Predicting Suitable Spatial Distribution Areas for Urban Trees Under Climate Change Scenarios Using Species Distribution Models: A Case Study of Michelia chapensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Significance of Michelia chapensis
2.2. Distribution Data
2.3. Climate Data
2.4. Constructing Species Distribution Models
2.5. Model Visualization
3. Results
3.1. Model Evaluation and Variable Contribution
3.2. Distribution of Suitable Areas Under Current Climate Conditions
3.3. Prediction of Suitable Areas Under Future Climate Scenarios
3.4. Change in Suitable Distribution Areas and Changes in Centroid Under Different Climate Scenarios
4. Discussion
4.1. Overall Model Evaluation
4.2. Analysis of Species Suitable Area Evolution
4.3. Exploration of Urban Forest Management and Administration
4.4. Research Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maleknia, R.; Enescu, R.E. Does Climate Change Stimulate Citizens’ Responses to Conserving Urban Forest? Insights from Stimulus-Organism-Response Theory. Ecol. Model. 2025, 501, 111000. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- McCulloch, M.T.; Winter, A.; Sherman, C.E.; Trotter, J.A. 300 Years of Sclerosponge Thermometry Shows Global Warming Has Exceeded 1.5 °C. Nat. Clim. Change 2024, 14, 171–177. [Google Scholar] [CrossRef]
- Dong, L.; Xing, X.Y. Research Review on the Impact of Climate Change on Urban Vegetation. Landsc. Archit. 2021, 28, 61–67. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon Storage and Sequestration by Trees in Urban and Community Areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef]
- Livesley, S.J.; McPherson, G.M.; Calfapietra, C. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Nowak, D.J. Spatial and Air Pollution Removal by an Urban Forest. Landsc. Urban Plann. 2009, 90, 102–110. [Google Scholar] [CrossRef]
- Sicard, P.; Agathokleous, E.; Araminiene, V.; Carrari, E.; Hoshika, Y.; De Marco, A.; Paoletti, E. Should We See Urban Trees As Effective Solutions to Increasing Ozone Levels in Cities? Environ. Pollut. 2018, 243, 163–176. [Google Scholar] [CrossRef]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; MacIntyre, H.; et al. Health and Climate Related Ecosystem Services Provided by Street Trees in the Urban Environment. Environ. Health 2016, 15, 95–111. [Google Scholar] [CrossRef]
- Sydnor, T.; Subburayalu, S. Should We Consider Expected Environmental Benefits When Planting Larger or Smaller Tree Species? Arboric. Urban For. 2011, 37, 167–172. [Google Scholar] [CrossRef]
- Mullaney, J.; Lucke, T.; Trueman, S.J. A Review of Benefits and Challenges in Growing Street Trees in Paved Urban Environments. Landsc. Urban Plann. 2015, 134, 157–166. [Google Scholar] [CrossRef]
- Qu, S.; Wang, L.; Lin, A.; Yu, D.; Yuan, M.; Li, C. Distinguishing the Impacts of Climate Change and Anthropogenic Factors on Vegetation Dynamics in the Yangtze River Basin, China. Ecol. Indic. 2020, 108, 105724. [Google Scholar] [CrossRef]
- Corlett, R.T.; Westcott, D.A. Will Plant Movements Keep up with Climate Change? Trends Ecol. Evol. 2013, 28, 482–488. [Google Scholar] [CrossRef]
- Ordóñez, C.; Duinker, P.N. Assessing the Vulnerability of Urban Forests to Climate Change. Environ. Rev. 2014, 22, 311–321. [Google Scholar] [CrossRef]
- Locosselli, G.M.; de Camargo, E.P.; Moreira, T.C.L.; Todesco, E.; Andrade, M.d.F.; de André, C.D.S.; de André, P.A.; Singer, J.M.; Ferreira, L.S.; Saldiva, P.H.N.; et al. The Role of Air Pollution and Climate on the Growth of Urban Trees. Sci. Total Environ. 2019, 666, 652–661. [Google Scholar] [CrossRef]
- Guan, X.; Shen, H.; Li, X.; Gan, W.; Zhang, L. A Long-Term and Comprehensive Assessment of the Urbanization-Induced Impacts on Vegetation Net Primary Productivity. Sci. Total Environ. 2019, 669, 342–352. [Google Scholar] [CrossRef]
- Casazza, G.; Abeli, T.; Bacchetta, G.; Dagnino, D.; Fenu, G.; Gargano, D.; Minuto, L.; Montagnani, C.; Orsenigo, S.; Peruzzi, L.; et al. Combining Conservation Status and Species Distribution Models for Planning Assisted Colonization under Climate Change. J. Ecol. 2021, 109, 2284–2295. [Google Scholar] [CrossRef]
- Gülçin, D.; Arslan, E.S.; Örücü, Ö.K. Effects of Climate Change on the Ecological Niche of Common Hornbeam (Carpinus Betulus L.). Ecol. Inform. 2021, 66, 101478. [Google Scholar] [CrossRef]
- Yousefzadeh, H.; Walas, Ł.; Amirchakhmaghi, N.; Alipour, S.; Pouramin, M.; Song, Y.-G.; Kozlowski, G. Potential Effects of Climate Change on Future Distribution of an Endangered Tree Species, Acer Mazandaranicum, in the Hyrcanian Forest. For. Ecol. Manag. 2024, 555, 121654. [Google Scholar] [CrossRef]
- Taleshi, H.; Jalali, S.G.; Alavi, S.J.; Hosseini, S.M.; Naimi, B.; Zimmermann, N.E. Climate Change Impacts on the Distribution and Diversity of Major Tree Species in the Temperate Forests of Northern Iran. Reg. Environ. Change 2019, 19, 2711–2728. [Google Scholar] [CrossRef]
- Arslan, E.S.; Akyol, A.; Örücü, Ö.K.; Sarıkaya, A.G. Distribution of Rose Hip (Rosa Canina L.) under Current and Future Climate Conditions. Reg. Environ. Change 2020, 20, 107. [Google Scholar] [CrossRef]
- Çoban, H.O.; Örücü, Ö.K.; Arslan, E.S. MaxEnt Modeling for Predicting the Current and Future Potential Geographical Distribution of Quercus Libani Olivier. Sustainability 2020, 12, 2671. [Google Scholar] [CrossRef]
- Anibaba, Q.A.; Dyderski, M.K.; Jagodziński, A.M. Predicted Range Shifts of Invasive Giant Hogweed (Heracleum Mantegazzianum) in Europe. Sci. Total Environ. 2022, 825, 154053. [Google Scholar] [CrossRef]
- Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests 2019, 10, 989. [Google Scholar] [CrossRef]
- Maphanga, T.; Shoko, C.; Sibanda, M.; Kavhu, B.; Coetsee, C.; Dube, T. Bush Encroachment with Climate Change in Protected and Communal Areas: A Species Distribution Modelling Approach. Ecol. Model. 2025, 503, 111056. [Google Scholar] [CrossRef]
- Kim, J.; Lee, D.K.; Kim, H.G. Suitable Trees for Urban Landscapes in the Republic of Korea under Climate Change. Landsc. Urban Plan. 2020, 204, 103937. [Google Scholar] [CrossRef]
- Bai, J.; Wang, H.; Yang, D. Identification of Urban Trees at Risk Due to Climate Change- A Case Study of Tianjin City. Ecol. Indic. 2024, 167, 112611. [Google Scholar] [CrossRef]
- Song, H.; Zhang, X.; Wang, X.; Wang, Y.; Li, S.; Xu, Y. Not the Expected Poleward Migration: Impact of Climate Change Scenarios on the Distribution of Two Endemic Evergreen Broad-Leaved Quercus Species in China. Sci. Total Environ. 2023, 889, 164273. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, X.; Wei, H.; Wang, D.; Chen, R.; Wang, L.; Gu, W. Predicting the Invasive Trend of Exotic Plants in China Based on the Ensemble Model under Climate Change: A Case for Three Invasive Plants of Asteraceae. Sci. Total Environ. 2021, 756, 143841. [Google Scholar] [CrossRef]
- Yang, W.; Sun, S.; Wang, N.; Fan, P.; You, C.; Wang, R.; Zheng, P.; Wang, H. Dynamics of the Distribution of Invasive Alien Plants (Asteraceae) in China under Climate Change. Sci. Total Environ. 2023, 903, 166260. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How Much Does Climate Change Threaten European Forest Tree Species Distributions? Glob. Change Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef]
- Zhang, P.; Dong, X.; Grenouillet, G.; Lek, S.; Zheng, Y.; Chang, J. Species Range Shifts in Response to Climate Change and Human Pressure for the World’s Largest Amphibian. Sci. Total Environ. 2020, 735, 139543. [Google Scholar] [CrossRef]
- Biber, M.F.; Voskamp, A.; Hof, C. Potential Effects of Future Climate Change on Global Reptile Distributions and Diversity. Glob. Ecol. Biogeogr. 2023, 32, 519–534. [Google Scholar] [CrossRef]
- Xie, D.; Du, H.; Xu, W.-H.; Ran, J.-H.; Wang, X.-Q. Effects of Climate Change on Richness Distribution Patterns of Threatened Conifers Endemic to China. Ecol. Indic. 2022, 136, 108594. [Google Scholar] [CrossRef]
- Li, G.; Xiao, N.; Luo, Z.; Liu, D.; Zhao, Z.; Guan, X.; Zang, C.; Li, J.; Shen, Z. Identifying Conservation Priority Areas for Gymnosperm Species under Climate Changes in China. Biol. Conserv. 2021, 253, 108914. [Google Scholar] [CrossRef]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.T.; Regan, T.J.; Brotons, L.; Mcdonald-Madden, E.; Mantyka-Pringle, C.; et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, Z.; Li, Z.; Liu, Y.; Fang, S. Predictive Modeling of Suitable Habitats for Cinnamomum Camphora (L.) Presl Using Maxent Model under Climate Change in China. Int. J. Environ. Res. Public Health 2019, 16, 3185. [Google Scholar] [CrossRef]
- Martínez-Minaya, J.; Cameletti, M.; Conesa, D.; Pennino, M.G. Species distribution modeling: A statistical review with focus in spatio-temporal issues. Stoch. Environ. Res. Risk Assess. 2018, 32, 3227–3244. [Google Scholar] [CrossRef]
- Araújo, M.B.; New, M. Ensemble Forecasting of Species Distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef]
- Dormann, C.F.; Calabrese, J.M.; Guillera-Arroita, G.; Matechou, E.; Bahn, V.; Bartoń, F.; Hartig, F. Model Averaging in Ecology: A Review of Bayesian, Information-Theoretic and Tactical Approaches. Ecol. Monogr. 2018, 88, 485–504. [Google Scholar] [CrossRef]
- Friedman, J.H.; Popescu, B.E. Predictive Learning via Rule Ensembles. Ann. Appl. Stat. 2008, 2, 916–954. [Google Scholar] [CrossRef]
- Seni, G.; Elder, J.F. Ensemble Methods in Data Mining: Improving Accuracy through Combining Predictions. Synth. Lect. Data Min. Knowl. Discov. 2010, 2, 1–126. [Google Scholar] [CrossRef]
- Xiaochang, L.; Renlu, Q.; Xiuning, Z. Dissecting the Nonlinear Economic Implications of Urban Extreme Thermo-Environment Using a Monte Carlo Simulation-Based Ensemble Learning Model. Habitat Int. 2025, 156, 103274. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Z.; Zhu, Z.; Qiao, R. Decoupling the Multi-Drivers of Urban Extreme Heat Environment in Urban Agglomerations Using Ensemble Learning. Build. Environ. 2024, 258, 111618. [Google Scholar] [CrossRef]
- Shen, G.F. Silviculture Technique for the Principal Tree Species of China, 2nd ed.; Chinese Forestry Press: Beijing, China, 2020; pp. 714–716. [Google Scholar]
- Zhou, H.; Wei, R.; Li, J.; Su, Y.; Hu, D.; Zheng, H. Research Progress on the Cultivation and Development of Michelia chapensis. China Wild Plant Resour. 2022, 41, 61–66. [Google Scholar]
- LY/T 2208-2013; Cultivation Technology Regulations for Michelia Chapensis. Standards Press of China: Beijing, China, 2013.
- DB52/T 1167-2017; Technical Regulations for Cultivation of Michelia, L. Michelia chapesis Dandy. Guizhou Provincial Market Supervision Administration: Guizhou, China, 2017.
- Shaoguan Forestry Bureau. Notice on the Synchronous Application for the 2025 Special Fund Project Library to Promote High-Quality and Stable Growth of Foreign Trade on the “Yuecai Assistance” Platform. Shaoguan Municipal People’s Government Portal. 8 August 2024. Available online: https://www.sg.gov.cn/bmpdlm/swj/tzgg/content/post_2656800.html (accessed on 4 March 2025).
- Quanzhou Municipal People’s Government. Notice on Issuing the Implementation Plan for the Reform of the Administrative Approval System in Quanzhou City. Quanzhou Municipal People’s Government Portal. 4 January 2019. Available online: https://www.quanzhou.gov.cn/zfb/xxgk/zfxxgkzl/zxwj/xsqwj/201901/t20190104_1007015.htm (accessed on 4 March 2025).
- Wu, Z.Y. Flora of China; Science Press: Beijing, China, 1996; Volume 30, p. 151, No. 1. [Google Scholar]
- Yang, X.Z. Michelia chapensis Afforestation Experiment and Effect Analysis. J. Fujian For. Sci. Technol. 2011, 38, 84–87. [Google Scholar]
- Ye, H.; Tan, B.; Wang, Y.; Xie, Y.; Deng, T.; Xie, D.; Zhang, D. Four New Records of Woody Plants in Hubei and Their Resource Status. Acta Bot. Boreali-Occid. Sin. 2020, 40, 895–898. [Google Scholar]
- Zhu, Y.L.; Zhang, J. Flowering and Pollination Biology of Michelia chapensis in Shanghai. Sci. Silvae Sin. 2024, 60, 86–93. [Google Scholar]
- GBIF.org. (23 November 2023) GBIF Occurrence Download; GBIF: Copenhagen, Denmark, 2023. [Google Scholar] [CrossRef]
- Chinese Magnolia (Michelia chapensis) Specimen Data Set (2024); CSTR:11277.11.DSA2024.0119.1f444f07. Available online: https://www.cvh.ac.cn/ (accessed on 4 March 2025).
- Amap Open Platform. Amap Map API. Available online: https://lbs.amap.com/api/ (accessed on 26 November 2023).
- Rocchini, D.; Garzon-Lopez, C.X. Cartograms Tool to Represent Spatial Uncertainty in Species Distribution. Res. Ideas Outcomes 2017, 3, e12029. [Google Scholar] [CrossRef]
- Xu, X.L.; Multi-Year City and County Administrative Boundary Data of China. Resource and Environment Science Data Registration and Publishing System. Available online: http://www.resdc.cn/DOI (accessed on 18 May 2024). [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1 km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage Publications: New York, NY, USA, 2019; Available online: https://CRAN.R-project.org/package=car (accessed on 26 June 2024).
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R; Cambridge University Press: Cornwall, UK, 2017. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 6 July 2024).
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The Main Progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- Xin, X.; Wu, T.; Zhang, J.; Yao, J.; Fang, Y. Comparison of CMIP6 and CMIP5 Simulations of Precipitation in China and the East Asian Summer Monsoon. Int. J. Climatol. 2020, 40, 6423–6440. [Google Scholar] [CrossRef]
- Thuiller, W.; Georges, D.; Engler, R. biomod2: Ensemble Platform for Species Distribution Modeling. R Package. 2021. Available online: https://CRAN.R-project.org/package=biomod2 (accessed on 10 July 2024).
- Frans, V.F.; Liu, J. Gaps and Opportunities in Modelling Human Influence on Species Distributions in the Anthropocene. Nat. Ecol. Evol. 2024, 8, 1365–1377. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Z. Predicting the Potential Distribution of Cheirotonus Jansoni (Coleoptera: Scarabaeidae) Under Climate Change. Insects 2024, 15, 1012. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement of nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Lomba, A.; Pellissier, L.; Randin, C.; Vicente, J.; Moreira, F.; Honrado, J.; Guisan, A. Overcoming the Rare Species Modelling Paradox: A Novel Hierarchical Framework Applied to an Iberian Endemic Plant. Biol. Conserv. 2010, 143, 2647–2657. [Google Scholar] [CrossRef]
- Jones-Farrand, D.T.; Fearer, T.M.; Thogmartin, W.E.; Thompson, F.R.; Nelson, M.D.; Tirpak, J.M. Comparison of Statistical and Theoretical Habitat Models for Conservation Planning: The Benefit of Ensemble Prediction. Ecol. Appl. 2011, 21, 2269–2282. [Google Scholar] [CrossRef]
- Guo, C.; Lek, S.; Ye, S.; Wei, L.; Liu, J.; Li, Z. Uncertainty in Ensemble Modelling of Large-Scale Species Distribution: Effects from Species Characteristics and Model Techniques. Ecol. Modell. 2015, 306, 67–75. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef]
- King, T.W.; Vynne, C.; Miller, D.; Fisher, S.; Fitkin, S.; Rohrer, J.; Ransom, J.I.; Thornton, D.H. The Influence of Spatial and Temporal Scale on the Relative Importance of Biotic vs. Abiotic Factors for Species Distributions. Divers. Distrib. 2020, 27, 327–343. [Google Scholar] [CrossRef]
- Akhter, S.; McDonald, M.A.; van Breugel, P.; Sohel, S.; Kjær, E.D.; Mariott, R. Habitat Distribution Modelling to Identify Areas of High Conservation Value under Climate Change for Mangifera Sylvatica Roxb. of Bangladesh. Land Use Policy 2017, 60, 223–232. [Google Scholar] [CrossRef]
- Xi, Y.; Zhang, W.; Wei, F.; Fang, Z.; Fensholt, R. Boreal Tree Species Diversity Increases with Global Warming but Is Reversed by Extremes. Nat. Plants 2024, 10, 1473–1483. [Google Scholar] [CrossRef]
- Randin, C.F.; Engler, R.; Normand, S.; Zappa, M.; Zimmermann, N.E.; Pearman, P.B.; Vittoz, P.; Thuiller, W.; Guisan, A. Climate Change and Plant Distribution: Local Models Predict High-Elevation Persistence. Glob. Change Biol. 2009, 15, 1557–1569. [Google Scholar] [CrossRef]
- Čertner, M.; Kúr, P.; Kolář, F.; Suda, J. Climatic Conditions and Human Activities Shape Diploid–Tetraploid Coexistence at Different Spatial Scales in the Common Weed Tripleurospermum Inodorum (Asteraceae). J. Biogeogr. 2019, 46, 1355–1366. [Google Scholar] [CrossRef]
- Feng, Y.F.; Li, C.; Feng, J.M. Spatial-Temporal Response of Ecosystem Service Value to Urban Expansion in the Jinan Metropolitan Area Based on the GTWR Model. J. Beijing For. Univ. 2024, 46, 104–118. [Google Scholar] [CrossRef]
- Li, G.; Fang, C.; Li, Y.; Wang, Z.; Sun, S.; He, S.; Qi, W.; Bao, C.; Ma, H.; Fan, Y.; et al. Global Impacts of Future Urban Expansion on Terrestrial Vertebrate Diversity. Nat. Commun. 2022, 13, 1628. [Google Scholar] [CrossRef]
- Ren, H.; Lu, H. Ecosystem Restoration and the Principle of Right Tree for the Right Place. J. Trop. Subtrop. Bot. 2025, 33, 100–106. [Google Scholar]
- Thomas, V. Climate Change and Natural Disasters: Transforming Economies and Policies for a Sustainable Future, 1st ed.; Taylor & Francis: Boca Raton, FL, USA, 2017. [Google Scholar]
Models | TSS | AUC | KAPPA | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | CV | Mean | SD | CV | Mean | SD | CV | |
GLM | 0.6576 | 0.0181 | 0.0274 | 0.8753 | 0.0073 | 0.0083 | 0.5206 | 0.0140 | 0.0270 |
GBM | 0.8092 | 0.0114 | 0.0141 | 0.9578 | 0.0034 | 0.0036 | 0.7348 | 0.0175 | 0.0238 |
GAM | 0.6976 | 0.0218 | 0.0313 | 0.9038 | 0.0092 | 0.0102 | 0.5816 | 0.0244 | 0.0420 |
CTA | 0.7133 | 0.0568 | 0.0796 | 0.8752 | 0.0336 | 0.0384 | 0.5819 | 0.0692 | 0.1190 |
ANN | 0.6678 | 0.0373 | 0.0558 | 0.8720 | 0.0252 | 0.0289 | 0.5637 | 0.0418 | 0.0742 |
MARS | 0.6789 | 0.0133 | 0.0196 | 0.8884 | 0.0091 | 0.0102 | 0.5542 | 0.0143 | 0.0258 |
RF | 0.9867 | 0.0049 | 0.0050 | 0.9998 | 0.0004 | 0.0004 | 0.9815 | 0.0057 | 0.0058 |
MAXENT | 0.6992 | 0.0238 | 0.0340 | 0.9263 | 0.0103 | 0.0111 | 0.6271 | 0.0322 | 0.0513 |
EMmean | 0.7340 | NA 1 | NA | 0.9210 | NA | NA | 0.3990 | NA | NA |
EMmedian | 0.7360 | NA | NA | 0.9120 | NA | NA | 0.3420 | NA | NA |
EMca | 0.7540 | NA | NA | 0.9500 | NA | NA | 0.6220 | NA | NA |
EMwmean | 0.7350 | NA | NA | 0.9200 | NA | NA | 0.3920 | NA | NA |
Climate Models | Time | Current Rang (km2) | Gain (km2) | Loss (km2) | Stable Suitable Area (km2) | Net Change in Suitable Area (km2) |
---|---|---|---|---|---|---|
ssp126 | 2030s | 1,587,822 | 196,693 | 87,017 | 1,697,498 | 6.91 |
2050s | 1,587,822 | 185,494 | 153,912 | 1,619,404 | 1.99 | |
2070s | 1,587,822 | 286,444 | 79,558 | 1,794,708 | 13.03 | |
2090s | 1,587,822 | 294,911 | 43,537 | 1,839,196 | 15.83 | |
ssp585 | 2030s | 1,587,822 | 268,502 | 33,446 | 1,822,878 | 14.80 |
2050s | 1,587,822 | 315,608 | 85,916 | 1,817,514 | 14.47 | |
2070s | 1,587,822 | 273,582 | 186,225 | 1,675,179 | 5.50 | |
2090s | 1,587,822 | 202,039 | 504,171 | 1,285,690 | −19.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, C.; Chen, X.; Zhou, C.; Xu, L.; Qian, M.; Zhao, H.; Li, K. Predicting Suitable Spatial Distribution Areas for Urban Trees Under Climate Change Scenarios Using Species Distribution Models: A Case Study of Michelia chapensis. Land 2025, 14, 638. https://doi.org/10.3390/land14030638
Shen C, Chen X, Zhou C, Xu L, Qian M, Zhao H, Li K. Predicting Suitable Spatial Distribution Areas for Urban Trees Under Climate Change Scenarios Using Species Distribution Models: A Case Study of Michelia chapensis. Land. 2025; 14(3):638. https://doi.org/10.3390/land14030638
Chicago/Turabian StyleShen, Chenbin, Xi Chen, Chao Zhou, Lingzi Xu, Mingyi Qian, Hongbo Zhao, and Kun Li. 2025. "Predicting Suitable Spatial Distribution Areas for Urban Trees Under Climate Change Scenarios Using Species Distribution Models: A Case Study of Michelia chapensis" Land 14, no. 3: 638. https://doi.org/10.3390/land14030638
APA StyleShen, C., Chen, X., Zhou, C., Xu, L., Qian, M., Zhao, H., & Li, K. (2025). Predicting Suitable Spatial Distribution Areas for Urban Trees Under Climate Change Scenarios Using Species Distribution Models: A Case Study of Michelia chapensis. Land, 14(3), 638. https://doi.org/10.3390/land14030638