Aquatic Macroinvertebrates as Indicators of Climate Change in the Riparian Environments of the Mediterranean Region
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effects of Temperature Increase on Aquatic Macroinvertebrates
3.2. Effects of Decreased Precipitation and Altered Hydrological Regime on Aquatic Macroinvertebrates
3.3. Extreme Weather Events and Aquatic Macroinvertebrate Communities
3.4. Aquatic Macroinvertebrates as Bioindicators of Climate Change in the Mediterranean Region
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The Relation between Climate Change in the Mediterranean Region and Global Warming. Reg. Environ. Change 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Todaro, V.; D’Oria, M.; Secci, D.; Zanini, A.; Tanda, M.G. Climate Change over the Mediterranean Region: Local Temperature and Precipitation Variations at Five Pilot Sites. Water 2022, 14, 2499. [Google Scholar] [CrossRef]
- Balzan, M.V.; Hassoun, A.E.R.; Aroua, N.; Baldy, V.; Dagher, M.B.; Branquinho, C.; Dutay, J.-C.; Bour, M.E.; Médail, F.; Mojtahid, M.; et al. First Mediterranean Assessment Report—Chapter 4: Ecosystems. In Climate and Environmental Change in the Mediterranean Basin-Current Situation and Risks for the Future; Union for the Mediterranean, Plan Bleu: Marseille, France, 2020; pp. 323–468. ISBN 978-2-9577416-0-1. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity Hotspots for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Khamis, K.; Hannah, D.M.; Brown, L.E.; Tiberti, R.; Milner, A.M. The Use of Invertebrates as Indicators of Environmental Change in Alpine Rivers and Lakes. Sci. Total Environ. 2014, 493, 1242–1254. [Google Scholar] [CrossRef]
- Campo, R.; Hervella, B.; Luna, M.Y. Efectos Observados y Previstos Del Cambio Climático En España. Es Momento de Actuar. Ambient. Rev. Minist. Medio Ambiente 2021, 130, 16–25. [Google Scholar]
- Martín, M.L.; Calvo-Sancho, C.; Taszarek, M.; González-Alemán, J.J.; Montoro-Mendoza, A.; Díaz-Fernández, J.; Bolgiani, P.; Sastre, M.; Martín, Y. Major Role of Marine Heatwave and Anthropogenic Climate Change on a Giant Hail Event in Spain. Geophys. Res. Lett. 2024, 51, e2023GL107632. [Google Scholar] [CrossRef]
- Olcina, J. Cambio Climático y Riesgos Climáticos En España. Investig. Geográficas 2009, 49, 197–220. [Google Scholar] [CrossRef]
- Guan, Y.; Lu, H.; Jiang, Y.; Tian, P.; Qiu, L.; Pellikka, P.; Heiskanen, J. Changes in Global Climate Heterogeneity Under the 21st Century Global Warming. Ecol. Indic. 2021, 130, 108075. [Google Scholar] [CrossRef]
- Domisch, S.; Araújo, M.B.; Bonada, N.; Pauls, S.U.; Jähnig, S.C.; Haase, P. Modelling Distribution in European Stream Macroinvertebrates under Future Climates. Glob. Change Biol. 2013, 19, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Guiot, J.; Cramer, W. Climate Change: The 2015 Paris Agreement Thresholds and Mediterranean Basin Ecosystems. Science 2016, 354, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Aurelle, D.; Thomas, S.; Albert, C.; Bally, M.; Bondeau, A.; Boudouresque, C.-F.; Cahill, A.E.; Carlotti, F.; Chenuil, A.; Cramer, W.; et al. Biodiversity, Climate Change, and Adaptation in the Mediterranean. Ecosphere 2022, 13, e3915. [Google Scholar] [CrossRef]
- Klausmeyer, K.R.; Shaw, M.R. Climate Change, Habitat Loss, Protected Areas and the Climate Adaptation Potential of Species in Mediterranean Ecosystems Worldwide. PLoS ONE 2009, 4, e6392. [Google Scholar] [CrossRef]
- Maiorano, L.; Falcucci, A.; Zimmermann, N.E.; Psomas, A.; Pottier, J.; Baisero, D.; Rondinini, C.; Guisan, A.; Boitani, L. The Future of Terrestrial Mammals in the Mediterranean Basin Under Climate Change. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2681–2692. [Google Scholar] [CrossRef]
- Arribas, P.; Abellán, P.; Velasco, J.; Bilton, D.T.; Lobo, J.M.; Millán, A.; Sánchez-Fernández, D. La Vulnerabilidad de Las Especies Frente al Cambio Climático, Un Reto Urgente Para La Conservación de La Biodiversidad. Ecosistemas 2012, 21, 78–84. [Google Scholar] [CrossRef]
- Camarero, J.J. Sed En El Río: Cómo El Calentamiento Climático y Los Cambios En La Dinámica Fluvial Contribuyen al Declive de Los Bosques de Ribera (SED-IBER); Instituto Pirenaico de Ecología (CSIC): Zaragoza, Spain, 2016. [Google Scholar]
- Moreno, J.M.; Álvarez Cobelas, M.; Benito, G.; Catalán, J.; Ramos, M.Á.; de la Rosa, D.; Valladares Ros, F.; Zazo, C. Principales Conclusiones de La Evaluación Preliminar de Los Impactos En España Por Efecto Del Cambio Climático; Ministerio de Medio Ambiente (España): Madrid, Spain, 2005. [Google Scholar]
- Wanders, N.; van Vliet, M.T.H.; Wada, Y.; Bierkens, M.F.P.; van Beek, L.P.H. High-Resolution Global Water Temperature Modeling. Water Resour. Res. 2019, 55, 2760–2778. [Google Scholar] [CrossRef]
- Colin, N.; Porte, C.; Fernandes, D.; Barata, C.; Padrós, F.; Carrassón, M.; Monroy, M.; Cano-Rocabayera, O.; de Sostoa, A.; Piña, B.; et al. Ecological Relevance of Biomarkers in Monitoring Studies of Macro-Invertebrates and Fish in Mediterranean Rivers. Sci. Total Environ. 2016, 540, 307–323. [Google Scholar] [CrossRef]
- Calbó, J. Possible Climate Change Scenarios with Specific Reference to Mediterranean Regions. In Water Scarcity in the Mediterranean: Perspectives Under Global Change; Sabater, S., Barceló, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–13. ISBN 978-3-642-03971-3. [Google Scholar]
- Allen, M.R.; Ingram, W.J. Constraints on Future Changes in Climate and the Hydrologic Cycle. Nature 2002, 419, 224–232. [Google Scholar] [CrossRef]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; El Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.A.; Tanarhte, M.; Tyrlis, E.; et al. Climate Change and Impacts in the Eastern Mediterranean and the Middle East. Clim. Change 2012, 114, 667–687. [Google Scholar] [CrossRef]
- Morán-Tejeda, E.; Ceballos-Barbancho, A.; Llorente-Pinto, J.M. Hydrological Response of Mediterranean Headwaters to Climate Oscillations and Land-Cover Changes: The Mountains of Duero River Basin (Central Spain). Glob. Planet. Change 2010, 72, 39–49. [Google Scholar] [CrossRef]
- Rincón, V.; Velázquez, J.; Pascual, Á.; Herráez, F.; Gómez, I.; Gutiérrez, J.; Sánchez, B.; Hernando, A.; Santamaría, T.; Sánchez-Mata, D. Connectivity of Natura 2000 Potential Natural Riparian Habitats Under Climate Change in the Northwest Iberian Peninsula: Implications for Their Conservation. Biodivers. Conserv. 2022, 31, 585–612. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wilby, R.L.; Battarbee, R.W.; Kernan, M.; Wade, A.J. A Review of the Potential Impacts of Climate Change on Surface Water Quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef]
- Magalhaes, M.F.; Beja, P.; Schlosser, I.J.; Collares-Pereira, M.J. Effects of Multi-Year Droughts on Fish Assemblages of Seasonally Drying Mediterranean Streams. Freshw. Biol. 2007, 52, 1494–1510. [Google Scholar] [CrossRef]
- Filipe, A.F.; Lawrence, J.E.; Bonada, N. Vulnerability of Stream Biota to Climate Change in Mediterranean Climate Regions: A Synthesis of Ecological Responses and Conservation Challenges. Hydrobiologia 2013, 719, 331–351. [Google Scholar] [CrossRef]
- Jol, A.; Raes, F.; Menne, B. Impacts of Europe’s Changing Climate—2008 Indicator Based Assessment. IOP Conf. Ser. Earth Environ. Sci. 2009, 6, 292042. [Google Scholar] [CrossRef]
- Domisch, S.; Jähnig, S.C.; Haase, P. Climate-Change Winners and Losers: Stream Macroinvertebrates of a Submontane Region in Central Europe. Freshw. Biol. 2011, 56, 2009–2020. [Google Scholar] [CrossRef]
- Daufresne, M.; Bady, P.; Fruget, J.-F. Impacts of Global Changes and Extreme Hydroclimatic Events on Macroinvertebrate Community Structures in the French Rhône River. Oecologia 2007, 151, 544–559. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Szałkiewicz, E.; Marcinkowski, P.; Mirosław-Świątek, D.; Piniewski, M. Assessment of Climate Change Effect on Environmental Flows for Macroinvertebrates Using an Integrated Hydrological-Hydraulic-Habitat Modelling. J. Hydrol. Reg. Stud. 2024, 56, 101982. [Google Scholar] [CrossRef]
- Alba-Tercedor, J.; Jáimez-Cuéllar, P.; Álvarez, M.; Avilés, J.; Bonada, N.; Casas, J.; Mellado, A.; Ortega, M.; Pardo, I.; Prat, N.; et al. Caracterización Del Estado Ecológico de Ríos Mediterráneos Ibéricos Mediante El Índice IBMWP (Antes BMWP’). Limnetica 2002, 21, 175–185. [Google Scholar] [CrossRef]
- Alba-Tercedor, J.; Sánchez-Ortega, A. Un Método Rápido y Simple Para Evaluar La Calidad Biológica de Las Aguas Corrientes Basado En El de Hellawell (1978). Limnetica 1988, 4, 51–56. [Google Scholar] [CrossRef]
- Alonso, A.; Camargo, J.A. Estado Actual y Perspectivas En El Empleo de La Comunidad de Macroinvertebrados Bentónicos Como Indicadora Del Estado Ecológico de Los Ecosistemas Fluviales Españoles. Ecosistemas 2005, 14, 87–99. [Google Scholar]
- Tachet, H.; Richoux, P.; Bournaud, M.; Usseglio-Polatera, P. Invertébrés d’eau Douce. Systematique, Biologie, Écologie; CNRS Editions: París, France, 2003. [Google Scholar]
- Muñoz, I.; Sabater, S.; Barata, C. Evaluating Ecological Integrity in Multistressed Rivers: From the Currently Used Biotic Indices to Newly Developed Approaches Using Biofilms and Invertebrates. In Emerging and Priority Pollutants in Rivers: Bringing Science into River Management Plans; Guasch, H., Ginebreda, A., Geiszinger, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 219–241. ISBN 978-3-642-25722-3. [Google Scholar]
- McNeely, J.A. Monitoring Climate Change with Dragonflies: Foreword. BioRisk 2010, 5, 1–2. [Google Scholar] [CrossRef]
- Camargo, J.A.; Alonso, A.; De La Puente, M. Multimetric Assessment of Nutrient Enrichment in Impounded Rivers Based on Benthic Macroinvertebrates. Environ. Monit. Assess. 2004, 96, 233–249. [Google Scholar] [CrossRef] [PubMed]
- Sáinz-Bariáin, M.; Zamora-Muñoz, C.; Soler, J.J.; Bonada, N.; Sáinz-Cantero, C.E.; Alba-Tercedor, J. Changes in Mediterranean High Mountain Trichoptera Communities After a 20-Year Period. Aquat. Sci. 2016, 78, 669–682. [Google Scholar] [CrossRef]
- Parmesan, C.; Root, T.L.; Willig, M.R. Impacts of Extreme Weather and Climate on Terrestrial Biota. Bull. Am. Meteorol. Soc. 2000, 81, 443–450. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Likens, G.E.; Andersen, A.; Bowman, D.; Bull, C.M.; Burns, E.; Dickman, C.R.; Hoffmann, A.A.; Keith, D.A.; Liddell, M.J.; et al. Value of Long-Term Ecological Studies. Austral Ecol. 2012, 37, 745–757. [Google Scholar] [CrossRef]
- Sarkis-Onofre, R.; Catalá-López, F.; Aromataris, E.; Lockwood, C. How to Properly Use the PRISMA Statement. Syst. Rev. 2021, 10, 117. [Google Scholar] [CrossRef]
- Baranov, V.; Jourdan, J.; Pilotto, F.; Wagner, R.; Haase, P. Complex and Nonlinear Climate-Driven Changes in Freshwater Insect Communities over 42 Years. Conserv. Biol. 2020, 34, 1241–1251. [Google Scholar] [CrossRef]
- Souza, N.F.; Leal, J.S.; Tourinho, L.; Farjalla, V.F.; Rocha, D.S.B.; Vale, M.M. Bioindicator Aquatic Insects at Risk from Climate Change in a Biodiversity Hotspot. Sci. Total Environ. 2024, 948, 174824. [Google Scholar] [CrossRef]
- Conti, L.; Schmidt-Kloiber, A.; Grenouillet, G.; Graf, W. A Trait-Based Approach to Assess the Vulnerability of European Aquatic Insects to Climate Change. Hydrobiologia 2014, 721, 297–315. [Google Scholar] [CrossRef]
- Hering, D.; Schmidt-Kloiber, A.; Murphy, J.; Lücke, S.; Zamora-Muñoz, C.; López-Rodríguez, M.J.; Huber, T.; Graf, W. Potential Impact of Climate Change on Aquatic Insects: A Sensitivity Analysis for European Caddisflies (Trichoptera) Based on Distribution Patterns and Ecological Preferences. Aquat. Sci. 2009, 71, 3–14. [Google Scholar] [CrossRef]
- Cid, N.; Ibáñez, C.; Prat, N. Life History and Production of the Burrowing Mayfly Ephoron virgo (Olivier, 1791) (Ephemeroptera: Polymitarcyidae) in the Lower Ebro River: A Comparison after 18 Years. Aquat. Insects 2008, 30, 163–178. [Google Scholar] [CrossRef]
- Dallas, H.; Rivers-Moore, N.A. Critical Thermal Maxima of Aquatic Macroinvertebrates: Towards Identifying Bioindicators of Thermal Alteration. Hydrobiologia 2012, 679, 61–76. [Google Scholar] [CrossRef]
- Durance, I.; Ormerod, S.J. Climate Change Effects on Upland Stream Macroinvertebrates over a 25-Year Period. Glob. Change Biol. 2007, 13, 942–957. [Google Scholar] [CrossRef]
- De Melo, R.R.; Rameh Barbosa, I.M.; Ferreira, A.A.; Lee Barbosa Firmo, A.; Da Silva, S.R.; Cirilo, J.A.; De Aquino, R.R. Influence of Extreme Strength in Water Quality of the Jucazinho Reservoir, Northeastern Brazil, PE. Water 2017, 9, 955. [Google Scholar] [CrossRef]
- Bonacina, L.; Fasano, F.; Mezzanotte, V.; Fornaroli, R. Effects of Water Temperature on Freshwater Macroinvertebrates: A Systematic Review. Biol. Rev. 2023, 98, 191–221. [Google Scholar] [CrossRef]
- Ramulifho, P.A.; Rivers-Moore, N.A.; Dallas, H.F.; Foord, S.H. A Conceptual Framework towards More Holistic Freshwater Conservation Planning through Incorporation of Stream Connectivity and Thermal Vulnerability. J. Hydrol. 2018, 556, 173–181. [Google Scholar] [CrossRef]
- Johnson, M.F.; Albertson, L.K.; Algar, A.C.; Dugdale, S.J.; Edwards, P.; England, J.; Gibbins, C.; Kazama, S.; Komori, D.; MacColl, A.D.C.; et al. Rising Water Temperature in Rivers: Ecological Impacts and Future Resilience. WIREs Water 2024, 11, e1724. [Google Scholar] [CrossRef]
- Hamilton, S.K. Biogeochemical Implications of Climate Change for Tropical Rivers and Floodplains. Hydrobiologia 2010, 657, 19–35. [Google Scholar] [CrossRef]
- Burgmer, T.; Hillebrand, H.; Pfenninger, M. Effects of Climate-Driven Temperature Changes on the Diversity of Freshwater Macroinvertebrates. Oecologia 2007, 151, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Mouthon, J.; Daufresne, M. Effects of the 2003 Heatwave and Climatic Warming on Mollusc Communities of the Saône: A Large Lowland River and of Its Two Main Tributaries (France). Glob. Change Biol. 2006, 12, 441–449. [Google Scholar] [CrossRef]
- Soria, M.; Leigh, C.; Datry, T.; Bini, L.M.; Bonada, N. Biodiversity in Perennial and Intermittent Rivers: A Meta-Analysis. Oikos 2017, 126, 1078–1089. [Google Scholar] [CrossRef]
- Mérigoux, S.; Dolédec, S. Hydraulic Requirements of Stream Communities: A Case Study on Invertebrates. Freshw. Biol. 2004, 49, 600–613. [Google Scholar] [CrossRef]
- Datry, T.; Corti, R.; Philippe, M. Spatial and Temporal Aquatic–Terrestrial Transitions in the Temporary Albarine River, France: Responses of Invertebrates to Experimental Rewetting. Freshw. Biol. 2012, 57, 716–727. [Google Scholar] [CrossRef]
- Matías, L.; Godoy, O.; Gómez-Aparicio, L.; Pérez-Ramos, I.M. An Experimental Extreme Drought Reduces the Likelihood of Species to Coexist Despite Increasing Intransitivity in Competitive Networks. J. Ecol. 2018, 106, 826–837. [Google Scholar] [CrossRef]
- Datry, T.; Larned, S.T.; Scarsbrook, M.R. Responses of Hyporheic Invertebrate Assemblages to Large-Scale Variation in Flow Permanence and Surface–Subsurface Exchange. Freshw. Biol. 2007, 52, 1452–1462. [Google Scholar] [CrossRef]
- Smith, H.; Wood, P.J.; Gunn, J. The Influence of Habitat Structure and Flow Permanence on Invertebrate Communities in Karst Spring Systems. Hydrobiologia 2003, 510, 53–66. [Google Scholar] [CrossRef]
- Jovem-Azevêdo, D.; Bezerra-Neto, J.F.; Azevêdo, E.L.; Gomes, W.I.A.; Molozzi, J.; Feio, M.J. Dipteran Assemblages as Functional Indicators of Extreme Droughts. J. Arid Environ. 2019, 164, 12–22. [Google Scholar] [CrossRef]
- Wood, P.J.; Agnew, M.D.; Petts, G.E. Flow Variations and Macroinvertebrate Community Responses in a Small Groundwater-Dominated Stream in South-East England. Hydrol. Process. 2000, 14, 3133–3147. [Google Scholar] [CrossRef]
- Twardochleb, L.A. Climate Effects on Freshwater Ecological Communities: From Local Species Interactions to Continental Biodiversity Patterns. Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 2020. [Google Scholar]
- Moi, D.A.; Ernandes-Silva, J.; Baumgartner, M.T.; Mormul, R.P. The Effects of River-Level Oscillations on the Macroinvertebrate Community in a River–Floodplain System. Limnology 2020, 21, 219–232. [Google Scholar] [CrossRef]
- Townsend, C.R.; Hildrew, A.G. Species Traits in Relation to a Habitat Templet for River Systems. Freshw. Biol. 1994, 31, 265–275. [Google Scholar] [CrossRef]
- Bae, M.J.; Park, Y.S. Evaluation of Precipitation Impacts on Benthic Macroinvertebrate Communities at Three Different Stream Types. Ecol. Indic. 2019, 102, 446–456. [Google Scholar] [CrossRef]
- López-de Sancha, A.; Roig, R.; Jiménez, I.; Guasch, H. Impacts of Damming and Climate Change on the Ecosystem Structure of Headwater Streams: A Case Study from the Pyrenees. Inland Waters 2022, 12, 434–450. [Google Scholar] [CrossRef]
- Stubbington, R.; Bogan, M.T.; Bonada, N.; Boulton, A.J.; Datry, T.; Leigh, C.; Vander Vorste, R. Chapter 4.3—The Biota of Intermittent Rivers and Ephemeral Streams: Aquatic Invertebrates. In Intermittent Rivers and Ephemeral Streams; Datry, T., Bonada, N., Boulton, A., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 217–243. ISBN 978-0-12-803835-2. [Google Scholar]
- Piniewski, M.; Prudhomme, C.; Acreman, M.C.; Tylec, L.; Oglęcki, P.; Okruszko, T. Responses of Fish and Invertebrates to Floods and Droughts in Europe. Ecohydrology 2017, 10, e1793. [Google Scholar] [CrossRef]
- Stubbington, R.; Greenwood, A.M.; Wood, P.J.; Armitage, P.D.; Gunn, J.; Robertson, A.L. The Response of Perennial and Temporary Headwater Stream Invertebrate Communities to Hydrological Extremes. Hydrobiologia 2009, 630, 299–312. [Google Scholar] [CrossRef]
- Boulton, A.J. Parallels and Contrasts in the Effects of Drought on Stream Macroinvertebrate Assemblages. Freshw. Biol. 2003, 48, 1173–1185. [Google Scholar] [CrossRef]
- Chase, J.M. Drought Mediates the Importance of Stochastic Community Assembly. Proc. Natl. Acad. Sci. USA 2007, 104, 17430–17434. [Google Scholar] [CrossRef]
- Chessman, B.C. Relationships between Lotic Macroinvertebrate Traits and Responses to Extreme Drought. Freshw. Biol. 2015, 60, 50–63. [Google Scholar] [CrossRef]
- Gholizadeh, M. Effects of Floods on Macroinvertebrate Communities in the Zarin Gol River of Northern Iran: Implications for Water Quality Monitoring and Biological Assessment. Ecol. Process. 2021, 10, 46. [Google Scholar] [CrossRef]
- Smith, A.J.; Baldigo, B.P.; Duffy, B.T.; George, S.D.; Dresser, B. Resilience of Benthic Macroinvertebrates to Extreme Floods in a Catskill Mountain River, New York, USA: Implications for Water Quality Monitoring and Assessment. Ecol. Indic. 2019, 104, 107–115. [Google Scholar] [CrossRef]
- Pažourková, E.; Křeček, J.; Bitušík, P.; Chvojka, P.; Kamasová, L.; Senoo, T.; Špaček, J.; Stuchlík, E. Impacts of an Extreme Flood on the Ecosystem of a Headwater Stream. J. Limnol. 2021, 80, 1998. [Google Scholar] [CrossRef]
- Woodward, G.; Bonada, N.; Feeley, H.B.; Giller, P.S. Resilience of a Stream Community to Extreme Climatic Events and Long-Term Recovery from a Catastrophic Flood. Freshw. Biol. 2015, 60, 2497–2510. [Google Scholar] [CrossRef]
- Foster, A.D.; Claeson, S.M.; Bisson, P.A.; Heimburg, J. Aquatic and Riparian Ecosystem Recovery from Debris Flows in Two Western Washington Streams, USA. Ecol. Evol. 2020, 10, 2749–2777. [Google Scholar] [CrossRef]
- Bond, N.R.; Downes, B.J. The Independent and Interactive Effects of Fine Sediment and Flow on Benthic Invertebrate Communities Characteristic of Small Upland Streams. Freshw. Biol. 2003, 48, 455–465. [Google Scholar] [CrossRef]
- Snyder, C.D.; Johnson, Z.B. Macroinvertebrate Assemblage Recovery Following a Catastrophic Flood and Debris Flows in an Appalachian Mountain Stream. J. N. Am. Benthol. Soc. 2006, 25, 825–840. [Google Scholar] [CrossRef]
- Croijmans, L.; de Jong, J.F.; Prins, H.H.T. Oxygen Is a Better Predictor of Macroinvertebrate Richness than Temperature—A Systematic Review. Environ. Res. Lett. 2021, 16, 023002. [Google Scholar] [CrossRef]
- Pineda-Pineda, J.J.; Muñoz-Rojas, J.; Morales-García, Y.E.; Hernández-Gómez, J.C.; Sigarreta, J.M. Biomathematical Model for Water Quality Assessment: Macroinvertebrate Population Dynamics and Dissolved Oxygen. Water 2022, 14, 2902. [Google Scholar] [CrossRef]
- Briers, R.A.; Gee, J.H.R.; Geoghegan, R. Effects of the North Atlantic Oscillation on Growth and Phenology of Stream Insects. Ecography 2004, 27, 811–817. [Google Scholar] [CrossRef]
- Dobson, M.; Hildrew, A.G.; Orton, S.; Ormerod, S.J. APPLIED ISSUES Increasing Litter Retention in Moorland Streams: Ecological and Management Aspects of a Field Experiment. Freshw. Biol. 1995, 33, 325–337. [Google Scholar] [CrossRef]
- Cox, B.; Reichelt-Brushett, A.; Taffs, K.; Smith, R. Plasticity of Upper Thermal Limits of Australian Paratya spp. (Decapoda, Atyidae) and Considerations of Climate-Change Adaptation. Mar. Freshw. Res. 2023, 74, 491–499. [Google Scholar] [CrossRef]
- Theodoropoulos, C.; Karaouzas, I.; Stamou, A. Environmental Flows as a Proactive Tool to Mitigate the Impacts of Climate Warming on Freshwater Macroinvertebrates. Water 2021, 13, 2586. [Google Scholar] [CrossRef]
- Jacobus, L.M.; Macadam, C.R.; Sartori, M. Mayflies (Ephemeroptera) and Their Contributions to Ecosystem Services. Insects 2019, 10, 170. [Google Scholar] [CrossRef] [PubMed]
- Dočkalová, K.; Stuchlík, E.; Hamerlík, L.; Bitušík, P.; Turek, J.; Svitok, M.; Novikmec, M.; Lackner, R.; Martin, D.; Kopáček, J.; et al. Cold Mountain Stream Chironomids (Diptera) of the Genus Diamesa Indicate Both Historical and Recent Climate Change. Environ. Entomol. 2024, 53, 604–618. [Google Scholar] [CrossRef]
- Manush, S.M.; Pal, A.K.; Chatterjee, N.; Das, T.; Mukherjee, S.C. Thermal Tolerance and Oxygen Consumption of Macrobrachium rosenbergii Acclimated to Three Temperatures. J. Therm. Biol. 2004, 29, 15–19. [Google Scholar] [CrossRef]
- Moulton, S.R., II; Beitinger, T.L.; Stewart, K.W.; Currie, R.J. Upper Temperature Tolerance of Four Species of Caddisflies (Insecta: Trichoptera). J. Freshw. Ecol. 1993, 8, 193–198. [Google Scholar] [CrossRef]
- Ernst, M.R.; Beitinger, T.L.; Stewart, K.W. Critical Thermal Maxima of Nymphs of Three Plecoptera Species from an Ozark Foothill Stream. Freshw. Invertebr. Biol. 1984, 3, 80–85. [Google Scholar] [CrossRef]
- Garten, C.T.; Gentry, J.B. Thermal Tolerance of Dragonfly Nymphs. II. Comparison of Nymphs from Control and Thermally Altered Environments. Physiol. Zool. 1976, 49, 206–213. [Google Scholar] [CrossRef]
- Monk, W.A.; Wood, P.J.; Hannah, D.M.; Wilson, D.A. Macroinvertebrate Community Response to Inter-Annual and Regional River Flow Regime Dynamics. River Res. Appl. 2008, 24, 988–1001. [Google Scholar] [CrossRef]
- Nava, D.; Restello, R.; Hepp, L. Intra- and Inter-Annual Variations in Chironomidae (Insecta: Diptera) Communities in Subtropical Streams. Zoologia 2015, 32, 207–214. [Google Scholar] [CrossRef]
- Carvallo, F.R.; Strickland, B.A.; Kinard, S.K.; Reese, B.K.; Hogan, J.D.; Patrick, C.J. Structure and Functional Composition of Macroinvertebrate Communities in Coastal Plain Streams across a Precipitation Gradient. Freshw. Biol. 2022, 67, 1725–1738. [Google Scholar] [CrossRef]
- Smith, H.; Wood, P.J. Flow Permanence and Macroinvertebrate Community Variability in Limestone Spring Systems. Hydrobiologia 2002, 487, 45–58. [Google Scholar] [CrossRef]
- Santos, J.I.; Silva, C.; Gonçalves, F.J.M.; Pereira, J.L.; Castro, B.B. Macroinvertebrate Community Structure and Ecological Status in Portuguese Streams Across Climatic and Water Scarcity Gradients. Hydrobiologia 2023, 850, 967–984. [Google Scholar] [CrossRef]
- Döll, P.; Schmied, H.M. How Is the Impact of Climate Change on River Flow Regimes Related to the Impact on Mean Annual Runoff? A Global-Scale Analysis. Environ. Res. Lett. 2012, 7, 014037. [Google Scholar] [CrossRef]
- Leigh, C.; Bonada, N.; Boulton, A.J.; Hugueny, B.; Larned, S.T.; Vander Vorste, R.; Datry, T. Invertebrate Assemblage Responses and the Dual Roles of Resistance and Resilience to Drying in Intermittent Rivers. Aquat. Sci. 2016, 78, 291–301. [Google Scholar] [CrossRef]
- Chacón López, L. Variability in Stream Macroinvertebrate Community Composition Along Climate and Flow Permanence Gradients in California. Bachelor’s Thesis, California State University Stanislaus, Turlock, CA, USA, 2021. [Google Scholar]
- Chessman, B.C.; Jones, H.A.; Searle, N.K.; Growns, I.O.; Pearson, M.R. Assessing Effects of Flow Alteration on Macroinvertebrate Assemblages in Australian Dryland Rivers. Freshw. Biol. 2010, 55, 1780–1800. [Google Scholar] [CrossRef]
- Bonada, N.; Dolédec, S.; Statzner, B. Taxonomic and Biological Trait Differences of Stream Macroinvertebrate Communities Between Mediterranean and Temperate Regions: Implications for Future Climatic Scenarios. Glob. Change Biol. 2007, 13, 1658–1671. [Google Scholar] [CrossRef]
- Carey, N.; Chester, E.T.; Robson, B.J. Flow Regime Change Alters Shredder Identity but Not Leaf Litter Decomposition in Headwater Streams Affected by Severe, Permanent Drying. Freshw. Biol. 2021, 66, 1813–1830. [Google Scholar] [CrossRef]
- Vaughn, C.C. Biodiversity Losses and Ecosystem Function in Freshwaters: Emerging Conclusions and Research Directions. BioScience 2010, 60, 25–35. [Google Scholar] [CrossRef]
- Pinna, B.; Laini, A.; Negro, G.; Burgazzi, G.; Viaroli, P.; Vezza, P. Physical Habitat Modeling for River Macroinvertebrate Communities. J. Environ. Manag. 2024, 358, 120919. [Google Scholar] [CrossRef]
- Kinard, S.; Patrick, C.J.; Carvallo, F. Effects of a Natural Precipitation Gradient on Fish and Macroinvertebrate Assemblages in Coastal Streams. PeerJ 2021, 9, e12137. [Google Scholar] [CrossRef] [PubMed]
- Rolls, R.J.; Heino, J.; Ryder, D.S.; Chessman, B.C.; Growns, I.O.; Thompson, R.M.; Gido, K.B. Scaling Biodiversity Responses to Hydrological Regimes. Biol. Rev. 2018, 93, 971–995. [Google Scholar] [CrossRef] [PubMed]
- Haubrock, P.J. Site Characteristics Determine the Prevalence of Extreme Weather Events Affecting Freshwater Macroinvertebrate Communities. Sci. Total Environ. 2024, 950, 175436. [Google Scholar] [CrossRef] [PubMed]
- Boulton, A.; Sheldon, F.; Thoms, M.; Stanley, E.H. Problems and Constraints in Managing Rivers with Variable Flow Regimes. In Global Perspectives on River Conservation: Science, Policy and Practice; Boon, P.J., Davies, B.R., Petts, G.E., Eds.; Wiley: Chichester, UK, 2000; pp. 415–430. [Google Scholar]
- Lytle, D.A.; Poff, N.L. Adaptation to Natural Flow Regimes. Trends Ecol. Evol. 2004, 19, 94–100. [Google Scholar] [CrossRef]
- Gibbins, C.N.; Scott, E.; Soulsby, C.; Mcewan, I. The Relationship between Sediment Mobilisation and the Entry of Baetis Mayflies into the Water Column in a Laboratory Flume. Hydrobiologia 2005, 533, 115–122. [Google Scholar] [CrossRef]
- Olsen, D.A.; Townsend, C.R. Flood Effects on Invertebrates, Sediments and Particulate Organic Matter in the Hyporheic Zone of a Gravel-Bed Stream. Freshw. Biol. 2005, 50, 839–853. [Google Scholar] [CrossRef]
- Fisher, S.G.; Gray, L.J.; Grimm, N.B.; Busch, D.E. Temporal Succession in a Desert Stream Ecosystem Following Flash Flooding. Ecol. Monogr. 1982, 52, 93–110. [Google Scholar] [CrossRef]
- Feio, M.J.; Coimbra, C.N.; Graça, M.A.S.; Nichols, S.J.; Norris, R.H. The Influence of Extreme Climatic Events and Human Disturbance on Macroinvertebrate Community Patterns of a Mediterranean Stream over 15 y. J. N. Am. Benthol. Soc. 2010, 29, 1397–1409. [Google Scholar] [CrossRef]
- Smeti, E.; von Schiller, D.; Karaouzas, I.; Laschou, S.; Vardakas, L.; Sabater, S.; Tornés, E.; Monllor-Alcaraz, L.S.; Guillem-Argiles, N.; Martinez, E.; et al. Multiple Stressor Effects on Biodiversity and Ecosystem Functioning in a Mediterranean Temporary River. Sci. Total Environ. 2019, 647, 1179–1187. [Google Scholar] [CrossRef]
- Hannah, L. (Ed.) Climate Change Biology; Academic Press: Boston, MA, USA, 2015; ISBN 978-0-12-420218-4. [Google Scholar]
- Kroll, S.A.; Ringler, N.H.; Costa, M.L.C.C.; Ibanez, J.D.L.H. Macroinvertebrates on the Front Lines: Projected Community Response to Temperature and Precipitation Changes in Mediterranean Streams. J. Freshw. Ecol. 2017, 32, 513–528. [Google Scholar] [CrossRef]
- Figueroa, J.; López-Rodríguez, M.J.; Lorenz, A.; Wolfram, G.; Schmidt-Kloiber, A.; Hering, D. Vulnerable Taxa of European Plecoptera (Insecta) in the Context of Climate Change. Biodivers. Conserv. 2010, 19, 1269–1277. [Google Scholar] [CrossRef]
- Pedreros, P.; Guevara-Mora, M.; Stehr, A.; Araneda, A.; Urrutia, R. Response of Macroinvertebrate Communities to Thermal Regime in Small Mediterranean Streams (Southern South America): Implications of Global Warming. Limnologica 2020, 81, 125763. [Google Scholar] [CrossRef]
- Ferreras-Romero, M. Un Odonato Nuevo Para La Fauna Ibérica, Trithemis annulata (Palisot de Beauvais, 1805) (Anisoptera, Libellulidae). Bol. Asoc. Esp. Entomol. 1981, 4, 191–193. [Google Scholar]
- Ayllon, E.; Ayres, C.; Sastre, P. Primera Cita de Trithemis annulata (Palisot de Beauvois, 1805) (Odonata, Libellulidae) Para Cuenca (Este de España). Bol. Soc. Entomológica Aragon. 2013, 52, 276. [Google Scholar]
- Mezquita Aranburu, I.; Torralba-Burrial, A. Primera Cita de Trithemis annulata (Palisot de Beauvois, 1805) (Odonata, Libellulidae) Para Navarra (Norte de España). Bol. Soc. Entomológica Aragon. 2011, 49, 360. [Google Scholar]
- Betoret, B. Expansion de Trithemis annulata En Europa En Los Años 80 y 90 (Odonata). Bol. Soc. Entomológica Aragon. 2000, 27, 85–86. [Google Scholar]
- Ott, J. Dragonflies and Climatic Change—Recent Trends in Germany and Europe. BioRisk 2010, 5, 253–286. [Google Scholar] [CrossRef]
- Márquez-Rodríguez, J. Trithemis kirbyi ardens (Gerstaecker, 1891) (Odonata: Libellulidae); Datos de Campo Sobre Su Ecología En El Sur de España y Primeros Registros Para La Provincia de Sevilla (España). Métod. Ecol. Sist. 2011, 6, 10–20. [Google Scholar]
- Arias-Real, R.; Gutiérrez-Cánovas, C.; Menéndez, M.; Muñoz, I. Drying Niches of Aquatic Macroinvertebrates Identify Potential Biomonitoring Indicators in Intermittent and Ephemeral Streams. Ecol. Indic. 2022, 142, 109263. [Google Scholar] [CrossRef]
- López-Rodríguez, M.J.; Figueroa, J.; Alba-Tercedor, J. The Life History of Serratella ignita (Poda, 1761) (Insecta: Ephemeroptera) in a Temporary and Permanent Mediterranean Stream. Aquat. Sci. 2009, 71, 179–188. [Google Scholar] [CrossRef]
- Alba-Tercedor, J.; Sainz, M.; Poquet, J.; Rodríguez-López, R. Predicting River Macroinvertebrate Communities Distributional Shifts under Future Global Change Scenarios in the Spanish Mediterranean Area. PLoS ONE 2017, 12, e0167904. [Google Scholar] [CrossRef] [PubMed]
- Acuña, V.; Muñoz, I.; Giorgi, A.; Omella, M.; Sabater, F.; Sabater, S. Drought and Postdrought Recovery Cycles in an Intermittent Mediterranean Stream: Structural and Functional Aspects. J. N. Am. Benthol. Soc. 2005, 24, 919–933. [Google Scholar] [CrossRef]
- Fenoglio, S.; Bo, T.; Cucco, M.; Malacarne, G. Response of Benthic Invertebrate Assemblages to Varying Drought Conditions in the Po River (NW Italy). Ital. J. Zool. 2007, 74, 191–201. [Google Scholar] [CrossRef]
- Bosco Imbert, J.; Gonzalez, J.M.; Basaguren, A.; Pozo, J. Influence of Inorganic Substrata Size, Leaf Litter and Woody Debris Removal on Benthic Invertebrates Resistance to Floods in Two Contrasting Headwater Streams. Int. Rev. Hydrobiol. 2005, 90, 51–70. [Google Scholar] [CrossRef]
- Argerich, A.; Puig, M.; Pupilli, E. Effect of Floods of Different Magnitude on the Macroinvertebrate Communities of Matarranya Stream (Ebro River Basin, NE Spain). Limnetica 2004, 23, 283–294. [Google Scholar] [CrossRef]
- Arscott, D.; Tockner, K.; Ward, J.V. Spatio-Temporal Patterns of Benthic Invertebrates along the Continuum of a Braided Alpine River. Arch. Hydrobiol. 2003, 158, 431–460. [Google Scholar] [CrossRef]
- Vagheei, H.; Laini, A.; Vezza, P.; Palau-Salvador, G.; Boano, F. Climate Change Impact on the Ecological Status of Rivers: The Case of Albaida Valley (SE Spain). Sci. Total Environ. 2023, 893, 164645. [Google Scholar] [CrossRef]
- Cristóbal, E.; Ayuso, S.V.; Justel, A.; Toro, M. Robust Optima and Tolerance Ranges of Biological Indicators: A New Method to Identify Sentinels of Global Warming. Ecol. Res. 2014, 29, 55–68. [Google Scholar] [CrossRef]
- Miliša, M.; Stubbington, R.; Datry, T.; Cid, N.; Bonada, N.; Šumanović, M.; Milošević, D. Taxon-Specific Sensitivities to Flow Intermittence Reveal Macroinvertebrates as Potential Bioindicators of Intermittent Rivers and Streams. Sci. Total Environ. 2022, 804, 150022. [Google Scholar] [CrossRef]
Climate Change Factor | Effect on Aquatic Macroinvertebrates |
---|---|
Temperature increase | Alteration of growth, feeding, emergence, fertility, and survival [50,51,52,53] |
Modification of the distribution area [53,54,55] | |
Decreased water quality [56] | |
Loss of rare taxonomic groups and reduction in abundance [57] | |
Invasion of exotic species and those from lower reaches of rivers [51] | |
Alteration in the wealth and composition of communities [51,53,58] | |
Decrease in precipitation and alteration of water regime | Loss of diversity [29,59,60,61,62] |
Modification of the community structure [60,63,64,65,66] | |
Decreased abundance [61,67,68,69] | |
Predominance of tolerant and generalist taxa [65] | |
Biotic homogenization [68] | |
Modification of the distribution area [70] | |
Decreased water quality [71,72] | |
Droughts | Decreased wealth, abundance, and diversity [68,73] |
Predominance of tolerant taxa [68,73] | |
Alteration of wealth and abundance [74,75] | |
Biotic homogenization [76] | |
Changes in body size and feeding strategy [65] | |
Local extinctions [77] | |
Invasion of exotic species [77] | |
Decreased water quality [75] | |
Floods | Decreased wealth, abundance, and diversity [68,73,78,79,80,81] |
Decreased water quality [78,79] | |
Modification of composition, distribution, and abundance [74,82,83,84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinar-Herranz, S.; Velázquez, J.; Pérez-Andueza, G.; Çiçek, K.; Rincón, V. Aquatic Macroinvertebrates as Indicators of Climate Change in the Riparian Environments of the Mediterranean Region. Land 2025, 14, 521. https://doi.org/10.3390/land14030521
Espinar-Herranz S, Velázquez J, Pérez-Andueza G, Çiçek K, Rincón V. Aquatic Macroinvertebrates as Indicators of Climate Change in the Riparian Environments of the Mediterranean Region. Land. 2025; 14(3):521. https://doi.org/10.3390/land14030521
Chicago/Turabian StyleEspinar-Herranz, Samanta, Javier Velázquez, Guillermo Pérez-Andueza, Kerim Çiçek, and Víctor Rincón. 2025. "Aquatic Macroinvertebrates as Indicators of Climate Change in the Riparian Environments of the Mediterranean Region" Land 14, no. 3: 521. https://doi.org/10.3390/land14030521
APA StyleEspinar-Herranz, S., Velázquez, J., Pérez-Andueza, G., Çiçek, K., & Rincón, V. (2025). Aquatic Macroinvertebrates as Indicators of Climate Change in the Riparian Environments of the Mediterranean Region. Land, 14(3), 521. https://doi.org/10.3390/land14030521