Challenges to the Sustainability of Urban Cultural Heritage in the Anthropocene: The Case of Suzhou, Yangtze River Delta, China
Abstract
:1. Introduction
2. Anthropocene Threats to Urban Cultural Heritage
2.1. Climate Change
2.2. Sea Level Rise
2.3. Land Subsidence
2.4. Water and Air Pollution
2.5. Urbanization
2.6. Tourism
3. Suzhou’s Tangible Cultural Urban Heritage
4. Threats to the Sustainability of Suzhou’s Tangible Cultural Heritage in the Anthropocene
4.1. Climate Change, Sea Level Rise, and Land Subsidence in Suzhou
4.2. Air and Water Pollution in Suzhou
4.3. Urban Expansion in Suzhou
4.4. Tourism and Suzhou
5. The Future of Suzhou’s Cultural Urban Heritage
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | https://www.suzhou.gov.cn/, accessed 25 on March 2025. |
2 | https://www.suzhou.gov.cn/szsenglish/szcymb/202108/fe7c6774e9b745739161e97f348264a5.shtml, accessed on 25 March 2025. |
References
- Wang, Q.; Liu, K.; Ni., X.; Wang, M. Extreme climate change and contemporary analogs for cities in mainland China in a 2.0 °C warmer climate. Clim. Serv. 2023, 30, 100348. [Google Scholar] [CrossRef]
- Orr, S.A.; Richards, J.; Fatoric, S. Climate change and cultural heritage: A systematic literature review (2016-2020). Hist. Environ. Pol. Pract. 2021, 12, 434–477. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantell, C.; Cassar, J.; Hughes, J.J. Climate change impacts on cultural heritage: A literature review. WIREs Clim. Change 2021, 12, e710. [Google Scholar] [CrossRef]
- Fluck, H.; Dawson, M. Climate change and the historic environment. Environ. Pol. Prac. 2021, 12, 263–270. [Google Scholar] [CrossRef]
- Witze, A. Geologists reject the Anthropocene as Earth’s new epoch—After 15 years of debate. Nature 2024, 627, 249–250. [Google Scholar] [CrossRef]
- Ellis, E.C. The Anthropocene condition: Evolving through social-ecological transformations. Phil. Trans. Roy. Soc. B 2023, 379, 20220255. [Google Scholar] [CrossRef] [PubMed]
- Day, J.C.; Heron, S.F.; Markham, A. Assessing the climate vulnerability of the world’s natural and cultural heritage. Park Stew. Forum 2020, 36, 144–153. [Google Scholar] [CrossRef]
- Fatoric, S.; Seekamp, E. Are cultural heritage and resources threatened by climate change? A systematic literature review. Clim. Change 2017, 142, 227–254. [Google Scholar] [CrossRef]
- Wu, F.; Wang, W.; Feng, H.; Ji-Dong, G. Realization of biodeterioration to cultural heritage protection in China. Int. Biodet. Biodegr. 2017, 117, 128–130. [Google Scholar] [CrossRef]
- Qu, J.; Cao, S.; Li, G.; Niu, Q.; Feng, Q. Conservation of natural and cultural heritage in Dunhuang, China. Gondwana Res. 2014, 26, 1216–1221. [Google Scholar] [CrossRef]
- Nguyen, K.M.; Baker, S. Climate change impacts on UNESCO World Heritage-Listedcultural properties in the Asia–Pacific region: A systematic review of State of Conservation reports, 1979–2021. Sustainability 2023, 15, 14141. [Google Scholar] [CrossRef]
- Basu, S.; Orr, S.A.; Aktas, Y.D. A geological perspective on climate change and building stone deterioration in London: Implications for urban stone-built heritage research and management. Atmosphere 2020, 11, 788. [Google Scholar] [CrossRef]
- Monastersky, R. Anthropocene: The human age. Nature 2015, 519, 144–147. [Google Scholar] [CrossRef]
- Keys, P.W.; Galaz, V.; Dyer, M.; Matthews, N.; Folke, C.; Nyström, M.; Cornell, S.E. Anthropocene risk. Nat. Sustain. 2019, 2, 667–673. [Google Scholar] [CrossRef]
- Eze, A.; Siegmund, E. Exploring factors of disaster preparedness in UNESCO-designated heritage sites. Geogr. Sustain. 2024, 5, 392–404. [Google Scholar] [CrossRef]
- Zaccariello, G.; Tesser, E.; Piovesan, R.; Antonelli, F. The (building) stones of venice under threat: A study about their deterioration between climate change and land subsidence. Sustainability 2024, 16, 4701. [Google Scholar] [CrossRef]
- Kasperson, P.S.; Halsnæs, K. Integrated climate change risk assessment: A practical application for urban flooding during extreme precipitation. Clim. Serv. 2017, 6, 55–64. [Google Scholar] [CrossRef]
- Cao, J.; Li, T. Analysis of spatiotemporal changes in cultural heritage protected cities and their influencing factors: Evidence from China. Ecol. Indicat. 2023, 51, 110327. [Google Scholar] [CrossRef]
- Aktas, Y.D. Urban heritage in the face of a changing climate. Atmosphere 2021, 12, 1007. [Google Scholar] [CrossRef]
- Viles, H. Biogeomorphology. In The History of the Study of Landforms or the Development of Geomorphology. Volume 5: Geomorphology in the Second Half of the Twentieth Century; Burt, T.P., Goudie, A.S., Viles, H.A., Eds.; Geological Society, London, Memoirs: London, UK, 2022; Volume 58, pp. 205–212. [Google Scholar] [CrossRef]
- Brischke, C.; Rapp, A.O. Potential impacts of climate change on wood deterioration. Int. Wood Prod. J. 2010, 1, 85–92. [Google Scholar] [CrossRef]
- Cutler, N.A.; Viles, H.A.; Ahmad, S.; McCabe, S.; Smith, B. Algal ‘greening’ and the conservation of stone heritage structures. Sci. Total Environ. 2013, 442, 132–164. [Google Scholar] [CrossRef]
- Grøntoft, T. Observed recent change in climate and potential for decay of Norwegian wood structures. Climate 2019, 7, 33. [Google Scholar] [CrossRef]
- Casenava, A.; Moreira, L. Contemporary sea-level changes from global to local scales: A review. Proc. R. Soc. A 2023, 478, 20220049. [Google Scholar] [CrossRef] [PubMed]
- Habel, S.; Fletcher, C.H.; Barbee, M.E.; Fornace, K.L. Hidden threat: The influence of sea-level rise on coastal groundwater and the convergence of impacts on municipal infrastructure. Ann. Rev. Mar. Sci. 2024, 16, 81–103. [Google Scholar] [CrossRef]
- Marzeion, B.; Levermann, A. Loss of cultural world heritage and currently inhabited places to sea-level rise. Environ. Res. Lett. 2014, 9, 034001. [Google Scholar] [CrossRef]
- Qu, Y.; Jevrejeva, S.; Jackson, L.P.; Moore, J.C. Coastal sea level rise around the China Seas. Glob. Planet. Ch. 2019, 172, 454–463. [Google Scholar] [CrossRef]
- Li, Y.; Jia, X.; Liu, Z.; Zhao, L.; Sheng, P.; Storozum, M. The potential impact of rising sea levels on China’s coastal cultural heritage. Antiquity 2022, 96, 406–421. [Google Scholar] [CrossRef]
- Chen, M.; Wang, J.; Sun, J.; Ye, F.; Zhang, H. Spatio-temporal distribution characteristics of intangible cultural heritage and tourism response in the Beijing-Hangzhou Grand Canal basin in China. Sustainability 2024, 15, 10348. [Google Scholar] [CrossRef]
- Bagheri-Gavkosh, M.; Mossa Hosseini, S.; Ataie-Ashtiani, B.; Sohani, Y.; Ebrahimian, H.; Morvat, F.; Ashrafi, S. Land subsidence: A global challenge. Sci. Total Environ. 2021, 778, 146193. [Google Scholar] [CrossRef]
- Ao, Z.; Hu, X.; Tao, S.; Hu, X.; Wang, G.; Li, M.; Wang, F.; Hu, L.; Liang, X.; Xiao, J.; et al. A national-scale assessment of land subsidence in China’s major cities. Science 2024, 384, 301–306. [Google Scholar] [CrossRef]
- Vidovic, K.; Hočevar, S.; Menart, E.; Drventić, I.; Grgić, I.; Kroflič, A. Impact of air pollution on outdoor cultural heritage objects and decoding the role of particulate matter: A critical review. Environ. Sci. Pollut. Res. 2022, 9, 46405–46437. [Google Scholar] [CrossRef]
- Xiao, B.; Ning, L.; Lin, Z.; Wang, S.; Zang, H. The impact of air pollution on the protection of world heritage in China. Int. J. Environ. Res. Publ. Health 2022, 19, 10226. [Google Scholar] [CrossRef]
- Patrón, D.; Lyamaini, H.; Totos, G.; Coasquero-Vera, J.A.; Cordell, C.; Mocnik, G.; Alados-Arboledas, L.; Olmo, F.J. Monumental heritage exposure to urban black carbon pollution. Atmos. Environ. 2017, 170, 22–32. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Nolf, C. Historic landscape of Suzhou beyond the tourist gaze. In Suzhou in Transition; Tang, B., Cheung, P., Eds.; Routledge: Abingdon, UK, 2021; pp. 42–86. Available online: https://www.routledge.com/Suzhou-in-Transition/Tang-Cheung/p/book/9780367439903 (accessed on 24 March 2025).
- Qin, B.; Zjhang, Y.; Zhu, G.; Gao, G. Eutrophication control of large shallow lakes in China. Sci. Total Environ. 2023, 881, 63494. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Wei, H.; Lu, S.; Qi, D.; Su, H. Assessment of the urbanization strategy in China: Achievements, challenges and reflections. Habit. Int. 2018, 71, 97–109. [Google Scholar] [CrossRef]
- Hu, Y. Identity and preservation of traditional culture in the context of urbanization in China. Stud. Art Architect. 2023, 2, 86–89. [Google Scholar] [CrossRef]
- Zhu, Y.; Gonzalez Martinez, P. Heritage, values and gentrification: The redevelopment of historic areas in China. Int. J. Herit. Studs. 2022, 28, 476–494. [Google Scholar] [CrossRef]
- Helbling, M.; Meierrieks, D. Global warming and urbanization. J. Pop. Econ. 2023, 36, 1187–1223. [Google Scholar]
- Wang, S.; Hu, Y.; He, H.; Wang, G. Progress and prospects for tourism footprint research. Sustainability 2017, 9, 1847. [Google Scholar] [CrossRef]
- Zhuang, X.; Yao, Y.; Li, L. Sociocultural impacts of tourism on residents of World Cultural Heritage sites in China. Sustainability 2019, 11, 840. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.; Ding, Y. The Baidu Index: Uses in predicting tourism flows—A case study of the Forbidden City. Tourism Manag. 2017, 58, 301–306. [Google Scholar] [CrossRef]
- Yao, Z. World cultural heritage: The management of the Forbidden City. Hist. Environ. Pol. Prac. 2024, 15, 21–38. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, T.; Han, Y.; Ikebe, K. Urban heritage conservation and modern urban development from the perspective of the historic urban landscape approach: A case study of Suzhou. Land 2022, 11, 1251. [Google Scholar] [CrossRef]
- Wang, L.; Shen, J.; Chung, C.K.L. City profile: Suzhou—A Chinese city under transformation. Cities 2015, 44, 60–72. [Google Scholar] [CrossRef]
- Zhang, T.; Lian, Z. Research on the distribution and scale evolution of Suzhou Gardens under the urbanization process from Tang to the Qing Dynasty. Land 2021, 10, 281. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, S. Spatio-temporal evolution and distribution of cultural heritage sites along the Suzhou canal of China. Herit. Sci. 2023, 11, 118. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Lin, J.; Ye, Y. The construction of placeness in traditional handicraft heritage sites: A case study of Suzhou embroidery. Sustainability 2021, 13, 9176. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.C. Chinese Classical Gardens of Suzhou; McGraw-Hill: New York, NY, USA, 1993; ISBN13: 978-0070108769. [Google Scholar]
- Ren, Y.; Djabarouti, J. Towards a holistic narration of place: Conserving natural and built heritage at the Humble Administrator’s Garden, China. Architecture 2023, 3, 446–460. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, W.; Boelens, L. City profile: Suzhou, China—The interaction of water and city. Cities 2021, 112, 103119. [Google Scholar] [CrossRef]
- Cai, J.; Peng, J. Introduction of Beijing-Hangzhou Grand Canal and analysis of its heritage values. J. Hydro-Environ. Res. 2023, 26, 2–7. [Google Scholar] [CrossRef]
- Yan, H. The making of the Grand Canal in China: Beyond knowledge and power. Int. J. Hert. Studs. 2024, 27, 584–600. [Google Scholar] [CrossRef]
- Du, Y.; He, Y. Environment-feature-culture: Inheritance and innovation of traditional regional architecture in Jiangnan—Take Suzhou Museum as an example. Acad. J. Arch. Geotech. Eng. 2023, 7, 20–26. [Google Scholar] [CrossRef]
- Xie, J.; Heath, T. Conservation and revitalization of historic streets in China: Pingjiang Street, Suzhou. J. Urb. Des. 2017, 22, 455–476. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, X.; Li, J.; Sun, J.; Huang, Q. Progress of gentrification research in China: A bibliometric review. Sustainability 2019, 11, 367. [Google Scholar] [CrossRef]
- Niu, Y.; Mi, X.; Wang, Z. Vitality evaluation of the waterfront space in the ancient city of Suzhou. Front. Architect. Res. 2021, 10, 729–740. [Google Scholar] [CrossRef]
- Breitung, W.; Lu, J. Suzhou’s water grid as urban heritage and tourism resource: An urban morphology approach to a Chinese city. J. Herit. Tour. 2017, 12, 251–266. [Google Scholar] [CrossRef]
- Natikar, P.; Sasvihalli, P.; Halugundegowda, G.R.; Sarvamangala, H.S. Effect of global warming on silk farming: A review. Pharm Innov. J. 2023, 12, 3714–3719. [Google Scholar]
- Zhou, C.; Zhu, N.; Xu, J.; Yang, D. The contribution rate of driving factors and interactions to temperature in the Yangtze River Delta region. Atmosphere 2020, 11, 32. [Google Scholar] [CrossRef]
- Du, Y.; Xie, Z.; Zeng, Y.; Shi, Y.; Wu, J. Impact of urban expansion on regional temperature change in the Yangtze River Delta. J. Geogr. Sci. 2007, 17, 387–398. [Google Scholar] [CrossRef]
- Xu, Y.; Qin, Z.; Wan, H. Spatial and temporal dynamics of urban heat island and their relationship with land cover changes in urbanization process: A case study in Suzhou, China. J. Ind. Soc. Remote Sens. 2010, 38, 654–663. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, N.; Zhu, Y. High-resolution simulations of the urban thermal climate in Suzhou City, China. Atmosphere 2019, 10, 118. [Google Scholar] [CrossRef]
- Zhang, N.; Zhu, L.; Zhu, T. Urban heat island and boundary layer structures under hot weather synoptic conditions: A case study of Suzhou city, China. Adv. Atmos. Sci. 2011, 4, 855–865. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, C.; Yang, J. Quantitative analysis of the impact of climate variability and human activities on water resources change in Suzhou. IOP Conf. Ser. Earth Environ. Sci. 2020, 435, 012015. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Liu, K.; Wu, Y.; Gao, C. Detection of flood trends and drivers in the Taihu Basin, China. J. Hydrol. Region. Stud. 2024, 56, 101990. [Google Scholar] [CrossRef]
- Hao, M.; Gao, C.; Gu, C.; Hou, T.; Zhang, Y. Numerical simulation of the impact of urbanization on climate in Taihu Lake basin. Ecol. Indic. 2023, 154, 110522. [Google Scholar] [CrossRef]
- Tian, F.Y.; Zheng, Y.G.; Zhang, T.; Zhang, X.L.; Mao, D.Y.; Sun, J.H.; Zhao, S.X. Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and eastern China. J. Meteorol. Res. 2015, 29, 370–384. [Google Scholar] [CrossRef]
- Wu, J.; Wu, J.-Y.; Lin, H.-J.; Ji, H.-P.; Liu, M. Hydrological response to climate change and human activities: A case study of Taihu Basin, China. Water Sci. Eng. 2020, 13, 83–94. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, Y.; Dai, X.; Wang, Q.; Gao, B.; Xiang, J.; Yuan, J. Changes in the plain river system and its hydrological characteristics under urbanization—Case study of Suzhou City, China. Hydrol. Sci. J. 2019, 54, 2068–2079. [Google Scholar] [CrossRef]
- Li, W.; Zhao, M.; Scaioni, M.; Hosseini, S.R.; Wang, X.; Yan, D.; Zhang, K.; Gao, J.; Li, X. Extreme rainfall trends of 21 typical urban areas in China during 1998–2015 based on remotely sensed data sets. Environ. Monit. Assess. 2019, 191, 709. [Google Scholar] [CrossRef]
- Zhu, J.; Cheng, X.; Li, L.; Wu, H.; Gu, J.; Lyu, H. Dynamic mechanism of an extremely severe saltwater intrusion in the Changjiang estuary in February 2014. Hydrol. Earth Syst. Sci. 2020, 24, 5043–50556. [Google Scholar] [CrossRef]
- Mu, D.; Xu, T.; Yan, H. Sea level rise along China coast from 1950 to 2020. Sci. China Earth Sci. 2024, 67, 802–810. [Google Scholar] [CrossRef]
- Shi, G.; Ma, P.; Liu, X.; Huang, B.; Lin, H. Surface response and subsurface features during the restriction of groundwater exploitation in Suzhou (China) inferred from decadal SAR interferometry. Remote Sens. Environ. 2021, 256, 112327. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, D.; Chen, Y. Analysis of spatiotemporal analysis of land subsidence patterns of Suzhou, China, over the past 15 years based on multisource SAR data. J. Ind. Soc. Rerm. Sens. 2022, 50, 1347–1369. [Google Scholar] [CrossRef]
- Zheng, X.; Menezes, F.; Zheng, X.; Wu, C. An empirical assessment of the impact of subsidies on EV adoption in China: A difference-in-differences approach. Trans. Res. A 2023, 162, 121–136. [Google Scholar] [CrossRef]
- Tian, M.I.; Wang, H.; Chen, Y.; Yang, F.; Zhang, X.; Zou, Q.; Zhang, R.; Ma, Y.; He, K. Characteristics of aerosol pollution during heavy haze events in Suzhou, China. Atmos. Chem. Phys. 2016, 16, 7357–7371. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Qu, Y.; Gao, F.; Li, Y. Response of common garden plant leaf traits to air pollution in urban parks of Suzhou city, (China). Forests 2023, 14, 2253. [Google Scholar] [CrossRef]
- Sicard, P.; Agathokleous, E.; Anenberg, S.C.; de Marco, A.; Paoletti, E.; Catalayud, V. Trends in urban air pollution over the last two decades: A global perspective. Sci. Total Environ. 2023, 858, 160064. [Google Scholar] [CrossRef]
- Qi, L.; Zhang, K.; Giguet-Covex, C.; Arnaud, F.; McGowan, S.; Cap, E.; Huang, S.; Ficetola, G.F.; Shen, J.; Dearing, J.A.; et al. Transient social-ecological dynamics reveal signals of decoupling in a highly disturbed Anthropocene landscape. Proc. Nat. Acad. Sci. USA 2024, 121, e2321303121. [Google Scholar] [CrossRef]
- Wang, X.; Han, J.; Xu, L.; Qi, Z. Spatial and seasonal variations of the contamination within water body of the Grand Canal, China. Environ. Pollut. 2010, 158, 1513–1520. [Google Scholar] [CrossRef]
- Yu, S.; Yu, G.B.; Liu, Y.; Li, L.; Feng, S.; Wu, S.C.; Wong, M.H. Urbanization impairs surface water quality: Eutrophication and metal stress in the Grand Canal of China. River Res. Applic. 2012, 28, 1135–1148. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Zhang, X.; Wang, X.; Liu, T.; Li, Z.; Lin, Q.; Jing, Z.; Wang, X.; Huang, Q.; et al. Habitat quality assessment and ecological risks prediction: An analysis of the Beijing-Hangzhou Grand Canal (Suzhou Section). Water 2022, 14, 2602. [Google Scholar] [CrossRef]
- Tsung, N.; Corotis, R.; Chinowski, P.; Amadel, B. A retrospective approach to assessing the sustainability of the Grand Canal of China. Struct. Infrastruct. Engin. 2012, 9, 297–316. [Google Scholar] [CrossRef]
- Li, H.; Yu, X.; Zhang, W.; Huan, Y.; Yu, J.; Zhang, Y. Risk assessment of groundwater organic pollution using hazard, intrinsic vulnerability and groundwater value, Suzhou City in China. Expo. Health 2018, 10, 99–115. [Google Scholar] [CrossRef]
- Wang, L.; Tao, Y.; Su, B.; Wang, L.; Liu, P. Environmental quality and human health risk of urban groundwater sources based on hydrochemical analysis: A case study of Suzhou, China. Pol. J. Environ. Stud. 2022, 31, 5519–5532. [Google Scholar] [CrossRef]
- Xu, J.; Zhuang, Q.; Fu, Y.; Huang, Y.; Sun, Z.; Liu, Z. Spatial distribution, pollution levels, and source identification of heavy metals in wetlands of Suzhou Industrial Park, China. Wetlands Ecol. Mngmt. 2019, 27, 743–756. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, Y.D.; Meng, R. Spatiotemporal dynamics and spatial determinants of urban growth in Suzhou, China. Sustainability 2017, 9, 393. [Google Scholar] [CrossRef]
- Jiang, J.; Zang, T.; Xing, J.; Ikebe, K. Spatial distribution of urban heritage and landscape approach to urban contextual continuity: The case of Suzhou. Land 2023, 12, 150. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, Q.; Tang, Y.; Pan, J.; Li, Q. Assessment of urbanization impact on cultural heritage based on a risk-based cumulative impact assessment method. Herit. Sci. 2023, 11, 177. [Google Scholar] [CrossRef]
- Wang, D.; Tang, J.; Wang, M.; Zhao, M. Spatial evolution and influence mechanism of tourism in historic quarters from the postmodern consumption perspective: A case study of Pingjiang road and Shantang Street, Suzhou, China. Asia Pacif. J. Tour. Res. 2022, 27. [Google Scholar] [CrossRef]
- MacPhearson, T.; Raymond, C.M.; Gulsrud, N.; Albert, C.; Coles, N.; Fagerholm, N.; Nagatsu, M.; Olafsson, A.S.; Soininen, N.; Vierikko, K. Radical changes are needed for transformation to a good Anthropocene. NPJ Urban. Sustain. 2021, 1, 5. [Google Scholar]
- Shepherd, N. (Ed.) Rethinking Heritage in Precarious Times; Routledge: London, UK, 2023; 376p, ISBN 9781003188438. [Google Scholar]
- O’Donnell, P. Historic Urban Landscape. A new UNESCO Tool for a sustainable future. In Conserving Cultural Landscapes. Challenges and New Directions; Taylor, K., St. Clair, A., Mitchell, N., Eds.; Routledge: New York, NY, USA, 2024; pp. 163–181. ISBN 9780415744058. [Google Scholar]
- Erkan, Y. The way forward with historic urban landscape approach towards sustainable urban development. Built Herit. 2018, 2, 82–89. [Google Scholar] [CrossRef]
- Bertolin, C. Preservation of cultural heritage and resources threatened by climate change. Geosciences 2019, 9, 250. [Google Scholar] [CrossRef]
- Blavier, C.L.S.; Cardenas, H.E.H.; Aste, N.; del Pero, C.; Leoforte, F.; della Torre, S. Adaptive measures for preserving heritage buildings in the face of climate change: A review. Build. Environ. 2023, 245, 110832. [Google Scholar] [CrossRef]
- Bonazza, A.; Sardella, A. Climate change and cultural heritage: Methods and approaches for damage and risk assessment addressed to a practical application. Heritage 2023, 6, 3578–3589. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, Y.-P.; Wang, Q.; Wang, Y.-F.; Gao, C. Spatial diversion and coordination of flood water for an urban flood control project in Suzhou, China. Water Sci. Eng. 2024, 17, 108–117. [Google Scholar] [CrossRef]
- Wu, J.; Shi, B.; Gu, K.; Liu, S.; Wei, G. Evaluation of land subsidence potential by linking subsurface deformation to microstructure characteristics in Suzhou, China. Bull. Eng. Geol. Environ. 2021, 80, 2587–2600. [Google Scholar] [CrossRef]
- Chen, F.; Guo, H.; Ma, P.; Tang, Y.; Wu, F.; Zhu, M.; Zhou, W.; Gao, S.; Lin, H. Sustainable development of World Cultural Heritage sites in China estimated from optical and SAR remotely sensed data. Remote Sens. Environ. 2023, 11, 113838. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Chen, Y.; Zhang, N.; Fan, H.; Zhang, Z. 3D LiDAR and multi-technology collaboration for preservation of built heritage in China: A review. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103156. [Google Scholar] [CrossRef]
- Labadi, S. Rethinking Heritage for Sustainable Development; University College London Press: London, UK, 2021. [Google Scholar] [CrossRef]
- Lin, W.; Hong, C.; Zhou, Y. Multi-scale evaluation of Suzhou city’s sustainable development level based on the Sustainable Development Goals framework. Sustainability 2020, 12, 976. [Google Scholar] [CrossRef]
- El Faouri, B.F.; Sibley, M. Balancing social and cultural priorities in the UN 2030 Sustainable Development Goals (SDGs) for UNESCO World Heritage Cities. Sustainability 2024, 16, 5883. [Google Scholar] [CrossRef]
- Lerario, A. The role of built heritage for Sustainable Development Goals. Heritage 2022, 5, 2444–2463. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Meadows, M.E. Challenges to the Sustainability of Urban Cultural Heritage in the Anthropocene: The Case of Suzhou, Yangtze River Delta, China. Land 2025, 14, 778. https://doi.org/10.3390/land14040778
Huang Y, Meadows ME. Challenges to the Sustainability of Urban Cultural Heritage in the Anthropocene: The Case of Suzhou, Yangtze River Delta, China. Land. 2025; 14(4):778. https://doi.org/10.3390/land14040778
Chicago/Turabian StyleHuang, Yong, and Michael Edward Meadows. 2025. "Challenges to the Sustainability of Urban Cultural Heritage in the Anthropocene: The Case of Suzhou, Yangtze River Delta, China" Land 14, no. 4: 778. https://doi.org/10.3390/land14040778
APA StyleHuang, Y., & Meadows, M. E. (2025). Challenges to the Sustainability of Urban Cultural Heritage in the Anthropocene: The Case of Suzhou, Yangtze River Delta, China. Land, 14(4), 778. https://doi.org/10.3390/land14040778