Spatial and Temporal Analysis of Habitat Quality in the Yellow River Basin Based on Land-Use Transition and Its Driving Forces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources and Processing
2.3. Research Framework
2.4. Research Methodology
2.4.1. Land-Use Transition Matrix
2.4.2. Land-Use Degree
Land-Use Types | Unused Land | Forest, Grassland, and Water Area | Farmland | Construction Land |
---|---|---|---|---|
1 | 2 | 3 | 4 |
2.4.3. The InVEST Model
2.4.4. Coupling Coordination Degree Model
Coupling Coordination Degree | Type | Coupling Coordination Degree | Type |
---|---|---|---|
0 ≤ D < 0.2 | Severe disorder | 0.5 ≤ D < 0.6 | Primary coupling coordination |
0.2 ≤ D < 0.4 | Moderate disorder | 0.6 ≤ D < 0.8 | Medium coupling coordination |
0.4 ≤ D < 0.5 | Mild disorder | 0.8 ≤ D ≤ 1 | High coupling coordination |
2.4.5. Principles and Selection of Driver Models
- (1)
- Spatial Error Model (SEM)
- (2)
- Spatial Lag Model (SLM)
- (3)
- Spatial Durbin Model (SDM)
2.4.6. Quantitative Model of Policies
3. Results
3.1. Spatial and Temporal Evolution of Land Use
3.2. Habitat Quality Assessment
3.3. Analysis of Relationship Between Land Use and Habitat Quality
3.3.1. Habitat Quality Analysis Based on Land-Use Transition
3.3.2. Coupling Coordination Degree Between Land-Use Degree and Habitat Quality
3.4. Analysis of Driving Factors of Habitat Quality Differentiation
4. Discussion
4.1. The Impact of Land-Use Transition on Habitat Quality in the Yellow River Basin
4.2. Suggestions for Optimizing Future Land Use in the Yellow River Basin
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, B.L., II; Kasperson, R.E.; Meyer, W.B.; Dow, K.M.; Golding, D.; Kasperson, J.X.; Mitchell, R.C.; Ratick, S.J. Two types of global environmental change. Glob. Environ. Chang. 1990, 1, 14–22. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, L.; Li, Y. Increased dependence of humans on ecosystem services and biodiversity. PLoS ONE 2010, 5, e13113. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Li, X. Insight into Carbon Emissions in Economically Developed Regions Based on Land Use Transitions: A Case Study of the Yangtze River Delta, China. Land 2024, 13, 1968. [Google Scholar] [CrossRef]
- Basu, T.; Das, A. Urbanization induced changes in land use dynamics and its nexus to ecosystem service values: A spatiotemporal investigation to promote sustainable urban growth. Land Use Policy 2024, 144, 107239. [Google Scholar] [CrossRef]
- Montanarella, L.; Scholes, R.; Brainich, A. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. The IPBES Assessment Report on Land Degradation and Restoration; IPBES Secretariat: Bonn, Germany, 2018. [Google Scholar]
- Yim, J.; Kwon, B.; Nam, J.; Hwang, J.; Choi, K.; Khim, J. Analysis of forty years long changes in coastal land use and land cover of the Yellow Sea: The gains or losses in ecosystem services. Environ. Pollut. 2018, 241, 74–84. [Google Scholar] [CrossRef]
- Hailu, T.; Assefa, E.; Zeleke, T. Urban expansion induced land use changes and its effect on ecosystem services in Addis Ababa, Ethiopia. Front. Environ. Sci. 2024, 12, 1454556. [Google Scholar] [CrossRef]
- Sarkar, D.; Kar, S.K.; Chattopadhyay, A.; Shikha; Rakshit, A.; Tripathi, V.K.; Dubey, P.K.; Abhilash, P.C. Low input sustainable agriculture: A viable climate-smart option for boosting food production in a warming world. Ecol. Indic. 2020, 8, 106412. [Google Scholar] [CrossRef]
- Xiao, L.; Qu, L.; Sun, P.; Yu, W.; Peng, W. Green Transition of Cultivated Land Use in the Yellow River Basin: A Perspective of Green Utilization Efficiency Evaluation. Land 2020, 9, 475. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, R.; Lu, H. Response of ecological environment quality to land use transition based on dryland oasis ecological index (DOEI) in dryland: A case study of oasis concentration area in Middle Heihe River, China. Ecol. Indic. 2024, 165, 112214. [Google Scholar] [CrossRef]
- Hillard, E.M.; Nielsen, C.K.; Groninger, J.W. Swamp rabbits as indicators of wildlife habitat quality in bottomland hardwood forest ecosystems. Ecol. Indic. 2017, 79, 47–53. [Google Scholar] [CrossRef]
- Shi, G.; Chen, C.; Cao, Q.; Zhang, J.; Xu, J.; Chen, Y.; Wang, Y.; Liu, J. Spatiotemporal Dynamics and Prediction of Habitat Quality Based on Land Use and Cover Change in Jiangsu, China. Remote Sens. 2024, 16, 4158. [Google Scholar] [CrossRef]
- Huang, C.; Cheng, X.; Zhang, Z. Future Land Use and Habitat Quality Dynamics: Spatio-Temporal Analysis and Simulation in the Taihu Lake Basin. Sustainability 2024, 16, 7793. [Google Scholar] [CrossRef]
- Xu, B.; Liu, C.; Dong, Y.; Zhu, G.; Zhang, Y.; Lu, Z.; Zou, S. Evaluation of habitat quality in Lanzhou based on the InVEST model. Desert China 2021, 41, 120–129. [Google Scholar]
- Grainger, A. The Future Role of the Tropical Rain Forests in the World Forest Economy; University of Oxford: Oxford, UK, 1986. [Google Scholar]
- Walker, R.T. Land use transition and deforestation in developing countries. Geogr. Anal. 1987, 19, 18–30. [Google Scholar] [CrossRef]
- Mather, A.S. Global Forest Resources; Belhaven Press: Belhaven, Scotland, 1990. [Google Scholar] [CrossRef]
- Long, H.; Li, X. Analysis of regional land use transformation—Taking the sample belt along the Yangtze River as an example. J. Nat. Resour. 2002, 02, 144–149. [Google Scholar]
- Long, H.; Tu, S. Land use transition and rural vitalization. China Land Sci. 2018, 32, 1–6. [Google Scholar] [CrossRef]
- Long, H. Explanation of land use transition. China Land Sci. 2022, 36, 1–7. [Google Scholar] [CrossRef]
- Ge, D.; Long, H.; Tu, S.; Zhang, Y. Research on the coupled relationship between land use transformation and grain yield in the Yellow Huaihai region. J. Agric. Resour. Environ. 2017, 34, 319–327. [Google Scholar] [CrossRef]
- Syaban, A.S.N.; Appiah-Opoku, S. Unveiling the complexities of land use transition in Indonesia’s new capital City IKN Nusantara: A multidimensional conflict analysis. Land 2024, 13, 606. [Google Scholar] [CrossRef]
- Qu, S.; Hu, S.; Tong, L.; Li, Q. Spatial and temporal characteristics of urban construction land transformation in the middle reaches of the Yangtze River economic belt. Resour. Sci. 2017, 39, 240–251. [Google Scholar] [CrossRef]
- Biggs, B. Drivers and constraints of land use transitions on western grasslands: Insights from a California mountain ranching community. Landsc. Ecol. 2022, 37, 1185–1205. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, X.; Li, H.; Xing, L.; Luo, X. Characteristics of spatial and temporal differentiation of carbon stocks in different land use types in the Yiluo River Basin in the middle reaches of the Yellow River from 1990 to 2050. Mod. Geol. 2024, 38, 559–573. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, X.; Sun, X.; Liu, J.; Zheng, Y.; Zhang, Z.; Lai, M.; Xiong, M. Spatial and temporal changes of ecosystem carbon stocks driven by land use in the Northwest Inland Desert Resource Region over the past 30 years. Geol. Bull. 2024, 43, 451–462. [Google Scholar]
- Kumar, G.P.; Sreejith, K.S.; Dwarakish, G.S. The influence of land use and land cover transitions on hydrology in a tropical river basin of Southwest India. Water Conserv. Sci. Eng. 2024, 9, 64. [Google Scholar] [CrossRef]
- Chen, C.; Liu, J.; Bi, L. Spatial and Temporal Changes of Habitat Quality and Its Influential Factors in China Based on the InVEST Model. Forests 2023, 14, 374. [Google Scholar] [CrossRef]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Shiferaw, H.; Alamirew, T.; Kassawmar, T.; Zeleke, G. Evaluating ecosystems services values due to land use transformation in the Gojeb watershed, Southwest Ethiopia. Environ. Syst. Res. 2021, 10, 22. [Google Scholar] [CrossRef]
- Aneseyee, B.A.; Noszczyk, T.; Soromessa, T.; Elias, E. The. InVEST habitat quality model associated with land use/cover changes: A qualitative case study of the Winike Watershed in the Omo-Gibe basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Y.; Wang, J.; Ying, L.; Tang, Q. Characteristics and prediction of spatial and temporal evolution of habitat quality in the Minjiang River Basin. J. Ecol. 2021, 41, 5837–5848. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Liao, Y. Dynamic evolution of coupled ecological and socio-economic systems in the Chengdu metropolitan area, multi-scenario simulation and its policy implications. J. Nat. Resour. 2023, 38, 2599–2618. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Yang, X.; Wu, G.; Tan, J. Simulation of Spatial and Temporal Dynamics in Habitat Quality amid Rapid Urbanization based on Random Forest Algorithm: A Lingui District, Guilin City Case Study. E3S Web. Conf. 2025, 617, 03003. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Xu, B.; Liu, J.; Li, H.; Zhao, X.; Luo, X.; Wang, R.; Xing, L.; Wang, C.; et al. Remote Sensing Classification and Mapping of Forest Dominant Tree Species in the Three Gorges Reservoir Area of China Based on Sample Migration and Machine Learning. Remote Sens. 2024, 16, 2547. [Google Scholar] [CrossRef]
- Du, X.; Chen, Y.; Wang, Z. Unveiling the Secrets: How Landscape Patterns Shape Habitat Quality in Northeast China Tiger and Leopard National Park. Forests 2024, 15, 1889. [Google Scholar] [CrossRef]
- Paramesha, M.; Ganesan, R.; Jayalakshmi, K.; Madhura, N. Assessing Habitat Quality of Forest-Corridors through NDVI Analysis in Dry Tropical Forests of South India: Implications for Conservation. Remote Sens. 2015, 7, 1619–1639. [Google Scholar] [CrossRef]
- Dai, L.; Li, S.; Bernard, J.L.; Wu, J.; Yu, D. The influence of land use change on the spatial-temporal variability of habitat quality between 1990 and 2010 in Northeast China. J. For. Res. 2019, 30, 2227–2236. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Y.; Li, J. Quantifying the spatial impact of landscape fragmentation on habitat quality: A multi-temporal dimensional comparison between the Yangtze River Economic Belt and Yellow River Basin of China. Land. Use. Pol. 2023, 125, 106463. [Google Scholar] [CrossRef]
- Sun, X.; Shan, R.; Luan, Q.; Zhang, Y.; Chen, Z. Spatial (mis)matches between biodiversity and habitat quality under multi-scenarios: A case study in Shandong Province, Eastern China. Land 2024, 13, 2215. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, L.; Fu, H. Spatiotemporal Correlation Analysis of landscape pattern and habitat quality in and around China’s Tropical Rainforest National Park. Forests 2024, 15, 2070. [Google Scholar] [CrossRef]
- Benson, C.S.; Darius, J.S.; Jessica, M.C. An application of Social Values for Ecosystem Services (SolVES) to three national forests in Colorado and Wyoming. Ecol. Indic. 2014, 36, 68–79. [Google Scholar] [CrossRef]
- Sun, G.; Lu, H.; Yu, M.; Yan, X.; Zheng, X. Ecological vulnerability spatial-time distribution and driving forces analysis in the economic belt on the northern slope of Tianshan Mountaions. Southwest. China. J. Agric. Sci. 2022, 35, 2161–2170. [Google Scholar] [CrossRef]
- Jiang, Y.; He, J.; Zhai, D.; Hu, C.; Yu, L. Analysis of the evolution of watershed habitat quality and its drivers under the influence of the human footprint. Front. Environ. Sci. 2024, 12, 1431295. [Google Scholar] [CrossRef]
- Shiksha, B.; Sanghyup, L.; Yongchul, S.; Younghun, J. An Assessment of Environmental Impacts on the Ecosystem Services: Study on the Bagmati Basin of Nepal. Sustainability 2020, 12, 8186. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Li, M. Analysis on spatial and temporal changes of regional habitat quality based on the spatial pattern reconstruction of land use. Acta. Geogr. Sin. 2020, 75, 160–178. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, P.; Tang, F.; Zhao, L.; Zhao, X. The effects of land use change on habitat quality in Changli county based on InVEST model. Chin. J. Agric. Resour. Reg. Plan. 2018, 39, 121–128. [Google Scholar]
- Wang, H.; Xu, Y.; Li, C. Coupling coordination and spatio-temporal pattern evolution between ecological protection and high-quality development in the Yellow River Basin. Heliyon 2023, 9, e21089. [Google Scholar] [CrossRef]
- Guo, B.; Xu, M.; Zhang, R.; Luo, W. A new monitoring index for ecological vulnerability and its application in the Yellow River Basin, China from 2000 to 2022. J. Arid Land 2024, 16, 1163–1182. [Google Scholar] [CrossRef]
- Zuo, Q.; Fei, X.; Li, D. Special planning ideas and connect framework of water conservancy for ecological conservation and high-quality development of the Yellow River Basin. Yellow River 2020, 42, 21–25. [Google Scholar] [CrossRef]
- Sun, Y. Yellow River Protection Law: The fundamental guarantee for ecological protection and high-quality development of the Yellow River Basin. Environ. Prot. 2022, 50, 39–43. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, D.; Zhang, Y.; Yao, S.; Zhang, J. Evaluating the vegetation restoration potential achievement of ecological projects: A case study of Yan’an, China. Land Use Policy 2020, 90, 104293. [Google Scholar] [CrossRef]
- Tang, Y.; Tang, J.; Yu, X.; Qin, L.; Wang, J.; Hou, X.; Chen, D. Land ecological protection polices improve ecosystem services: A case study of Lishui, China. Front. Environ. Sci. 2022, 10, 973524. [Google Scholar] [CrossRef]
- Kang, Q.; Pan, W.; Li, Y. Land use transformation and its impact on habitat quality in Nanjing from perspective of production-living-ecological space. Acta Agric. Jiangxi 2022, 34, 128–137. [Google Scholar] [CrossRef]
- Chen, M.; Bai, Z.; Wang, Q.; Shi, Z. Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project. Land 2021, 10, 796. [Google Scholar] [CrossRef]
- Tatenda, D.; Tongayi, M.; Wasserman, R.J.; Madzivanzira, T.C.; Tamuka, N.; Cuthbert, R.N. Land use effects on water quality, habitat, and macroinvertebrate and diatom communities in African highland streams. Sci. Total Environ. 2022, 846, 157346. [Google Scholar] [CrossRef]
- Tian, J. The Process, Mechanism and Optimization of Regional Land Use Transition Under the Guidance of Policy: A Case Study of Three Provinces of Northeast China. Ph.D. Thesis, Jilin Univeristy, Jilin, China, 2020. [Google Scholar] [CrossRef]
- The State Council of the People’s Republic of China. Guiding Opinions on Promoting the Development of the Yangtze River Economic Belt by Relying on the Golden Waterway. 2014. Available online: https://www.gov.cn/zhengce/content/2014-09/25/content_9092.htm (accessed on 27 February 2025).
- Guo, F.; Liu, X.; Zhang, W.; Xing, L.; Wang, R. Evolution of the spatial and temporal patterns of habitat quality ad analysis of the driving forces in Yellow River Basin (Henan Section) from 2000 to 2040. Geoscience 2024, 38, 599–611. [Google Scholar] [CrossRef]
- Liu, J. Macro-Scale Survey and Dynamic Study of Natural Resources and Environment of China by Remote Sensing; Chian Science and Technology Press: Beijing, China, 1996. [Google Scholar]
- Liu, X.; Liu, X.; Jiang, D. Regionalization of Natural Resources in China from a Global Perspective; China Science Publishing: Beijing, China, 2023. [Google Scholar]
- Li, J.; Zhang, C.; Zhu, S. Relative contributions of climate and land-use change to ecosystem services in arid inland basins. J. Clean. Prod. 2021, 298, 126844. [Google Scholar] [CrossRef]
- Ouyang, X.; Tang, L.; Wei, X.; Li, Y. Spatial interaction between urbanization and ecosystem services in Chinese urban agglomerations. Land. Use. Pol. 2021, 109, 105587. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Yang, Q.; Duan, X.; Wang, L.; Jin, Z. Land use transformation based on ecological-production-living spaces and associated eco-environment effects: A case study in the Yangtze River Delta. Sci. Geogr. Sin. 2018, 38, 97–106. [Google Scholar] [CrossRef]
- Zhuang, D.; Liu, J. Study on the model of regional differentiation of land use degree in China. J. Nat. Resour. 1997, 12, 10–16. [Google Scholar]
- Li, C.; Liu, L.; Qiu, B.; Nie, C.; Ning, L.; Li, Y.; Wang, H.; Liu, X.; Yang, S. Sptaial-temporal change and driving factors of land use/cover in Anhui province. J. Nanjing For. Univ. Nat. Sci. Ed. 2023, 47, 213–223. [Google Scholar]
- Zhang, M.; Zhang, F.; Li, X. Evaluation of habitat quality based on InVEST model: A case study of Tongzhou district of Beijing, China. Landsc. Archit. 2020, 27, 95–99. [Google Scholar] [CrossRef]
- Marta, T.; Sergi, S.; Becky, C.K.; Lisa, M.; Guy, Z. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total. Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef]
- Richard, S.; Rebecca, C.K.; Spencer, A.W.; Anne, G. InVEST User’s Guide; The Natural Capital Project, Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA; The Nature Conservancy: Arlington County, VA, USA; World Wildlife Fund: Gland, Switzerland, 2018. [Google Scholar] [CrossRef]
- Sun, J.; Han, M.; Kong, F.; Wei, F. A coupling study of habitat quality and urbanization in the lower Yellow River. J. Shandong Univ. Nat. Sci. 2024, 59, 110–125. [Google Scholar]
- Tang, J. Urban Expansion’s Effects on Habitat Quality and Spatial Optimization in Densely Populated Areas of the Yellow River Basin. Master’s Thesis, Lanzhou Jiaotong University, Lanzhou, China, 2021. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, F.; Lin, J. Projecting Future land use evolution and its effect on spatiotemporal patterns of habitat quality in China. Appl. Sci. 2025, 15, 1042. [Google Scholar] [CrossRef]
- Gan, H.; Feng, J.; Zhao, Z.; Ma, L.; Di, S.; Wen, Y. Identifying the Response of Ecological Well-Being to Ecosystem Services of Urban Green Space Using the Coupling Coordination Degree Model: A Case Study of Beijing, China, 2015–2023. Forests 2024, 15, 1494. [Google Scholar] [CrossRef]
- Hao, Z.; Wen, Q.; Shi, L.; Wu, X.; Ding, J. Spatial network analysis of coupling coordination between social economy and eco-environment in the Yellow River Basin urban agglomerations. Econ. Geogr. 2023, 43, 181–191. [Google Scholar] [CrossRef]
- Pu, J.; Chen, S.; Du, F. Factors influencing recessive transformation of land use in Fujian Province during 2000. Bull. Soil. Water. Conserv. 2023, 43, 402–411. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Pezhman, G.; Liu, Q.; Ming, K.L. The impact of regional financial development on economic growth in Beijing–Tianjin–Hebei region: A spatial econometric analysis. Phys. A 2019, 521, 635–648. [Google Scholar] [CrossRef]
- Li, D. Research on The Impact of Digital Economy on Real Economy: Based on Spatial Econometric Model. Master’s Thesis, Shanxi University of Finance and Economics, Shanxi, China, 2023. [Google Scholar]
- Michael, H.; Ramesh, M. Studying Public Policy: Policy Cycles and Policy Subsystems; SDX Joint Publishing Company: Beijing, China, 2006; pp. 182–190. [Google Scholar]
- Li, J.; Li, S.; Wang, X.; Xu, G.; Peng, J. Spatio-temporal variations and multi-scenario simulation of landscape ecological risk in the drylands of the Yellow River Basin. Sci. Rep. 2024, 14, 22672. [Google Scholar] [CrossRef]
- Yimuranzi, A.; Alimujiang, K.; Liang, H.; Zhang, X.; Zhao, Y.; Wei, B. Evaluation of ecological space and ecological quality changes in urban agglomeration on the northern slope of the Tianshan Mountains. Ecol. Indi. 2023, 146, 109896. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, Z.; Liu, F.; Zhang, D. Monitoring spatio-temporal dynamics of habitat quality in Nansihu Lake basin, eastern China, from 1980 to 2015. Ecol. Indi. 2019, 102, 716–723. [Google Scholar] [CrossRef]
- Chen, L.; Wei, Q.; Fu, Q.; Feng, D. Spatiotemporal Evolution Analysis of Habitat Quality under High-Speed Urbanization: A Case Study of Urban Core Area of China Lin-Gang Free Trade Zone (2002–2019). Land 2021, 10, 167. [Google Scholar] [CrossRef]
- Du, W.; Li, X.; Song, J.; Meng, C.; Wang, Z. Analysis and prediction of landscape ecological risk in Yellow River Basin. Bull. Soil. Water. Conserv. 2022, 42, 105–113. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, X.; Sun, Z.; Zhang, J.; Wang, G.; Jin, J.; Wang, G. Spatiotemporal precipitation variability and potential drivers during 1961–2015 over the Yellow River Basin, China. Weather 2019, 74, S32–S39. [Google Scholar] [CrossRef]
- Gu, T.; Guan, X.; Gao, Z.; Huang, X.; Guo, S. Correlation analysis of evapotranspiration with air temperature, precipitation, and wind speed over the Yellow River Basin. J. Meteorol. Environ. 2022, 38, 48–56. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, L. Exploring the relation between the industrial structure and the eco-environment based on an integrated approach: A case study of Beijing, China. Ecol. Indi. 2019, 103, 83–93. [Google Scholar] [CrossRef]
- Liang, B.; Zhang, Y. Study on the application of environmental impact assessment in municipal infrastructure construction. Sichuan Water Power 2020, 39, 66–70+75. [Google Scholar]
- Liao, L.; Ma, E.; Long, H.; Peng, X. Land Use Transition and Its Ecosystem Resilience Response in China during 1990–2020. Land 2022, 12, 141. [Google Scholar] [CrossRef]
- Shi, L.; Wang, Y. Evolution characteristics and driving factors of negative decoupled rural residential land and resident population in the Yellow River Basin. Land Use Policy 2021, 109, 105685. [Google Scholar] [CrossRef]
- Liu, T.; Peng, R.; Zhuo, Y.; Cao, G. China’s changing population distribution and influencing factors: Insights from the 2020 census data. Acta. Geogr. Sin. 2022, 77, 381–394. [Google Scholar] [CrossRef]
- Cao, X.; Ci, F. Study on the Coupling Development of Industry, City and Population in the Yellow River Basin from the Perspective of Green Economy. Sustainability 2023, 15, 10029. [Google Scholar] [CrossRef]
- Zhang, Y.; Sai, N.; Zhao, M. Policy reward and punishment mechanism and local government selective implementation: A comparative case study in the field of environmental protection. Expand. Horiz. 2024, 5, 99–108. [Google Scholar]
- Abdo, J.; Griffin, S.; Kemp, A.; Coupland, G. Has a dedicated biodiversity offsets policy improved the environmental and social compensation outcomes of development in Australia? In Environment, Development and Sustainability; Springer: Berlin/Heidelberg, Germany, 2024; prepublish; pp. 1–26. [Google Scholar] [CrossRef]
- Manu, K.; Asongu, A. The impact of environmental policy, technological innovations, and digitalisation: Does context matter in natural resource management in Sub-Sahara Africa? Extr. Ind. Soc. 2025, 22, 101608. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, H.; Mahmood, A.; Xue, C. Analysis of influencing factors of carbon emissions in resource-based cities in the Yellow River basin under carbon neutrality target. Environ. Sci. Pollut. Res. 2021, 29, 23847–23860. [Google Scholar] [CrossRef]
- Cui, Y.; Li, L.; Lei, Y.; Wu, S. The performance and influencing factors of high-quality development of resource-based cities in the Yellow River basin under reducing pollution and carbon emissions constraints. Resour Pol. 2024, 88, 104488. [Google Scholar] [CrossRef]
- Guan, J.; Zhang, J. From “control” to “maching”: Policy rethinking and policy direction in urban scale governance. Admin. Law. 2023, 11, 68–78. [Google Scholar]
- Qu, Y.; Wang, S.; Tian, Y.; Jiang, G.; Zhou, T.; Meng, L. Territorial spatial planning for regional high-quality development—An analytical framework for the identification, mediation and transmission of potential land utilization conflicts in the Yellow River Delta. Land Use Policy 2023, 125, 106462. [Google Scholar] [CrossRef]
- Damien, N.; Timo, D. Farmland Fragmentation, Farmland Consolidation and Food Security: Relationships, Research Lapses and Future Perspectives. Land 2021, 10, 129. [Google Scholar] [CrossRef]
- Daniels, T.L. Assessing the Performance of Farmland Preservation in America’s Farmland Preservation Heartland: A Policy Review. Soc. Nat. Resour. 2020, 33, 758–768. [Google Scholar] [CrossRef]
- Yi, J.; Ou, M.; Guo, J. Land use planning in the era of territorial spatial planning: Historical contribution and mission of the times. J. Nanjing. Agri. Univ. Soc. Sci. Ed. 2022, 22, 146–158. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, T.; Zhang, J.; Shang, Y. On the modern territorial spatial governance system from the perspective of ecological civilization. Urban Dev. Stu. 2024, 31, 15–22. [Google Scholar]
- Zhang, P.; Chang, M. Study on the influence of urban expansion on cultivated land utilization intensity in China. J. Phys. Conf. Ser. 2021, 1802, 042058. [Google Scholar] [CrossRef]
- Li, J.; Deng, X.D.; Karen, C.S. Multi-level modeling of urban expansion and cultivated land conversion for urban hotspot counties in China. Landsc. Urban. Plan. 2012, 108, 131–139. [Google Scholar] [CrossRef]
Data Type | Name | Resolution | Data Sources |
---|---|---|---|
Physical geographic data | Administrative boundaries | - | National Platform for Common GeoSpatial Information Service (https://www.tianditu.gov.cn/, accessed on 5 to 7 July 2024) |
Land-use data | 1 km | Resource and Environment Science Data Platform of the Chinese Academy of Sciences (https://www.resdc.cn/DOI/, accessed on 28 July 2024) | |
Population density | 500 m | ||
Average annual temperature | 1 km | ||
Average annual precipitation | 1 km | ||
Altitude | 30 m | ||
Slope | 30 m | ||
River network density | 1 km | National Geographic Information Resources Catalogue Service System (https://www.webmap.cn/, accessed on 30 July 2024) | |
Socio-economic data | Growth rate of value added by primary industry | - | Municipal Statistical Yearbook from 2006 to 2021 Municipal Statistical Bulletin from 2005 to 2020 |
Growth rate of value added by secondary sector | - | ||
Per capita fiscal revenue | - | ||
GDP per capita | - | ||
Road area per capita | - | ||
Greening coverage in built-up areas | - | ||
Sulfur dioxide (SO2) emissions | - | ||
Policy data | Ecological-protection policy score | - | PKULAW (https://www.pkulaw.com/, accessed on 27 July to 15 August 2024) |
Threat Source Factors | Maximum Impact Distance (km) | Weight | Attenuation Type |
---|---|---|---|
Farmland | 5 | 0.6 | Exponential decay |
Rural settlements | 8 | 0.8 | Exponential decay |
Urban construction land | 10 | 1.0 | Exponential decay |
Other construction land | 9 | 0.9 | Exponential decay |
Unused land | 4 | 0.4 | Linear attenuation |
Land-Use Type | Habitat Suitability | Sensitivity | ||||
---|---|---|---|---|---|---|
Farmland | Rural Settlements | Urban Construction Land | Other Construction Land | Unused Land | ||
Farmland | 0.5 | 0 | 0.5 | 0.7 | 0.6 | 0.4 |
Forest | 0.9 | 0.6 | 0.7 | 0.7 | 0.8 | 0.2 |
Grassland | 0.85 | 0.7 | 0.5 | 0.6 | 0.7 | 0.5 |
Water area | 1 | 0.5 | 0.7 | 0.7 | 0.6 | 0.5 |
Construction land | 0 | 0 | 0 | 0 | 0 | 0 |
Unused land | 0.5 | 0.2 | 0.4 | 0.6 | 0.5 | 0 |
Land-Use Type | 2005 | 2010 | 2015 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
Area | Percentage | Area | Percentage | Area | Percentage | Area | Percentage | |
Farmland | 35.27 | 35.63 | 35.09 | 35.45 | 34.83 | 35.19 | 33.81 | 34.16 |
Forest | 13.01 | 13.14 | 13.06 | 13.19 | 13.07 | 13.20 | 13.19 | 13.33 |
Grassland | 36.67 | 37.05 | 36.72 | 37.10 | 36.60 | 36.98 | 36.42 | 36.80 |
Water area | 1.66 | 1.67 | 1.67 | 1.69 | 1.71 | 1.73 | 1.95 | 1.97 |
Construction land | 4.30 | 4.34 | 4.45 | 4.50 | 4.95 | 5.00 | 5.99 | 6.05 |
Unused land | 8.07 | 8.15 | 7.99 | 8.07 | 7.82 | 7.90 | 7.62 | 7.70 |
Year | 2020 | |||||||
---|---|---|---|---|---|---|---|---|
Type | Farmland | Forest | Grassland | Water Area | Construction Land | Unused Land | Cumulative Transition-Out | |
2005 | Farmland | 23.25 | 1.78 | 6.98 | 0.57 | 3.06 | 0.33 | 12.72 |
Forest | 1.70 | 8.02 | 2.86 | 0.06 | 0.19 | 0.09 | 4.90 | |
Grassland | 6.71 | 3.02 | 24.41 | 0.34 | 0.71 | 1.76 | 12.54 | |
Water area | 0.47 | 0.05 | 0.32 | 0.50 | 0.10 | 0.08 | 1.02 | |
Construction land | 1.85 | 0.08 | 0.36 | 0.21 | 1.11 | 0.04 | 2.54 | |
Unused land | 0.44 | 0.13 | 1.91 | 0.15 | 0.13 | 5.21 | 2.76 | |
Cumulative transition-in | 11.17 | 5.06 | 12.43 | 1.33 | 4.19 | 2.30 |
Habitat Quality Rating | Habitat Quality Index | Percentage of Different Classes of Habitat Quality by Year | |||
---|---|---|---|---|---|
2005 | 2010 | 2015 | 2020 | ||
Low | 0–0.2 | 47.67 | 50.06 | 50.08 | 47.03 |
Relatively low | 0.2–0.4 | 21.54 | 22.18 | 22.14 | 21.32 |
Medium | 0.4–0.6 | 20.46 | 17.75 | 17.76 | 21.08 |
Relatively high | 0.6–0.8 | 4.82 | 4.61 | 4.62 | 4.85 |
High | 0.8–1 | 5.51 | 5.41 | 5.40 | 5.72 |
Variant | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | 1.00 | |||||||||||||
X2 | 0.47 | 1.00 | ||||||||||||
X3 | 0.27 | 0.14 | 1.00 | |||||||||||
X4 | 0.55 | 0.13 | 0.42 | 1.00 | ||||||||||
X5 | −0.38 | −0.14 | 0.13 | 0.53 | 1.00 | |||||||||
X6 | −0.47 | 0.20 | 0.27 | 0.51 | 0.36 | 1.00 | ||||||||
X7 | −0.42 | 0.25 | 0.17 | 0.09 | 0.10 | 0.04 | 1.00 | |||||||
X8 | −0.52 | −0.33 | 0.00 | −0.25 | −0.30 | −0.24 | −0.26 | 1.00 | ||||||
X9 | −0.67 | 0.03 | 0.23 | 0.71 | 0.51 | 0.55 | 0.18 | −0.31 | 1.00 | |||||
X10 | −0.05 | −0.24 | 0.13 | 0.12 | 0.31 | 0.33 | −0.04 | 0.10 | 0.22 | 1.00 | ||||
X11 | 0.16 | −0.08 | −0.02 | 0.11 | 0.57 | 0.36 | −0.06 | −0.22 | 0.15 | 0.76 | 1.00 | |||
X12 | 0.04 | 0.26 | −0.07 | −0.76 | −0.19 | −0.35 | 0.39 | 0.00 | −0.13 | −0.48 | −0.40 | 1.00 | ||
X13 | 0.14 | 0.35 | −0.12 | −0.18 | −0.34 | −0.84 | 0.17 | 0.18 | −0.06 | −0.92 | −0.72 | −0.77 | 1.00 | |
X14 | 0.29 | 0.10 | 0.00 | −0.22 | 0.20 | 0.07 | 0.06 | −0.18 | −0.27 | 0.63 | 0.77 | −0.16 | −0.49 | 1.00 |
Variables | Main |
---|---|
X1: Growth rate of value added by the primary industry | −0.0667 (0.0439) |
X2: Growth rate of value added by secondary industry | −0.176 *** (0.0481) |
X3: Per capita fiscal revenue | −0.0006 (0.0007) |
X4: GDP per capita | −0.0098 *** (0.0003) |
X5: Population density | 0.0014 *** (0.0042) |
X6: Road area per capita | −0.0900 (0.0900) |
X7: Ecological-protection policy score | 0.0489 ** (0.0221) |
X8: Sulphur dioxide (SO2) emissions | −0.0057 (0.0038) |
X9: Greening coverage in construction areas | 0.0644 (0.0765) |
X10: Average annual temperature | −0.0187 *** (0.0062) |
X11: Average annual precipitation | 0.0019 *** (0.0042) |
R2 | 0.688 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Liu, X.; Zhao, L.; Li, H.; Zhu, P.; Liu, R.; Wang, C.; Wang, B. Spatial and Temporal Analysis of Habitat Quality in the Yellow River Basin Based on Land-Use Transition and Its Driving Forces. Land 2025, 14, 759. https://doi.org/10.3390/land14040759
Xu Y, Liu X, Zhao L, Li H, Zhu P, Liu R, Wang C, Wang B. Spatial and Temporal Analysis of Habitat Quality in the Yellow River Basin Based on Land-Use Transition and Its Driving Forces. Land. 2025; 14(4):759. https://doi.org/10.3390/land14040759
Chicago/Turabian StyleXu, Yibo, Xiaohuang Liu, Lianrong Zhao, Hongyu Li, Ping Zhu, Run Liu, Chao Wang, and Bo Wang. 2025. "Spatial and Temporal Analysis of Habitat Quality in the Yellow River Basin Based on Land-Use Transition and Its Driving Forces" Land 14, no. 4: 759. https://doi.org/10.3390/land14040759
APA StyleXu, Y., Liu, X., Zhao, L., Li, H., Zhu, P., Liu, R., Wang, C., & Wang, B. (2025). Spatial and Temporal Analysis of Habitat Quality in the Yellow River Basin Based on Land-Use Transition and Its Driving Forces. Land, 14(4), 759. https://doi.org/10.3390/land14040759