A “Street Tree” Master Plan for the Strategic Management of Linear Reforestation and Urban Landscape Enhancement in Rome, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Brief History of Street Trees in Rome
2.3. Current Regulatory Context
2.4. Methodological Approach
- Classification of Trees by Dendrological Types: this process grouped the numerous recorded species and varieties into dendrological types, consolidating botanically or functionally similar species into broader categories (see Figure 3).
- Reclassification of Roads by the “Role” of Trees: roads were reorganized based on the landscape functions required of street trees, following a hierarchical scheme with four road types: R01: radial axes (consular roads), which historically serve as primary routes extending from the city center; R02: roads for the fast flow of traffic between neighborhoods, typically arranged in a ring-shaped layout; R03: “15-min urban axes”, which are the main streets within each district, supporting local accessibility and connectivity; and R04: residential neighborhood roads.
3. Interpretive Framework and Purposed Strategies for Rome STMP
3.1. Street Tree Assessement
3.2. Strategies for Street Tree Development
- (1)
- Consistency with the history and identity of places, taking into account the relationships with the urban architectural context. It also means that the replacement or integration of trees along existing rows should prioritize planting trees of the same species to maintain continuity, unless there is a clear opportunity for improvement or diversification, as outlined in Articles 18 and 19 of the Green Regulations of Rome [67].
- (2)
- Consistency with the morphological structure of the city: the tree-planting strategy should respect the city’s distinctive radial structure, defined by the main consular roads, the ring roads connecting neighborhoods, and the diverse urban fabrics. These include structuring axes, promenades, and local streets that provide access to residential areas.
3.3. Street Tree Master Plan as a Strategic Vision of the City
3.4. Guidelines and Criteria for Selecting Tree Species
- -
- First-class trees (i.e., trees of significant size): Celtis australis, Cupressus sempervirens, Fraxinus angustifolia, Pinus halepensis, Pinus pinaster, Pinus pinea, Populus alba, Populus nigra, Quercus ilex, Quercus suber.
- -
- Second-class trees (i.e., trees of minor size): Arbutus unedo, Ceratonia siliqua, Cercis siliquastrum, Chamaerops humilis, Ficus carica, Fraxinus ornus, Laurus nobilis, Olea europaea, Viburnum tinus.
4. Discussion
4.1. A Comparative Analysis Between Different STMPs
4.2. Limitations and Recommendations for Rome’s STMP
5. Conclusions
- The relationship between the network of street trees and the wooded areas within the city, parks, and other urban green spaces, in terms of green infrastructure.
- Consistency with overarching urban and landscape planning.
- Alignment with sector-specific plans related to mobility and sidewalk design, including the introduction of bike lanes and urban furniture.
- Consistency with the morphological structure of the city, considering the typology of streets and the landscape functions of trees (such as trees forming a green infrastructure along vehicle traffic roads or those arranged along pedestrian pathways).
- Consistency with the history and identity of places, taking into account historical factors as well as perceptual relationships with the urban architectural context (alignments, facade screening, perspective backdrops, etc.).
- The distribution of different species along the streets of various neighborhoods, providing support for species selection, which must balance two contrasting needs: on the one hand, promoting biodiversity, and on the other, preserving the historical and perceptual identity of streets characterized by dominant species.
- The selection of species, which must consider two sometimes conflicting factors: the use of native species, which have a distinct landscape identity, and the use of non-native species, which are more resistant to climate change.
- At a detailed scale, the plan translates into a landscape project, addressing contingent factors related to the design of public sidewalk spaces, where physical and spatial constraints often limit the ability of different tree species to develop in suitable growth sites.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blasi, C. Alberate Stradali e Infrastrutture Verdi. Italia Nostra. 2019. Available online: https://www.italianostraroma.org (accessed on 10 January 2025).
- Clemente, M. Rethinking “Streetline Forestscapes” in a Broader Context of Urban Forestry: In between Ecological Services and Landscape Design, with Some Evidence from Rome, Italy. Sustainability 2023, 15, 3435. [Google Scholar] [CrossRef]
- Barbati, A.; Corona, P.; Salvati, L.; Gasparella, L. Natural forest expansion into suburban countryside: Gained ground for a green infrastructure? Urban For. Urban Green. 2013, 12, 36–43. [Google Scholar] [CrossRef]
- Konijnendijk, C.C.; Nilsson, K.; Randrup, T.B.; Schipperijn, J. Urban Forests and Trees; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- FAO. Guidelines on Urban and Peri-Urban Forestry; Salbitano, F., Borelli, S., Conigliaro, M., Chen, Y., Eds.; FAO Forestry: Rome, Italy, 2016. [Google Scholar]
- Corona, P.; Alivernini, A. Forests for the world. Ann. Silvic. Res. 2024, 49, 80–81. [Google Scholar] [CrossRef]
- Arnaiz-Schmitz, C.; Schmitz, M.F.; Herrero-Jáuregui, C.; Gutiérrez-Angonese, J.; Pineda, F.D.; Montes, C. Identifying socio-ecological networks in rural-urban gradients: Diagnosis of a changing cultural landscape. Sci. Total Environ. 2018, 612, 625–635. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J. The increase of impervious cover and decrease of tree cover within urban areas globally (2012–2017). Urban Urban Green 2020, 49, 126638. [Google Scholar] [CrossRef]
- European Commission. Commission Staff Working Document, Technical information on Green Infrastructure (GI), SWD (2013) 155 Final. 2013. Available online: https://ec.europa.eu/environment/nature/ecosystems/docs/green_infrastructures/1_EN_autre_document_travail_service_part1_v2.pdf (accessed on 10 January 2025).
- Goudie, A.S. The Human Impact on the Natural Environment: Past, Present, and Future; Wiley: New York, NY, USA, 2013. [Google Scholar]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- World Health Organization. Urban Green Spaces and Health. A Review of Evidence; WHO Regional Office for Europe: Copenhagen, Denmark, 2016. [Google Scholar]
- Konijnendijk, C.C. Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: Introducing the 3–30–300 rule. J. For. Res. 2022, 34, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Scarascia-Mugnozza, G.E.; Guallart, V.; Salbitano, F.; Aalmo, G.O.; Boeri, S. (Eds.) Transforming BioCities: Designing Urban Spaces Inspired by Nature; Springer Nature: Cham, Switzerland, 2023; Volume 20. [Google Scholar]
- Mersal, A. Sustainable urban futures: Environmental planning for sustainable urban development. Procedia Environ. Sci. 2016, 34, 49–61. [Google Scholar] [CrossRef]
- MIPAFF. Strategia Forestale Nazionale. 2022. Available online: https://www.reterurale.it/foreste/StrategiaForestaleNazionale (accessed on 10 January 2025).
- City of Paris. Plan Biodiversit’e de Paris 2018–2024. (Biodiversity Plan of Paris 2018–2024). 2018. Available online: https://cdn.paris.fr/paris/2021/02/17/fbb551749cd3dabdf2b730d5f4097629.pdf (accessed on 10 January 2025).
- Gulsrud, N.M.; Hertzog, K.; Shears, I. Innovative urban forestry governance in Melbourne?: Investigating “green placemaking” as a nature-based solution. Environ. Res. 2018, 161, 158–167. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plann. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Zairuddin, N.S.; Othman, N.; Malek, N.A. Sustainable Urban Streetscape: Managing trees as green infrastructure. Asian J. Behav. Stud. 2020, 5, 45–57. [Google Scholar] [CrossRef]
- Childers, D.L.; Pickett, S.T.A.; Grove, J.M.; Ogden, L.; Whitmer, A. Advancing urban sustainability theory and action: Challenges and opportunities. Landsc. Urban Plann. 2013, 125, 298–303. [Google Scholar] [CrossRef]
- Niemelä, J. Ecology of urban green spaces: The way forward in answering major research questions. Landsc. Urban Plann. 2014, 125, 298–303. [Google Scholar] [CrossRef]
- Weissert, L.F.; Salmond, J.A.; Schwendenmann, L. A review of the current progress in quantifying the potential of urban forests to mitigate urban CO2 emissions. Urban Clim. 2014, 8, 100–125. [Google Scholar] [CrossRef]
- Metta, A.; Olivetti, M.L. Cities Facing the Wild. In Urban Services to Ecosystems. Future City; Catalano, C., Andreucci, M.B., Guarino, R., Bretzel, F., Leone, M., Pasta, S., Eds.; Springer: Cham, Switzerland, 2021; Volume 17. [Google Scholar] [CrossRef]
- Colding, J. The role of ecosystem services in contemporary urban planning. In Urban Ecology–Patterns, Processes, and Applications; Niemelä, J., Breuste, J., Elmqvist, T., Guntenspergen, G., James, P.P., McIntyre, N., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 228–237. [Google Scholar]
- Galle, N.J.; Halpern, D.; Nitoslawski, S.; Duarte, F.; Ratti, C.; Pilla, F. Mapping the diversity of street tree inventories across eight cities internationally using open data. Urban For. Urban Green. 2021, 61, 127099. [Google Scholar] [CrossRef]
- Ignatieva, M.; Stewart, G.H.; Meurk, C. Planning and design of ecological networks in urban areas. Landsc. Ecol. Eng. 2011, 7, 17–25. [Google Scholar] [CrossRef]
- Egerer, M.; Schmack, J.M.; Vega, K.; Barona, C.O.; Raum, S. The challenges of urban street trees and how to overcome them. Front. Sustain. Cities 2024, 6, 1394056. [Google Scholar] [CrossRef]
- McPherson, E.G. Benefit-based tree valuation. Arboric. Urban For. 2007, 33, 1–11. [Google Scholar] [CrossRef]
- Walmsley, A. Greenways: Multiplying and diversifying in the 21st century. Landsc. Urban Plan. 2006, 76, 252–290. [Google Scholar] [CrossRef]
- Nesbitt, L.; Meitner, M.J.; Sheppard, S.R.J.; Girling, C. The dimensions of urban green equity: A framework for analysis. Urban For. Urban Green. 2018, 34, 240–248. [Google Scholar] [CrossRef]
- Caneva, G.; Bartoli, F.; Zappitelli, I.; Savo, V. Street trees in italian cities: Story, biodiversity and integration within the urban environment. Rend. Lincei. Sci. Fis. Naturali. 2020, 31, 411–417. [Google Scholar] [CrossRef]
- Carmona, M. Contemporary public space, part two: Classification. J. Urban Des. 2010, 15, 157–173. [Google Scholar] [CrossRef]
- MacHarg, I. Design with Nature, 25th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA; New York, NY, USA, 1995. [Google Scholar]
- Evans, G. Accessibility, urban design and the whole journey environment. Built Environ. 2009, 35, 366–385. [Google Scholar] [CrossRef]
- Ewing, R.; Clemente, O. Measuring Urban Design: Metrics for Livable Places; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Laurian, L. Planning for street trees and human–nature relations: Lessons from 600 years of street tree planting in Paris. J. Plan. Hist. 2019, 18, 282–310. [Google Scholar] [CrossRef]
- Lachowycz, K.; Jones, A.P. Towards a better understanding of the relationship between green space and health: Development of a theoretical framework. Landsc. Urban Plann. 2013, 118, 62–69. [Google Scholar] [CrossRef]
- Panagopoulos, T.; González Duque, J.A.; Bostenaru, D.M. Urban planning with respect to environmental quality and human wellbeing. Environ. Pollut. 2016, 208, 137–144. [Google Scholar] [CrossRef]
- Westphal, L.M. Social aspects of urban forestry: Urban greening and social benefits: A study of empowerment outcomes. J. Arboric. 2003, 29, 137–147. [Google Scholar]
- Clemente, M. Re-Design dello Spazio Pubblico; FrancoAngeli: Milano, Italy, 2017. [Google Scholar]
- Fonseca, F.; Ribeiro, P.J.G.; Conticelli, E.; Jabbari, M.; Papageorgiou, G.; Tondelli, S.; Ramos, R.A.R. Built environment attributes and their influence on walkability. Int. J. Sustain. Transp. 2021, 16, 660–679. [Google Scholar] [CrossRef]
- Caravaggi, L.; Imbroglini, C.; Lei, A. Rome’s GRAB—Great Bicycle Ring Route—As Complex Landscape Infrastructure. Sustainability 2022, 14, 1023. [Google Scholar] [CrossRef]
- Ortega, E.; Martín, B.; López-lambas, M.E.; Soria-lara, J.A. Evaluating the impact of urban design scenarios on walking accessibility: The case of the Madrid ‘Centro’ district. Sustain. Cities Soc. 2021, 74, 103156. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Blasi, C.; Zavattero, L.; Marignani, M.; Smiraglia, D.; Copiz, R.; Rosati, L.; Del Vico, E. The concept of land ecological network and its design using a land unit approach. Plant Biosyst. 2008, 142, 540–549. [Google Scholar] [CrossRef]
- Bryant, M.M. Urban landscape conservation and the role of ecological greenways at local and metropolitan scales. Landsc. Urban Plan. 2006, 76, 23–244. [Google Scholar] [CrossRef]
- Trees and Design Action Group. Trees in Hard Landscapes: A Guide for Delivery. 2014. Available online: https://www.tdag.org.uk/ (accessed on 15 December 2024).
- City of Vancouver, 2020. Street Trees. Available online: https://opendata.vancouver.ca/explore/dataset/public-trees/map/?disjunctive.neighbourhood_name&disjunctive.on_street&disjunctive.species_name&disjunctive.common_name&location=11,49.2565,-123.12999 (accessed on 2 February 2025).
- City of Sydney, Street Tree Master Plan, 2023. Available online: https://www.cityofsydney.nsw.gov.au/strategies-action-plans/street-tree-master-plan (accessed on 2 February 2025).
- New York City, Street Tree Map. Available online: https://tree-map.nycgovparks.org/ (accessed on 22 April 2024).
- Elliott, R.M.; Shetty, N.H.; Culligan, P.J. From a Census of 680,000 Street Trees to Smart Stormwater Management: A Study of Efficacy and Economics of Street Tree Guards in New York City; Civil Engineering and Engineering Mechanics, Columbia University: New York, NY, USA, 2018. [Google Scholar]
- Vauléon, Y. A Master Plan for Planting Trees in Paris. 2022. Available online: https://wien.arbeiterkammer.at/interessenvertretung/meinestadt/veranstaltungen/YVauleon_16.5.2022.pdf (accessed on 10 January 2025).
- Chakraborty, T.; Lee, X. Global UHI Data Table. Mendeley Data, V1. 2018. Available online: https://data.mendeley.com/datasets/h9pfd42fv9/1 (accessed on 2 February 2025).
- Ziter, C.D.; Pedersen, E.J.; Kucharik, C.J.; Turner, M.G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. USA 2019, 116, 7575–7580. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef]
- Stiles, R.; Bouche-Pillon, S.; Brinkhuijsen, M.; de Vries, J.; Di Carlo, F.; Fetzer, E.; Libbrecht, H.; Maksymiuk, G.; Meeres, S.; Meireles Rodrigues, F. (Eds.) Rome’s Landscape; Le:Notre Landscape Forum: Tartu, Estonia, 2013. [Google Scholar]
- Frondoni, R.; Mollo, B.; Capotorti, G. A landscape analysis of land cover change in the municipality of Rome (Italy): Spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landsc. Urban Plan. 2011, 100, 117–128. [Google Scholar] [CrossRef]
- Quatrini, V.; Tomao, A.; Corona, P.; Ferrari, B.; Masini, E.; Agrimi, M. Is new always better than old? Accessibility and usability of the urban green areas of the municipality of Rome. Urban For. Urban Green. 2019, 37, 126–134. [Google Scholar] [CrossRef]
- Ferrari, B.; Quatrini, V.; Barbati, A.; Corona, P.; Masini, E.; Russo, D. Conservation and enhancement of the green infrastructure as a nature-based solution for Rome’s sustainable development. Urban Ecosyst. 2019, 22, 865–878. [Google Scholar] [CrossRef]
- Tomao, A.; Secondi, L.; Carrus, G.; Corona, P.; Portoghesi, L.; Agrimi, M. Restorative urban forests: Exploring the relationships between forest stand structure, perceived restorativeness and benefits gained by visitors to coastal Pinus pinea forests. Ecol. Indic. 2018, 90, 594–605. [Google Scholar] [CrossRef]
- Attorre, F.; Bruno, M.; Francesconi, F.; Valenti, R.; Bruno, F. Landscape changes of Rome through tree-lined roads. Landsc. Urban Plan. 2000, 49, 115–128. [Google Scholar] [CrossRef]
- Ricotta, C.; Grapow, L.C.; Avena, G.; Blasi, C. Topological analysis of the spatial distribution of plant species richness across the city of Rome (Italy) with the echelon approach. Landsc. Urban Plan. 2001, 57, 69–76. [Google Scholar] [CrossRef]
- Corona, P.; Clemente, M.; Alivernini, A.; Degaetano, M.; Di Stefano, V.; Ferrara, C.; Mattioli, W.; Mmenta, F.; Presutti Saba, E.; Pontuale, G.; et al. Analisi e Strategie per la Riqualificazione delle Alberature Stradali di Roma Capitale, Comune di Roma, Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria. Roma. 2024. Available online: https://www.crea.gov.it/en/web/foreste-e-legno/-/foreste-urbane-riqualificazione-delle-alberature-stradali-di-roma-capitale (accessed on 2 February 2025).
- Comune di Roma, 2021. Regolamento Capitolino del Verde Pubblico e Privato e del Paesaggio Urbano di Roma Capitale. Approvato con Deliberazione dell’Assemblea Capitolina n. 17 del 12 marzo 2021. Available online: https://www.comune.roma.it/web-resources/cms/documents/DAC_n._17_2021_Regol_Verde.pdf (accessed on 17 January 2025).
- Frohmann, E. Trees in the city—Perception and aesthetic expression. In Plants in Urban Areas and Landscape: Pual; Slovak University of Agriculture in Nitra: Nitra, Slovakia, 2020; pp. 3–9. [Google Scholar]
- Parsons, R.; Terry, D. Good looking: In defense of scenic landscape aesthetics. Landsc. Urban Plan. 2002, 60, 43–56. [Google Scholar] [CrossRef]
- Devi, A.; Bala, N.; Saikia, J. Residents’ perceptions and attitudes towards street trees in urban residential areas of Guwahati City, Assam. Int. J. Environ. Sci. Nat. Res. 2023, 29, 1–10. [Google Scholar] [CrossRef]
- Byrne, J.A.; Lo, A.Y.; Jianjun, Y. Residents’ understanding of the role of green infrastructure or climate change adaptation in Hangzhou, China. Landsc. Urban Plan. 2015, 138, 132–143. [Google Scholar] [CrossRef]
- Clemente, M. Street Tree Redevelopment in Rome’s Historical Landscapes: From Strategic Vision to Streetscape Design. Land 2025, 14, 233. [Google Scholar] [CrossRef]
- Corner, J. Recovering Landscape: Essays in Contemporary Landscape Architecture, 1st ed.; Princeton Architectural Press: New York, NY, USA, 1999. [Google Scholar]
- Esperon-Rodriguez, M.; Tjoelker, M.G.; Lenoir, J.; Baumgartner, J.B.; Beaumont, L.J.; Nipperess, D.A.; Power, S.A.; Richard, B.; Rymer, P.D.; Gallagher, R.V. Climate change increases global risk to urban forests. Nat. Clim. Chang. 2022, 12, 951–955. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- D’Amato, L.; Bartoli, F.; Savo, V.; Paiella, P.A.; Messina, F.; Caneva, G. Distribution Pattern of Urban Street Trees in Rome (Italy): A Multifactorial Evaluation of Selection Criteria. Sustainability 2023, 15, 14065. [Google Scholar] [CrossRef]
- McPhearson, T.; Pickett, S.T.A.; Grimm, N.B.; Niemela, J.; Alberti, M.; Elmqvist, T.; Weber, C.; Haase, D.; Breuste, J.; Qureshi, S. Advancing urban ecology toward a science of cities. BioScience 2016, 66, 198–212. [Google Scholar] [CrossRef]
- Peng, J.; Tian, L.; Liu, Y.; Zhao, M.; Wu, J. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 2017, 607, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Bourassa, S.C. A paradigm for landscape aesthetics. Environ. Behav. 1990, 22, 787–812. [Google Scholar] [CrossRef]
- Gobster, P.H.; Nassauer, J.I.; Daniel, T.C.; Fry, G. The shared landscape: What does aesthetics have to do with ecology? Landsc. Ecol. 2007, 2, 959–972. [Google Scholar] [CrossRef]
- Ruper, R. Landscape and Urban Planning Evaluations of landscape preference, complexity, and coherence for designed digital landscape models. Landsc. Urban Plan. 2017, 157, 407–421. [Google Scholar]
- Bianchini, L.; Egidi, G.; Alhuseen, A.; Sateriano, A.; Cividino, S.; Clemente, M.; Imbrenda, V. Toward a Dualistic Growth? Pop-609 ulation Increase and Land-Use Change in Rome, Italy. Land 2021, 10, 749. [Google Scholar] [CrossRef]
- Ferrini, F. Greening the city. La scelta delle specie. Ri-Vista. Res. Landsc. Archit. 2017, 15, 60–71. [Google Scholar] [CrossRef]
- Regione Lazio, 2022. Linee Guida alla Scelta di Specie Arboree e Arbustive da Utilizzare Negli Interventi di Forestazione Urbana e Periurbana nel Territorio della Regione Lazio Approvate con Determinazione n. G14103 del 17 Novembre 2021. Available online: https://progetti.regione.lazio.it/ossigeno/wp-content/uploads/sites/62/DD-Linee-Guida-scelta-di-specie-arboree-e-arbustive.pdf (accessed on 10 January 2025).
- Roman, L.A.; Scyphers, S.B.; Rogan, J. Drivers of tree distribution in an urban ecosystem. Landsc. Urban Plan. 2015, 136, 87–95. [Google Scholar] [CrossRef]
- Referowska-Chodak, E. Urban tree biodiversity: A strategy for sustainable development. Sustain. For. 2019, 11, 916. [Google Scholar] [CrossRef]
- Sjöman, H.; Watkins, H.; Kelly, L.J.; Hirons, A.; Kainulainen, K.; Martin, K.W.; Antonelli, A. Resilient trees for urban environments: The importance of intraspecific variation. Plants People Planet 2024, 6, 1180–1189. [Google Scholar] [CrossRef]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; Macintyre, H.; et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 2016, 15 (Suppl. S1), 36. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; McPherson, E.G. Surface water storage capacity of twenty tree species in Davis, California. J. Environ. Qual. 2016, 45, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Mullaney, J.; Lucke, T.; Trueman, S.J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 2015, 134, 157–166. [Google Scholar] [CrossRef]
- Fernandes, C.; Martinho da Silvaa, I.; Patoilo Teixeiraa, C.; Costa, L. Between tree lovers and tree haters. Drivers of public perception regarding street trees and its implications on the urban green infrastructure planning. Urban For. Urban Green. 2019, 37, 97–108. [Google Scholar] [CrossRef]
- Blasi, C.; Biondi, E. La Flora in Italia. Ministero dell’Ambiente e della Tutela del Territorio e del Mare; Sapienza Università Editrice: Roma, Italy, 2017. [Google Scholar]
- Del Vico, E.; Capotorti, G.; Lattanzi, E.; Tilia, A.; Blasi, C. La flora urbana. In Strategia Nazionale del Verde Urbano; Atelli, M., Blasi, C., Boldini, G., Cignini, B., Cosenza, G., Emiliani, V., Marchetti, M., Maggiore, A.M., Pericoli, T., Ricciardi, A., et al., Eds.; MATTM: Roma, Italy, 2018. [Google Scholar]
- Ville de Paris, Plan_biodiversité_de_Paris_2018–2024. Available online: https://www.paris.fr/pages/un-nouveau-plan-biodiversite-pour-paris-5594 (accessed on 10 January 2025).
- London Tree Map. Available online: https://www.london.gov.uk/programmes-and-strategies/environment-and-climate-change/parks-green-spaces-and-biodiversity/trees-and-woodlands/london-tree-map?ac-37687=37686 (accessed on 10 January 2025).
- Madden, K. How to Turn a Place Around: A Placemaking Handbook; Project for Public Space: New York, NY, USA, 2018. [Google Scholar]
- Santos, T.; Silva, C.; Tenedório, J.A. Promoting citizens’ quality of life through Green Urban Planning. In Geographical Information Systems Theory, Applications and Management, Communications in Computer and Information Science; Ragia, L., Laurini, R., Rocha, J.G., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 153–175. [Google Scholar]
- Zairuddin, N.S.; Othman, N.; Abdul Malek, N. A Review on Tree Sensitive Urban Design (TSUD) Approach as potentials Streetscape Design Guidelines. Environ.-Behav. Proc. J. 2020, 5, 215–221. [Google Scholar] [CrossRef]
Type | Species Related to the Grouping | Total Consistency Number of Trees (%) | Street Tree Consistency Number of trees (%) |
---|---|---|---|
T01 Acer | Acer campestre, A. globosum, A. negundo, A. palmatum, A. platanoides, A. pseudoplatanus, Acer spp. | 13.352 (4.2%) | 7.703 (6.4%) |
T02 Cupressus | Cupressus arizonica, C. macrocarpa, C. sempervirens | 12.752 (4.6) | 2.080 (1.7%) |
T03 Ligustrum | Ligustrum aureum, L. japonicum, L. japonicum variegatum, L. lucidum, L. ovalifolium | 18.171 (5.8%) | 11.661 (9.6%) |
T04 Pinus | P. excelsa, P. halepensis, P. nigra, P. pinaster, P. pinea | 51.512 (16.4%) | 14.199 (11.7%) |
T05 Platanus | Platanus hybrida | 21.153 (6.7%) | 14.850 (12.3%) |
T06 Prunus | Malus domestica, M. floribunda, Prunus accolade, P. avium, P. cerasus, P. hisakura, P. pissardi nigra, P. serrulata Kanzan, Prunus spp., Pyrus calleryana chanticleer, Py. pyraster | 16.079 (5.1%) | 10.060 (8.3%) |
T07 Quercus | Quercus ilex, Q. leucotrichophora, Q. nigra, Q. palustris, Q. pubescens, Q. robur, Q. robur fastigiata, Q. rubra, Q. suber, Quercus spp. | 39.059 (12.4%) | 8.623 (7.1%) |
T08 Robinia | Gleditsia triacanthos, Robinia hispida rosea, R. pseud. bessoniana, R. pseud. monophylla, R. pseud. pyramidalis, R. pseud. umbraculifera R. pseudoacacia, Robinia spp. | 30.410 (9.7%) | 7.834 (6.5%) |
T09 Tilia | Tilia americana, T. americana/cordata, T. cordata, T. europaea, T. europaea/cordata, T. hybrida, T. tomentosa, Tilia spp. | 15.776 (5%) | 9.206 (7.6%) |
T10 Ulmus | Ulmus americana, U. campestris, U. carpinifolia, U. columella, U. pumila, Ulmus spp. | 14.912 (4.75) | 3.299 (2.7%) |
T11 Other conifers | Araucaria embricata, Cedrus atlantica, C. deodara, C. libani, Picea abies, Sequoia sempervirens, Thuja occidentalis, Th. orientalis | 5.983 (1.9%) | 390 (0.3%) |
T12 Other evergreen broadleaves | Acacia dealbata, A. decurrens, A. julibrissin, Brachychiton platanifolia, Casuarina torulosa, Cinnamomum camphora, Eucalyptus amygdalina, E. camaldulensis, E. globulus, Grevillea robusta, Magnolia grandiflora, M. kobus, Melia azedarach, Persea gratissima, Schinus molle | 11.381 (3.6%) | 2.286 (1.9%) |
T13 Other broadleaf deciduous trees | Aesculus carnea, Ae. hippocastanum, Ailanthus altissima, Betula alba, Broussonetia papyrifera, Carpinus betulus, Catalpa bignonioides, C. bungei, Celtis australis, Fagus pendula, F. sylvatica, Fraxinus angustifolia, F. excelsior, F. ornus, F. ornus/angustifolia, Ginkgo biloba, Juglans regia, Koelreuteria paniculata, Liquidambar styraciflua, Morus alba, Parrotia persica, Paulownia imperialis, P. tomentosa, Populus alba, P. canadensis, P. nigra italica, Salix babylonica, Sophora japonica, Sterculia platanifolia | 21.845 (6.9%) | 5.611 (4.6%) |
T14 Palms and similar species | Butia capitata, Chamaerops excelsa, Ch. humilis, Cocos nucifera, Cordyline australis, Eritrea armata, Phoenix canariensis, Ph. dactylifera, Ph. Jubae, Ph. roebelenii, Trachycarphus excelsa, Washingtonia filifera, W. robusta, Yucca elephantipes, Y. gloriosa | 4.254 (1.3%) | 435 (0.4%) |
T15 Other small trees | Albizia julibrissin, Arbutus unedo, Bauhinia purpurea, Ceratonia siliqua, Cercis siliquastrum, Citrus aurantium, C. limon, C. nobilis, C. sinensis, Corylus avellana, Crataegus lavallei “carrierei”, C. monogyna, C. oxyacantha, Eriobotrya japonica, Ficus carica, Hibiscus syriacus, Juniperus chinensis, Lagerstroemia indica, Laurus nobilis, Liriodendron tulipifera, Mespilus germanica, Nerium oleander, Olea europaea, Osmanthus fragrans, Photinia x fraseri “Red Robin”, Pittosphorum tobira, Punica granatum, Pyracantha coccinea, Taxus baccata, Viburnum tinus | 37.594 (12%) | 22.672 (18.8%) |
Total | 314.233 | 120.909 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clemente, M.; Pignatti, G.; Degaetano, M.; Corona, P. A “Street Tree” Master Plan for the Strategic Management of Linear Reforestation and Urban Landscape Enhancement in Rome, Italy. Land 2025, 14, 606. https://doi.org/10.3390/land14030606
Clemente M, Pignatti G, Degaetano M, Corona P. A “Street Tree” Master Plan for the Strategic Management of Linear Reforestation and Urban Landscape Enhancement in Rome, Italy. Land. 2025; 14(3):606. https://doi.org/10.3390/land14030606
Chicago/Turabian StyleClemente, Matteo, Giuseppe Pignatti, Marco Degaetano, and Piermaria Corona. 2025. "A “Street Tree” Master Plan for the Strategic Management of Linear Reforestation and Urban Landscape Enhancement in Rome, Italy" Land 14, no. 3: 606. https://doi.org/10.3390/land14030606
APA StyleClemente, M., Pignatti, G., Degaetano, M., & Corona, P. (2025). A “Street Tree” Master Plan for the Strategic Management of Linear Reforestation and Urban Landscape Enhancement in Rome, Italy. Land, 14(3), 606. https://doi.org/10.3390/land14030606