Does Proximity Enhance Compliance? Investigating the Geographical Distance Decay in Vertical Supervision of Non-Grain Cultivation on China’s Arable Land?
Abstract
:1. Introduction
2. Literature Review
2.1. Factors Affecting Non-Grain Cultivation on Arable Land
2.2. Impact of Land Regulation Policies on Non-Grain Cultivation on Arable Land
2.3. Impact of Geographic Distance on Policy Effectiveness
3. Theoretical Analysis and Research Hypotheses
4. Materials and Methods
4.1. Model Specification
4.2. Variable Selection
4.2.1. The Dependent Variable
4.2.2. The Core Explanatory Variable
4.2.3. Control Variables
4.3. Data Sources
4.4. Robustness Checks
5. Results
5.1. Benchmark Regression Results
5.2. Robustness Test
5.2.1. Parallel Trends Test
5.2.2. Replacing the Explanatory Variable
5.2.3. Controlling for Other Relevant Policies
5.2.4. Exclude the Impact of Unobservable Factors
5.3. Mechanism Analysis
5.3.1. On-Site Supervision
5.3.2. Satellite Supervision
5.3.3. Public Supervision
5.4. Moderation Effects Analysis
5.4.1. Grain Production
5.4.2. Economic Growth
5.4.3. Ethnic Unity
6. Conclusions and Discussion
6.1. Conclusions
6.2. Discussion
7. Limitations and Future Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
1 | https://www.gov.cn/zhengce/content/2020-11/17/content_5562053.htm (17 November 2020). |
2 | https://www.gov.cn/zhengce/2017-01/23/content_5162649.htm (23 January 2017). |
3 | https://www.gov.cn/zhengce/2020-12/02/content_5566314.htm (2 December 2020). |
4 | https://www.mnr.gov.cn/dt/mtsy/202104/t20210428_2630610.html (28 April 2021). |
5 | https://www.mnr.gov.cn/jg/#scy_jgsz (11 September 2018). |
6 | This paper excludes Beijing, where the municipal government relocated post policy implementation, and cities with significantly missing data on non-grain cultivation on arable land. |
7 | https://data.cma.cn/data/cdcdetail/dataCode/A.0053.0002.S005.html (31 December 2020). |
8 | https://data.cma.cn/data/cdcdetail/dataCode/A.0053.0002.S007.html (31 December 2020). |
9 | http://www.gscloud.cn/sources/accessdata/310?pid=302 (23 March 2025). |
10 | https://www.epsnet.com.cn/index.html#/Index (23 March 2025). |
11 | This paper uses data from 2017 to represent the socio-economic pre-control variables. |
12 | This paper calculates the geographical distance in units of 100 km. |
13 | https://www.gov.cn/xinwen/2016-03/18/content_5055278.htm (18 March 2016). |
14 | The eight ethnic provinces include the five autonomous regions with significant minority populations—Inner Mongolia, Ningxia, Xinjiang, Tibet, and Guangxi—and the three provinces where ethnic minorities are concentrated, namely Qinghai, Guizhou, and Yunnan. |
References
- Tsui, K.Y.; Wang, Y. Decentralization with political trump: Vertical control, local accountability and regional disparities in China. China Econ. Rev. 2008, 19, 18–31. [Google Scholar] [CrossRef]
- Ma, Y. Vertical Environmental Management: A Panacea to the Environmental Enforcement Gap in China? Chin. J. Environ. Law 2017, 1, 37–68. [Google Scholar] [CrossRef]
- Li, J.; Pan, Y.; Yang, Y.; Tse, C.H. Digital platform attention and international sales: An attention-based view. J. Int. Bus. Stud. 2022, 53, 1817–1835. [Google Scholar] [CrossRef]
- Shi, X.; Xi, T. Race to safety: Political competition, neighborhood effects, and coal mine deaths in China. J. Dev. Econ. 2018, 131, 79–95. [Google Scholar] [CrossRef]
- Ren, D.; Peng, B. Research on the Rule of Legal Regulation to Prevent “Non-grain” of Cultivated Land. China Land Sci. 2022, 36, 1–9. [Google Scholar] [CrossRef]
- Kedia, S.; Rajgopal, S.; Madoff, B.; Thomsen, L. Do the SEC’s Enforcement Preferences Affect Corporate Misconduct? J. Account. Econ. 2011, 51, 259–278. [Google Scholar] [CrossRef]
- Song, M.; Peng, J.; Yi, L.; Fu, J. Quantity and quality balance of farmland in Hubei Province in the contextof compensation for comprehensive occupation’ and its impact on grainproduction capacity. China Popul. Resour. Environ. 2024, 34, 173–186. [Google Scholar]
- Huang, J.; Zhang, Z. The logic and governance of local government’s participation in the “non-grain” transfer of cultivated land: A case study based on planting and greening of cultivated land. China Land Sci. 2023, 37, 114–123. [Google Scholar] [CrossRef]
- Zhang, Q.; Qu, X.; Wei, C. A study of “Non-Grain Production” of family farmers in the background of grain security. Southeast Acad. Res. 2014, 3, 94–100+247. [Google Scholar] [CrossRef]
- Zhao, T. Analysis of the Current Situation and Causes of “non-grain” Cultivated Land-Take Dujiazhai Village, Sinan County as an Example. Mod. Agric. 2023, 48, 50–54. [Google Scholar] [CrossRef]
- Zhao, S.; Xiao, D.; Yin, M. Spatiotemporal Patterns and Driving Factors of Non-Grain Cultivated Land in China’s Three Main Functional Grain Areas. Sustainability 2023, 15, 13720. [Google Scholar] [CrossRef]
- Zhou, L.; Liang, Y.; Xiong, L.; Hu, X.; Chao, Z. Suitability evaluation and consolidation zoning of supplementary cultivated land in Guangdong Province. J. Agric. Resour. Environ. 2025, 42, 57–65. [Google Scholar] [CrossRef]
- Liu, T.; Chen, M. The status-quo and improvement path for the implementation of cultivated land protection policy in China. China Land Sci. 2020, 34, 32–37+47. [Google Scholar]
- Yang, Y. The Causes and Corrections of “Three-Right-Division” Policy Implementing Deviation in Traditional Agricultural Area. Issues Agric. Econ. 2017, 38, 23–30+1. [Google Scholar] [CrossRef]
- Quan, S. The evolution logic of agricultural policy: On the key problems and potential risks of China’s agricultural transformation. Chin. Rural Econ. 2022, 2, 15–35. [Google Scholar]
- Liu, Y.; Fang, F.; Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Liu, C.; Song, C.; Ye, S.; Cheng, F.; Zhang, L.; Li, C. Estimate provincial-level effectiveness of the arable land requisition-compensation balance policy in mainland China in the last 20 years. Land Use Policy 2023, 131, 106733. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, C. Optimization Model of Permanent Basic Farmland Indicators Distribution from the Perspective of Equity: A Case from W County, China. Land 2022, 11, 1290. [Google Scholar] [CrossRef]
- Ling, L.; Tang, H.; Chen, X.; Li, S.; Han, X. Spatial zoning and effect evaluation of county high-standard farmland siting delineation for sustainable cultivated land use in China: A case study in Dali, Shaanxi. Ecol. Indic. 2024, 167, 112647. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, X.; Zhong, T.; Zhang, X.; Du, G.; Zhang, B. Effects of land supervision on cultivated land requisition-compensation balance in China. Trans. Chin. Soc. Agric. Eng. 2012, 28, 1–7. [Google Scholar]
- Yan, H.; Du, W.; Zhou, Y.; Luo, L.; Niu, Z. Satellite-Based Evidences to Improve Cropland Productivity on the High-Standard Farmland Project Regions in Henan Province, China. Remote Sens. 2022, 14, 1724. [Google Scholar] [CrossRef]
- Zheng, P.; Zhu, D.; Zhang, X. Analysis on the Public Select Theory of the Government’s Farmland Protection Action. Nat. Resour. Econ. China 2005, 9, 10–12+46. [Google Scholar]
- Chen, L.; Chang, Y.; Ruan, X. The role of geographic distances in green industrial pilot policies evaluation: A sustainability transition perspective. Environ. Sci. Pollut. Res. 2024, 31, 10245–10258. [Google Scholar] [CrossRef]
- Shi, D.; Hu, K. The relationship between geographic distance to environmental protection agencies and industrial pollution emissions. Scott. Geogr. J. 2024, in press. [CrossRef]
- Zhang, Z.; Zhou, Y.; Xiong, H.; Li, H. How Does Geographic Distance Affect the Global Value ChainCooperation? Theoretical Model and International Empirical Evidence. Econ. Rev. 2021, 3, 75–88. [Google Scholar] [CrossRef]
- Lu, S.; Ma, J.; Chen, S. Geographical Distance from Government Seats, Attention to and Gains from Government Policies. Financ. Trade Econ. 2023, 44, 84–101. [Google Scholar] [CrossRef]
- Jin, H.; Chen, S. Does Geographic Distance Matter for the Governmental Supervision ofFirms’ Pollution Emission? J. Quant. Technol. Econ. 2022, 39, 123–140. [Google Scholar] [CrossRef]
- Bloom, N.; Garicano, L.; Sadun, R.; Reenen, J.V. The Distinct Effects of Information Technology and Communication Technology on Firm Organization. Manag. Sci. 2014, 60, 2859–2885. [Google Scholar] [CrossRef]
- Nunn, N.; Qian, N. The Potato’s Contribution to Population and Urbanization: Evidence from an Historical Experiment. Q. J. Econ. 2011, 126, 593–650. [Google Scholar] [CrossRef]
- Li, P.; Lu, Y.; Wang, J. Does flattening government improve economic performance? Evidence from China. J. Dev. Econ. 2016, 123, 18–37. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, L.; Wang, X.; Chang, X.; Zhu, Z. The impact of non-grain cultivation of cultivated land on the relationship between agricultural carbon supply and demand. Appl. Geogr. 2024, 162, 103166. [Google Scholar] [CrossRef]
- Li, T.; Hao, D. Current situation of “non-grain production” of cultivated land in China and the research progress of re-tillage and fertilization technology. Chin. J. Appl. Ecol. 2023, 34, 1703–1712. [Google Scholar] [CrossRef]
- Qian, W.; Wang, D.; Zheng, L. The impact of migration on agricultural restructuring: Evidence from Jiangxi Province in China. J. Rural Stud. 2016, 47, 542–551. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Huang, X.; Chen, Y. Influence of government leaders’ localization on farmland conversion in Chinese cities: A “sense of place” perspective. Cities 2019, 90, 74–87. [Google Scholar] [CrossRef]
- Su, Y.; Qian, K.; Lin, L.; Wang, K.; Guan, T.; Gan, M. Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protection. Land Use Policy 2020, 92, 104435. [Google Scholar] [CrossRef]
- Xue, Y.; Li, C. Extracting Chinese geographic data from Baidu Map API. Stata J. 2020, 20, 805–811. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, T.; Feng, C. Does public participation promote environmental efficiency? Evidence from a quasi-natural experiment of environmental information disclosure in China. Energy Econ. 2022, 108, 105871. [Google Scholar] [CrossRef]
- Hu, X.; Dai, M. Effects of High-standard Farmland Construction Policies on Food Production. J. South China Agric. Univ. (Soc. Sci. Ed.) 2023, 21, 71–85. [Google Scholar] [CrossRef]
- Nian, Y. Incentives, penalties, and rural air pollution: Evidence from satellite data. J. Dev. Econ. 2023, 161, 103049. [Google Scholar] [CrossRef]
- Ma, J.; Li, F.; Zhang, H.; Nawab, K. Commercial cash crop production and households’ economic welfare: Evidence from the pulse farmers in rural China. J. Integr. Agric. 2022, 21, 3395–3407. [Google Scholar] [CrossRef]
- Cui, Z.; Li, E.; Li, Y.; Deng, Q.; Shahtahmassebi, A.R. The impact of poverty alleviation policies on rural economic resilience in impoverished areas: A case study of Lankao County, China. J. Rural Stud. 2023, 99, 92–106. [Google Scholar] [CrossRef]
- Altonji, J.G.; Elder, T.E.; Taber, C.R. Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools. J. Political Econ. 2000, 113, 151–184. [Google Scholar] [CrossRef]
- Nunn, N.; Wantchékon, L. The Slave Trade and the Origins of Mistrust in Africa. Am. Econ. Rev. 2011, 101, 3221–3252. [Google Scholar] [CrossRef]
- Ma, Q.; Tariq, M.; Mahmood, H.; Khan, Z. The nexus between digital economy and carbon dioxide emissions in China: The moderating role of investments in research and development. Technol. Soc. 2022, 68, 101910. [Google Scholar] [CrossRef]
- Wan, J.; Wang, Z.; Ma, C.; Su, Y.; Zhou, T.; Wang, T.; Zhao, Y.; Sun, H.; Li, Z.; Wang, Y.; et al. Spatial-temporal differentiation pattern and influencing factors of high-quality development in counties: A case of Sichuan, China. Ecol. Indic. 2023, 148, 110132. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, Y.; Lu, J. Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau and its neighboring regions. J. Geophys. Res. Atmos. 2016, 121, 5864–5877. [Google Scholar] [CrossRef]
- Li, Z.; Niu, F.; Fan, J.; Liu, Y.; Rosenfeld, D.; Ding, Y. Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci. 2011, 4, 888–894. [Google Scholar] [CrossRef]
- Zhou, X. E-Government in China: A Content Analysis of National and Provincial Web Sites. J. Comput. Mediat. Commun. 2006, 9, JCMC948. [Google Scholar] [CrossRef]
- Ma, H.; Han, Z.; Jiang, H. The characteristics and spatial differences of basic public services of cities at prefecture level and above in China. Econ. Geogr. 2011, 31, 212–217. [Google Scholar] [CrossRef]
- Jiang, T. Mediating Effects and Moderating Effects in Causal Inference. China Ind. Econ. 2022, 5, 100–120. [Google Scholar] [CrossRef]
- Chen, S.; Lan, X. There Will Be Killing: Collectivization and Death of Draft Animals. Am. Econ. J. Appl. Econ. 2017, 9, 58–77. [Google Scholar] [CrossRef]
- Yang, J.; Wu, Y.; Wang, J.; Wan, C.; Wu, Q. A Study on the Efficiency of Tourism Poverty Alleviation in Ethnic Regions Based on the Staged DEA Model. Front. Psychol. 2021, 12, 642966. [Google Scholar] [CrossRef]
Type | Variables | Definition | Unit | Number | Mean | S.t. Error |
---|---|---|---|---|---|---|
Dependent variable | Non-grain | 100-(Grain sown area × 100/crop sown area) | % | 1620 | 33.297 | 17.531 |
Core explanatory variable | Geographic distance | The distance from the National Natural Resources Supervisory Agency to municipal governments within its jurisdiction | 100 km | 1620 | 3.461 | 2.640 |
Policy | Time dummy variable before and after the establishment of the National Natural Resources Supervisory Agency | - | 1620 | 0.333 | 0. 472 | |
Control variables: socio-economic11 | Agricultural economic level | The primary industry added value as a percentage of regional GDP in 2017 | % | 1620 | 11.556 | 7.446 |
Population situation | The urbanization rate in the region in 2017 | % | 1620 | 56.425 | 13.754 | |
Fiscal decentralization level | The ratio of regional general budget revenue to general budget expenditure in 2017 | - | 1620 | 0. 425 | 0.217 | |
Agricultural production condition | The effective irrigated area in the region in 2017 | 10,000 hectares | 1620 | 19.849 | 16.710 | |
Control variables: meteorology/geography | Annual average temperature | The regional annual average temperature | °C | 1620 | 14.854 | 5.069 |
The square of the annual average temperature | The square of the regional annual average temperature | - | 1620 | 246.319 | 145.513 | |
Annual average precipitation | The regional annual average precipitation | 100 mL | 1620 | 10.482 | 4.971 | |
The square of annual average precipitation | The square of the regional annual average precipitation | - | 1620 | 134.567 | 122.336 | |
Elevation | The average elevation of the region | Meters | 1620 | 379.482 | 769.129 |
Variables | Non-Grain | ||||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
Policy × Geographic distance | 0.367 *** (0.125) | 0.423 *** (0.123) | 0.453 *** (0.122) | 0.439 *** (0.114) | 0.439 * (0.228) |
Socio-economic control variables × Time-fixed effects | YES | YES | YES | YES | |
Geographic control variables × Time-fixed effects | YES | YES | YES | ||
Meteorological control variables | YES | YES | YES | ||
_cons | 34.034 *** (0.244) | −4.213 (13.588) | −4.540 (13.629) | 13.093 (15.710) | 48.694 *** (9.124) |
Time-fixed effects | YES | YES | YES | YES | YES |
City-fixed effects | YES | YES | YES | YES | YES |
Observations | 1620 | 1620 | 1620 | 1620 | 1620 |
R2 | 0.041 | 0.085 | 0.115 | 0.115 | 0.115 |
Variables | Non-Grain | ||
---|---|---|---|
(1) | (2) | (3) | |
Pre4 | 0.015 (0.148) | ||
Pre3 | 0.111 (0.143) | ||
Pre2 | −0.068 (0.111) | ||
One-year pre-policy × Geographic distance | −0.037 (0.098) | ||
Two-year pre-policy × Geographic distance | −0.094 (0.107) | ||
Socio-economic control variables × Time-fixed effects | YES | YES | YES |
Geographic control variables × Time-fixed effects | YES | YES | YES |
Meteorological control variables | YES | YES | YES |
_cons | 8.784 (15.902) | 18.612 (12.305) | 20.433 (12.592) |
Time-fixed effects | YES | YES | YES |
City-fixed effects | YES | YES | YES |
Observations | 1620 | 1080 | 1080 |
R2 | 0.128 | 0.112 | 0.114 |
Variables | lnNon-Grain | Non-Grain | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Policy × Geographic distance | 0.018 *** (0.007) | |||
Policy × lnGeographic distance | 0.840 * (0.483) | |||
Policy × Dummy geographic distance | 1.719 *** (0.644) | |||
Policy × Geographic distance | −3.271 ** (1.482) | |||
Policy × Geographic distance | −1.595 *** (0.592) | |||
Socio-economic control variables × Time-fixed effects | YES | YES | YES | YES |
Geographic control variables × Time-fixed effects | YES | YES | YES | YES |
Meteorological control variables | YES | YES | YES | YES |
_cons | 2.233 * (1.293) | 12.090 (16.194) | 12.671 (16.080) | 9.889 (16.119) |
Time-fixed effects | YES | YES | YES | YES |
City-fixed effects | YES | YES | YES | YES |
Observations | 1620 | 1620 | 1620 | 1620 |
R2 | 0.145 | 0.109 | 0.108 | 0.113 |
Variables | Non-Grain | ||
---|---|---|---|
(1) | (2) | (3) | |
Policy × Geographic distance | 0.438 *** (0.114) | 0.439 *** (0.113) | 0.439 *** (0.113) |
Poverty alleviation efforts | 0.403 (0.520) | 0.407 (0.519) | |
Permanent basic farmland | 0.573 (0.812) | 0.577 (0.811) | |
Socio-economic control variables × Time-fixed effects | YES | YES | YES |
Geographic control variables × Time-fixed effects | YES | YES | YES |
Meteorological control variables | YES | YES | YES |
_cons | 13.066 (15.719) | 11.568 (16.078) | 11.531 (16.085) |
Time-fixed effects | YES | YES | YES |
City-fixed effects | YES | YES | YES |
Observations | 1620 | 1620 | 1620 |
R2 | 0.115 | 0.115 | 0.115 |
Constrained Group of Control Variables | Unconstrained Group of Control Variables | |||
---|---|---|---|---|
Column (1) of Table 2 | Column (4) of Table 2 | 0.367 | 0.439 | 6.097 |
Column (2) of Table 2 | Column (4) of Table 2 | 0.423 | 0.439 | 27.438 |
Column (3) of Table 2 | Column (4) of Table 2 | 0.453 | 0.439 | 31.357 |
Variables | Non-Grain | ||
---|---|---|---|
(1) | (2) | (3) | |
Policy × Geographic distance | 0.736 *** (0.139) | 0.689 *** (0.140) | 0.512 *** (0.119) |
Policy × Geographic distance × Transportation | −0.559 *** (0.141) | ||
Policy × Geographic distance × Non-cloudy-rainy | −0.400 *** (0.132) | ||
Policy × Geographic distance × Internet | −0.258 * (0.133) | ||
Socio-economic control variables × Time-fixed effects | YES | YES | YES |
Geographic control variables × Time-fixed effects | YES | YES | YES |
Meteorological control variables | YES | YES | YES |
_cons | 10.021 (15.690) | 12.089 (15.663) | 14.705 (16.048) |
Time-fixed effects | YES | YES | YES |
City-fixed effects | YES | YES | YES |
Observations | 1620 | 1620 | 1614 |
R2 | 0.128 | 0.123 | 0.118 |
Variables | Non-Grain | ||
---|---|---|---|
(1) | (2) | (3) | |
Policy × Geographic distance | 0.524 *** (0.107) | 0.303 ** (0.139) | 0.262 * (0.153) |
Policy × Geographic distance × Grain | −0.428 *** (0.135) | ||
Policy × Geographic distance × Higher–level | 0.399 ** (0.172) | ||
Policy × Geographic distance × Ethnicity | 0.315 ** (0.129) | ||
Socio-economic control variables × Time-fixed effects | YES | YES | YES |
Geographic control variables × Time-fixed effects | YES | YES | YES |
Meteorological control variables | YES | YES | YES |
_cons | 11.726 (15.494) | 14.038 (15.836) | 12.400 (15.652) |
Time-fixed effects | YES | YES | YES |
City-fixed effects | YES | YES | YES |
Observations | 1620 | 1620 | 1620 |
R2 | 0.122 | 0.119 | 0.119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, G.; Wu, P. Does Proximity Enhance Compliance? Investigating the Geographical Distance Decay in Vertical Supervision of Non-Grain Cultivation on China’s Arable Land? Land 2025, 14, 701. https://doi.org/10.3390/land14040701
Wen G, Wu P. Does Proximity Enhance Compliance? Investigating the Geographical Distance Decay in Vertical Supervision of Non-Grain Cultivation on China’s Arable Land? Land. 2025; 14(4):701. https://doi.org/10.3390/land14040701
Chicago/Turabian StyleWen, Gaoya, and Ping Wu. 2025. "Does Proximity Enhance Compliance? Investigating the Geographical Distance Decay in Vertical Supervision of Non-Grain Cultivation on China’s Arable Land?" Land 14, no. 4: 701. https://doi.org/10.3390/land14040701
APA StyleWen, G., & Wu, P. (2025). Does Proximity Enhance Compliance? Investigating the Geographical Distance Decay in Vertical Supervision of Non-Grain Cultivation on China’s Arable Land? Land, 14(4), 701. https://doi.org/10.3390/land14040701