CrossRef]
- Chokhachian, A.; Perini, K.; Giulini, S.; Auer, T. Urban performance and density: Generative study on interdependencies of urban form and environmental measures. Sustain. Cities Soc. 2020, 53, 101952. [Google Scholar] [CrossRef]
- Ortiz, R.; Ortiz, P.; Martín, J.M.; Vázquez, M.A. A new approach to the assessment of flooding and dampness hazards in cultural heritage, applied to the historic centre of Seville (Spain). Sci. Total Environ. 2016, 551, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Pacetti, T.; Cioli, S.; Castelli, G.; Bresci, E.; Pampaloni, M.; Pileggi, T.; Caporali, E. Planning Nature Based Solutions against urban pluvial flooding in heritage cities: A spatial multi criteria approach for the city of Florence (Italy). J. Hydrol. Reg. Stud. 2022, 41, 101081. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Asahi, C.; Tran, T.A.; Le, N.H. Indicator-based approach for flood vulnerability assessment in ancient heritage city of Hoi An, Central Region of Vietnam. Nat. Hazards 2022, 114, 2357–2385. [Google Scholar] [CrossRef]
- Berisha, E.; Caprioli, C.; Cotella, G. Unpacking SDG target 11.a: What is it about and how to measure its progress? City Environ. Interact. 2022, 14, 100080. [Google Scholar] [CrossRef]
- Filho, W.L.; Wall, T.; Salvia, A.L.; Dinis, M.A.P.; Mifsud, M. The central role of climate action in achieving the United Nations’ Sustainable Development Goals. Sci. Rep. 2023, 13, 20582. [Google Scholar] [CrossRef] [PubMed]
- Morgera, E. SDG 15: Protect, Restore and Promote Sustainable Use of Terrestrial Ecosystems, Sustainably Manage Forests, Combat Desertification, and Halt and Reverse Land Degradation and Halt Biodiversity Loss. In The Cambridge Handbook of the Sustainable Development Goals and International Law; Ebbesson, J., Hey, E., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 376–398. [Google Scholar]
- Coombes, M.A.; Viles, H.A. Integrating nature-based solutions and the conservation of urban built heritage: Challenges, opportunities, and prospects. Urban For. Urban Green. 2021, 63, 127192. [Google Scholar] [CrossRef]
- Borah, A.; Bardhan, R.; Bhatia, U. Protecting heritage: Insights into effective flood management using green infrastructure in a highly urbanized environment. Int. J. Disaster Risk Reduct. 2023, 98, 104075. [Google Scholar] [CrossRef]
- Bansal, N.; Mukherjee, M.; Gairola, A. Evaluating urban flood hazard index (UFHI) of Dehradun city using GIS and multi-criteria decision analysis. Model. Earth Syst. Environ. 2022, 8, 4051–4064. [Google Scholar] [CrossRef]
- Hapciuc, O.E.; Romanescu, G.; Minea, I.; Iosub, M.; Enea, A.; Sandu, I. Flood susceptibility analysis of the cultural heritage in the Sucevita catchment (Romania). Int. J. Conserv. Sci. 2016, 7, 501–510. [Google Scholar]
- Ferreira, T.M.; Santos, P.P. An integrated approach for assessing flood risk in historic city centres. Water 2020, 12, 1648. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Ellis, J.B. Sustainable surface water management and green infrastructure in UK urban catchment planning. J. Environ. Plan. Manag. 2013, 56, 24–41. [Google Scholar] [CrossRef]
- Srivastava, A.; Shukla, S.; Singh, P.; Jha, P.K. Spatio-temporal dynamics of land use/cover and land surface temperature in Prayagraj city, India. Indoor Built Environ. 2023, 32, 1250–1268. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, Z.; Wang, M.; Gan, W.; Zhao, Z.; Wu, Z. Impacts of building configurations on urban stormwater management at a block scale using XGBoost. Sustain. Cities Soc. 2022, 87, 104235. [Google Scholar] [CrossRef]
- Singh, P.; Sinha, V.S.P.; Vijhani, A.; Pahuja, N. Vulnerability assessment of urban road network from urban flood. Int. J. Disaster Risk Reduct. 2018, 28, 237–250. [Google Scholar] [CrossRef]
- Baheru, T.; Chowdhury, A.G.; Pinelli, J.P.; Bitsuamlak, G. Distribution of wind-driven rain deposition on low-rise buildings: Direct impinging raindrops versus surface runoff. J. Wind Eng. Ind. Aerodyn. 2014, 133, 27–38. [Google Scholar] [CrossRef]
- Costa, S.; Peters, R.; Martins, R.; Postmes, L.; Keizer, J.J.; Roebeling, P. Effectiveness of nature-based solutions on pluvial flood hazard mitigation: The case study of the city of eindhoven (the netherlands). Resources 2021, 10, 24. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, S.; Zhu, D. Impact of urban water networks on microclimate and PM2. 5 distribution in downtown areas: A case study of Wuhan. Build. Environ. 2021, 203, 108073. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Engel, B.A.; Yu, T.; Zhang, X.; Qian, Y. A probabilistic assessment of urban flood risk and impacts of future climate change. J. Hydrol. 2023, 618, 129267. [Google Scholar] [CrossRef]
- Sperotto, A.; Torresan, S.; Gallina, V.; Coppola, E.; Critto, A.; Marcomini, A. A multi-disciplinary approach to evaluate pluvial floods risk under changing climate: The case study of the municipality of Venice (Italy). Sci. Total Environ. 2016, 562, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Batica, J. Methodology for Flood Resilience Assessment in Urban Environments and Mitigation Strategy Development. Ph.D. Thesis, Université Nice Sophia Antipolis, Nice, France, 2015. [Google Scholar]
- Malakar, K.; Mishra, T. Assessing socio-economic vulnerability to climate change: A city-level index-based approach. Clim. Dev. 2017, 9, 348–363. [Google Scholar] [CrossRef]
- Taylor, K. Connecting Concepts of Cultural Landscape and Historic Urban Landscape: The Politics of Similarity. Built Herit. 2018, 2, 53–67. [Google Scholar] [CrossRef]
- Ma, M.; Zhong, Z.; Guo, N.; Jing, N.; Xiong, W. An efficient reverse geocoding method based on global subdivision model. In Proceedings of the 2016 24th International Conference on Geoinformatics, Galway, Ireland, 14–20 August 2016; pp. 1–9. [Google Scholar]
- Rahman, M.M.; Islam, I. Exposure of urban infrastructure because of climate change-induced flood: Lesson from municipal level planning in Bangladesh. Ecofeminism Clim. Change 2020, 1, 107–125. [Google Scholar] [CrossRef]
- De Moel, H.; Aerts, J.C.; Koomen, E. Development of flood exposure in the Netherlands during the 20th and 21st century. Glob. Environ. Change 2011, 21, 620–627. [Google Scholar] [CrossRef]
- Katada, T.; Kuwasawa, N.; Shida, S.; Kojima, M. Scenario analysis for evacuation strategies for residents in big cities during large-scale flooding. J. JSCE 2015, 3, 209–223. [Google Scholar] [CrossRef]
- Caporali, E.; Pacetti, T.; Lompi, M.; Tamagnone, P. Fostering Pluvial Flood Resilience in Heritage Cities: Insights from Practice in the City of Florence. In Proceedings of the International Conference “Sustainable Built Environment and Urban Transition”, Växjö, Sweden, 12–13 October 2023; pp. 1–5. [Google Scholar]
- Zhang, L.; Xu, X.; Guo, Y. Comprehensive Evaluation of the Implementation Effect of Commercial Street Quality Improvement Based on AHP-Entropy Weight Method—Taking Hefei Shuanggang Old Street as an Example. Land 2022, 11, 2091. [Google Scholar] [CrossRef]
- Sun, J.; Cheshmehzangi, A.; Wang, S. Green infrastructure practice and a sustainability key performance indicators framework for neighbourhood-level construction of sponge city programme. J. Environ. Prot. 2020, 11, 82–109. [Google Scholar] [CrossRef]
- Sepehri, M.; Malekinezhad, H.; Hosseini, S.Z.; Ildoromi, A.R. Assessment of flood hazard mapping in urban areas using entropy weighting method: A case study in Hamadan city, Iran. Acta Geophys. 2019, 67, 1435–1449. [Google Scholar] [CrossRef]
- Jia, H.; Yao, H.; Yu, S.L. Advances in LID BMPs research and practice for urban runoff control in China. Front. Environ. Sci. Eng. 2013, 7, 709–720. [Google Scholar] [CrossRef]
- Peña, F.; Nardi, F.; Melesse, A.; Obeysekera, J.; Castelli, F.; Price, R.M.; Crowl, T.; Gonzalez-Ramirez, N. Compound flood modeling framework for surface–subsurface water interactions. Nat. Hazards Earth Syst. Sci. 2022, 22, 775–793. [Google Scholar] [CrossRef]
- Zhou, S.; Jia, W.; Wang, M.; Liu, Z.; Wang, Y.; Wu, Z. Synergistic Assessment of Multi-Scenario Urban Flooding Vulnerability Through Data-Driven Decoupling Analysis: A Case Study in Shenzhen, China. J. Environ. Manag. 2024, 369, 122330. [Google Scholar] [CrossRef]
- Zhen, Y.; Fang, Q.; Liu, S.; Zhou, Z.; Zhong, G.; Zhuang, Q.; Liang, J. Exploring the effect of building openings and orientation on induced loads due to extreme flood events. J. Fluids Struct. 2023, 121, 103933. [Google Scholar] [CrossRef]
- Yang, G.; Ren, G.; Zhang, P.; Xue, X.; Tysa, S.K.; Jia, W.; Qin, Y.; Zheng, X.; Zhang, S. PM2.5 influence on urban heat island (UHI) effect in Beijing and the possible mechanisms. J. Geophys. Res. Atmos. 2021, 126, e2021JD035227. [Google Scholar] [CrossRef]
- Wang, J.; Wah Yu, C.; Cao, S.J. Urban development in the context of extreme flooding events. Indoor Built Environ. 2022, 31, 3–6. [Google Scholar] [CrossRef]
- Zölch, T.; Henze, L.; Keilholz, P.; Pauleit, S. Regulating urban surface runoff through nature-based solutions–an assessment at the micro-scale. Environ. Res. 2017, 157, 135–144. [Google Scholar] [CrossRef]
- Wang, J.J. Flood risk maps to cultural heritage: Measures and process. J. Cult. Herit. 2015, 16, 210–220. [Google Scholar] [CrossRef]
- Garrote, J.; Diez-Herrero, A.; Escudero, C.; García, I. A framework proposal for regional-scale flood-risk assessment of cultural heritage sites and application to the Castile and León Region (Central Spain). Water 2020, 12, 329. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, M.; Kong, N.; Zhang, Y.; Li, X. A Study on the Accessibility of the Emergency Medical Services for Urban Kindergartens and Nursing Homes Based on Urban Pluvial Flooding Scenarios. Sustainability 2023, 15, 10443. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, M.; Kong, N.; Li, X.; Zhou, X. Evaluation of Emergency Response Capacity of Urban Pluvial Flooding Public Service Based on Scenario Simulation. Int. J. Environ. Res. Public Health 2022, 19, 16542. [Google Scholar] [CrossRef]
- Spielman, S.E.; Tuccillo, J.; Folch, D.C.; Schweikert, A.; Davies, R.; Wood, N.; Tate, E. Evaluating social vulnerability indicators: Criteria and their application to the Social Vulnerability Index. Nat. Hazards 2020, 100, 417–436. [Google Scholar] [CrossRef]
- Tozer, L.; Hörschelmann, K.; Anguelovski, I.; Bulkeley, H.; Lazova, Y. Whose city? Whose nature? Towards inclusive nature-based solution governance. Cities 2020, 107, 102892. [Google Scholar] [CrossRef]
- Neugarten, R.A.; Langhammer, P.F.; Osipova, E.; Bagstad, K.J.; Bhagabati, N.; Butchart, S.H.; Dudley, N.; Elliott, V.; Gerber, L.R.; Arrellano, C.G.; et al. Tools for Measuring, Modelling, and Valuing Ecosystem Services; IUCN, International Union for Conservation of Nature: Gland, Switzerland, 2018; Volume 70. [Google Scholar] [CrossRef]
- Kumar, P.; Debele, S.E.; Sahani, J.; Rawat, N.; Marti-Cardona, B.; Alfieri, S.M.; Basu, B.; Basu, A.S.; Bowyer, P.; Charizopoulos, N.; et al. Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations. Sci. Total Environ. 2021, 784, 147058. [Google Scholar] [CrossRef]
- Zhou, S.; Diao, H.; Wang, J.; Jia, W.; Xu, H.; Xu, X.; Wang, M.; Sun, C.; Qiao, R.; Wu, Z. Multi-stage optimization framework for synergetic grey-green infrastructure in response to long-term climate variability based on shared socio-economic pathways. Water Res. 2025, 274, 123091. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Yuan, H.; Zhou, S.; Wang, Y.; Ikram, R.M.A.; Li, J. An XGBoost-SHAP approach to quantifying morphological impact on urban flooding susceptibility. Ecol. Indic. 2023, 156, 111137. [Google Scholar] [CrossRef]
- Erena, S.H.; Reddy, R.U.; Wodnimu, M.A.; Mohamed, A. Flood vulnerability mapping and local mitigation strategies: The case of Adama City, Ethiopia. Urban Clim. 2024, 55, 101906. [Google Scholar] [CrossRef]
- Longato, D. Susceptibility of Flood-Prone Areas to Remain Inundated for Shorter or Longer Periods During a Flooding Event: An Assessment Method Applied in the Friuli Venezia Giulia Region (Italy). In Climate Change Adaptation, Flood Risk, and Beyond: State of Play in the Science-Policy-Action Nexus; Granceri Bradaschia, M., Magni, F., Musco, F., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 35–54. [Google Scholar]
- Salazar, L.G.F.; Figueiredo, R.; Romão, X. Flood vulnerability assessment of built cultural heritage: Literature review and identification of indicators. Int. J. Disaster Risk Reduct. 2024, 111, 104666. [Google Scholar] [CrossRef]
- Alves, A.; van Opstal, C.; Keijzer, N.; Sutton, N.; Chen, W.-S. Planning the multifunctionality of nature-based solutions in urban spaces. Cities 2024, 146, 104751. [Google Scholar] [CrossRef]
- Lu, L.; Johnson, M.; Zhu, F.; Xu, Y.; Ruan, T.; Chan, F.K.S. Harnessing the runoff reduction potential of urban bioswales as an adaptation response to climate change. Sci. Rep. 2024, 14, 12207. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, F.; Mourato, J.M.; Rodrigues, M.S.; Dias, L.F. Evaluating Nature-based Solutions as urban resilience and climate adaptation tools: A meta-analysis of their benefits on heatwaves and floods. Sci. Total Environ. 2024, 950, 175179. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, Y.; Lee, T.M.; Nie, X.; Wang, T.; Liang, E.; Wang, Y.; Zhang, L.; Wang, J.; Piao, S.; et al. Nature-based Solutions can help restore degraded grasslands and increase carbon sequestration in the Tibetan Plateau. Commun. Earth Environ. 2024, 5, 154. [Google Scholar] [CrossRef]
Module | Factor | Data | Format | Detail | Source |
---|---|---|---|---|---|
Exposure | NDVI | Normalized Difference Vegetation Index | Raster | 30 m resolution | MOD13Q1v061 dataset product from NASA’s Surface Process Data Center |
BCD | Building information | Polyline | n.a. | Amap | |
RND | Road network | Shapefile | Line | OpenStreetMap | |
SRC | Land use | Raster | 10 m resolution | Peng Cheng Laboratory | |
PM2.5 | Particulate Matter 2.5 | Raster | 1 km resolution | Resource and Environment Science and Data Center, China | |
Temperature | Average annual temperature | Raster | 1 km resolution | Resource and Environment Science and Data Center, China | |
Vulnerability | National cultural relic | Number of national cultural relics | Point | Location | Quanzhou Municipal People’s Government |
Provincial cultural relic | Number of provincial cultural relics | Point | Location | Quanzhou Municipal People’s Government | |
Historic building | Number of historic buildings | Point | Location | Quanzhou Municipal People’s Government | |
Educational facility | Number of educational facilities | Point | Location | Amap | |
Medical facility | Number of medical facilities | Point | Location | Amap | |
GDP | Gross Domestic Product | Table | Township | Fujian Statistical Yearbook-2020 | |
Population | Density of population | Table | Township | Fujian Statistical Yearbook-2020 |
Solution | Type | Constraint | Representative Structural Facilities | Suitable Land for Configuration | ||
---|---|---|---|---|---|---|
Area | Slope | Distance from Building Boundary | ||||
I | Direct Surface Infiltration Model | n.a. | <15% | >5 m | Pervious paving; Infiltration trench; Infiltration basin; Bioretention cell; Tree box filter; Bioswale. | Hard paving; Green space |
II | Subterranean Stormwater Infiltration Model | n.a. | n.a. | >10 m | Underground infiltration module; Underground sand filter. | Hard paving |
III | Surface Infiltration with Retention Model at Source | <2000 m2 | <10% | >5 m | Rain garden. | Green space |
IV | Stormwater Retention Model | >2000 m2 | <5% | >10 m | Retention pond; Constructed wetland. | Green space; Water body |
Type | Indicator | AHP | EW | Linear Weighting |
---|---|---|---|---|
Exposure | NDVI | 7.7% | 12.4% | 10.5% |
BCD | 5.9% | 28.0% | 17.0% | |
RND | 9.2% | 14.3% | 11.8% | |
SRC | 40.7% | 19.3% | 30.0% | |
PM2.5 | 14.4% | 19.2% | 16.8% | |
Temperature | 22.1% | 6.8% | 14.5% | |
Vulnerability | National cultural relic | 33.1% | 25.2% | 29.2% |
Provincial cultural relic | 18.4% | 22.1% | 20.3% | |
Historic building | 13.4% | 29.9% | 21.7% | |
Educational establishment | 10.2% | 10.9% | 10.6% | |
Medical institution | 7.7% | 9.1% | 8.4% | |
GDP | 5.9% | 2.7% | 4.3% | |
Population density | 11.2% | 0.1% | 5.7% |
ID | Name | Area (km2) | Exposure Rate (%) | Vulnerability Rate (%) | Risk Rate (%) | Ranking |
---|---|---|---|---|---|---|
1 | Beifeng | 25.92 | 5.4% | 0.8% | 3.1% | 15 |
2 | Huada | 9.98 | 3.5% | 0.3% | 1.9% | 16 |
3 | Changtai | 12.54 | 7.8% | 0.4% | 4.1% | 14 |
4 | Linjiang | 1.21 | 11.7% | 11.9% | 11.8% | 1 |
5 | Haibin | 3.72 | 9.4% | 5.4% | 7.4% | 5 |
6 | Jinlong | 10.36 | 7.9% | 0.6% | 4.3% | 13 |
7 | Jiangnan | 8.92 | 8.0% | 1.6% | 4.8% | 10 |
8 | Donghu | 5.77 | 9.0% | 2.4% | 5.7% | 7 |
9 | Fuqiao | 10.11 | 9.0% | 0.6% | 4.8% | 10 |
10 | Donghai | 32.31 | 8.1% | 1.3% | 4.7% | 12 |
11 | Qingmeng Economic Development Zone | 6.23 | 8.6% | 1.1% | 4.9% | 9 |
12 | Xiuquan | 4.58 | 10.6% | 1.0% | 5.8% | 6 |
13 | Kaiyuan | 2.72 | 12.5% | 8.1% | 10.3% | 2 |
14 | Qingyuan | 16.12 | 1.3% | 1.3% | 1.3% | 17 |
15 | Lizhong | 2.46 | 13.0% | 6.0% | 9.5% | 3 |
16 | Chengdong | 17.06 | 8.9% | 1.4% | 5.2% | 8 |
17 | Fengze | 2.63 | 12.8% | 3.3% | 8.1% | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhao, J.; Su, J.; Ikram, R.M.A.; Yang, M. Navigating Flooding Challenges in Historical Urban Contexts: Integrating Nature-Based Solutions with Spatial Multi-Criteria Assessments in Quanzhou. Land 2025, 14, 452. https://doi.org/10.3390/land14030452
Wang M, Zhao J, Su J, Ikram RMA, Yang M. Navigating Flooding Challenges in Historical Urban Contexts: Integrating Nature-Based Solutions with Spatial Multi-Criteria Assessments in Quanzhou. Land. 2025; 14(3):452. https://doi.org/10.3390/land14030452
Chicago/Turabian StyleWang, Mo, Jiayu Zhao, Jin Su, Rana Muhammad Adnan Ikram, and Manling Yang. 2025. "Navigating Flooding Challenges in Historical Urban Contexts: Integrating Nature-Based Solutions with Spatial Multi-Criteria Assessments in Quanzhou" Land 14, no. 3: 452. https://doi.org/10.3390/land14030452
APA StyleWang, M., Zhao, J., Su, J., Ikram, R. M. A., & Yang, M. (2025). Navigating Flooding Challenges in Historical Urban Contexts: Integrating Nature-Based Solutions with Spatial Multi-Criteria Assessments in Quanzhou. Land, 14(3), 452. https://doi.org/10.3390/land14030452