Transition Through Collaboration: New Agricultural Business Entities Can Promote Crop Rotation Adoption in Heilongjiang, China
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypothesis
2.1. Development of NABEs in China
2.2. Potential Channels for NABEs to Promote Crop Rotation
3. Materials and Methods
3.1. Data Sources and Study Area
3.2. Empirical Strategy
4. Results and Discussion
4.1. Impact of NABEs on Crop Rotation
4.2. Robustness Checks
4.3. Mechanism Analysis
5. Heterogeneous Effects of NABEs on Crop Rotations
5.1. Different Members of NABEs
5.2. Different Families
5.3. Different Climatic Conditions
6. Conclusions and Policy Implications
6.1. Conclusions
6.2. Policy Implications
6.3. Research Shortcomings and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- West, C.P.; Gerber, S.J.; Engstrom, M.P.; Mueller, N.D.; Brauman, K.A.; Carlson, K.M.; Cassidy, E.S.; Johnston, M.; MacDonald, G.K.; Ray, D.K.; et al. Leverage points for improving global food security and the environment. Science 2014, 345, 325–328. [Google Scholar] [CrossRef]
- Andrianarimanana, M.H.; Yongjian, P.; Rabezanahary Tanteliniaina, M.F. Assessment of the importance of climate, land, and soil on the global supply for agricultural products and global food security: Evidence from Madagascar. Food Policy 2023, 115, 102403. [Google Scholar] [CrossRef]
- Zheng, L.; Li, L.; Zhao, Z.; Qian, W. Does land certification increase farmers’ use of organic fertilizer? Evidence from China. J. Land Use Sci. 2023, 18, 39–54. [Google Scholar] [CrossRef]
- Li, Y.; Gao, G.; Wen, J.; Zhao, N.; Du, G.; Stanny, M. The measurement of agricultural disaster vulnerability in China and implications for land-supported agricultural resilience building. Land Use Policy 2025, 148, 107400. [Google Scholar] [CrossRef]
- Faye, B.; Du, G.; Li, Y.; Li, Q.; Diène, J.C.; Mbaye, E.; Kama, R. Connecting the farmers’ knowledge and behaviors: Detection of influencing factors to sustainable cultivated land protection in Thiès Region, Senegal. J. Rural Stud. 2025, 116, 103634. [Google Scholar] [CrossRef]
- Cassman, K.G.; Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 2020, 3, 262–268. [Google Scholar] [CrossRef]
- Zhang, X.; Bol, R.; Rahn, C.; Xiao, G.; Meng, F.; Wu, W. Agricultural sustainable intensification improved nitrogen use efficiency and maintained high crop yield during 1980–2014 in Northern China. Sci. Total Environ. 2017, 596, 61–68. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Zhang, R.; Du, G.; Faye, B.; Liu, H. Analysis of Farmers’ Crop Rotation Intention and Behavior Using Structural Equation Modeling: Evidence from Heilongjiang Province, China. Land 2025, 14, 158. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.B. Study on the Marginal Productivity of Cultivated Land with Change of Soil Organic Matter in China. Sci. Geogr. Sin. 2002, 22, 24–28. [Google Scholar]
- Qu, M.; Chen, J.; Huang, B.; Zhao, Y. Exploring the spatially varying relationships between cadmium accumulations and the main influential factors in the rice-wheat rotation system in a large-scale area. Sci. Total Environ. 2020, 736, 139565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, H.; Zhou, Y.; Dou, L.; Cai, L.; Mo, L.; You, J. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China. Environ. Pollut. Barking Essex 2018, 1987235, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Song, C.; Ye, S.; Cheng, C.; Gao, P. The spatiotemporal variation in heavy metals in China’s farmland soil over the past 20 years: A meta-analysis. Sci. Total Environ. 2022, 806, 150322. [Google Scholar] [CrossRef]
- Peng, M.G.; Zhao, C.; Ma, H.; Yang, Z.; Yang, K.; Liu, F.; Li, K.; Yang, Z.; Tang, S.; Guo, F.; et al. Heavy metal and Pb isotopic compositions of soil and maize from a major agricultural area in Northeast China: Contamination assessment and source apportionment. J. Geochem. Explor. 2020, 208, 106403. [Google Scholar] [CrossRef]
- Wei, A.; Jia, J.; Chang, P.; Wang, S. Status of Sustainable Balance Regulation of Heavy Metals in Agricultural Soils in China: A Comprehensive Review and Meta-Analysis. Agronomy 2024, 14, 450. [Google Scholar] [CrossRef]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef]
- Yang, X.; Xiong, J.; Du, T.; Ju, X.; Gan, Y.; Li, S.; Xia, L.; Shen, Y.; Pacenka, S.; Steenhuis, T.S.; et al. Diversifying crop rotation increases foud production, reduces net greenhouse gas emissions and improves soil health. Nat. Commun 2024, 15, 198. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, B.; Li, Y.; Liu, G.; Xiao, H.; Liao, Y.; Li, Y.; Zhang, Y. Effects of tobacco-rice rotation on rice planthoppers Sogatela furcifera (Horvath) and Nilaparvata lugens (Stål) (Homoptera: Delphacidae) in China. Plant Soil. 2015, 392, 333–344. [Google Scholar] [CrossRef]
- Wei, L.; Ga, T.; Zhu, Z.; Li, Y.; Wu, J.; Kuzyakov, Y. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma 2021, 398, 115121. [Google Scholar] [CrossRef]
- Peng, L. Investigation and evaluation of soil heavy metals in a wheat-maize cropping system in upland China. J. Agro-Environ. Sci. 2022, 41, 46–54. [Google Scholar]
- Lowder, S.K.; Sánchez, M.V.; Bertini, R. Farms, Family Farms, Farmland Distribution and Farm Labour: What do We Know Today? FAO: Rome, Italy, 2019. [Google Scholar]
- Lou, D.; Long, X.Z. The Multi-dimensional development mode and realistic reflection of the new agricultural management entities. Reform 2013, 228, 65–77. [Google Scholar]
- Ye, J.Z.; Dou, S.L.; Zhang, M.H. How can small farmers become organically involved in the development of modern agriculture? Chin Rural Econ. 2018, 11, 64–79. [Google Scholar] [CrossRef]
- Ni, H.; Leng, Y. New agricultural business entities participate in rural governance: Occurrence mechanism, historical logic and improvement path. Issue Agric. Econ. 2023, 12, 60–71. [Google Scholar] [CrossRef]
- Ruan, R.P.; Cao, B.X.; Zhou, P.; Zheng, F.T. The driving capacity of new agricultural management entities and its determinants: An analysis based on data from 2615 new agricultural management entities in China. Chin Rural Econ. 2017, 11, 17–32. [Google Scholar] [CrossRef]
- Huang, Z.; Liang, Q. Agricultural organizations and the role of farmer cooperatives in China since 1978: Past and future. China Agric. Econ. Rev. 2018, 10, 48–64. [Google Scholar] [CrossRef]
- Cheng, L.; Zou, W.; Duan, K. The Influence of New Agricultural Business Entities on the Economic Welfare of Farmer’s Families. Agriculture 2021, 11, 880. [Google Scholar] [CrossRef]
- Cheng, L.; Cui, Y.; Duan, K.; Zou, W. The Influence of New Agricultural Business Entities on Farmers’ Employment Decision. Land 2022, 11, 112. [Google Scholar] [CrossRef]
- Ma, L.; Li, C.; Xin, M.; Sun, N.; Teng, Y. Analysis of Efficiency Differences and Research on Moderate Operational Scale of New Agricultural Business Entities in Northeast China. Sustainability 2023, 15, 9746. [Google Scholar] [CrossRef]
- Czekaj, M.; Adamsone-Fiskovica, A.; Tyran, E.; Kilis, E. Small Farms’ Resilience Strategies to Face Economic, Social, and Environmental Disturbances in Selected Regions in Poland and Latvia. Glob. Food Secur.-Agric. Policy Econ. Environ. 2020, 26, 100416. [Google Scholar] [CrossRef]
- Dries, L.; Ciaian, P.; Kancs, D. Job Creation and Job Destruction in EU Agriculture. Food Policy 2012, 37, 600–608. [Google Scholar] [CrossRef]
- Guiomar, N.; Godinho, S.; Pinto-Correia, T.; Almeida, M.; Bartolini, F.; Bezák, P.; Biró, M.; Bjørkhaug, H.; Bojnec, Š.; Brunori, G.; et al. Typology and Distribution of Small Farms in Europe: Towards a Better Picture. Land Use Policy 2018, 75, 784–798. [Google Scholar] [CrossRef]
- Guo, D.; Guo, Y.; Jiang, K. Government-subsidized R&D and Firm Innovation: Evidence from China. Res. Policy 2016, 45, 1129–1144. [Google Scholar] [CrossRef]
- Kozera-Kowalska, M.; Uglis, J. Agribusiness as an Attractive Place to Work––A Gender Perspective. Agriculture 2021, 11, 202. [Google Scholar] [CrossRef]
- Adamisin, P.; Kotulic, R.; Kravcakova Vozarova, I. Legal form of agricultural entities as a factor in ensuring the sustainability of the economic performance of agriculture. Agric. Econ. 2017, 63, 80–92. [Google Scholar] [CrossRef]
- Kravčáková Vozárová, I.; Vavrek, R.; Adamišin, P.; Kotulič, R. Composite Analysis of Competitiveness: Case Study of Companies Working the Soil in the Slovak Republic. Agriculture 2023, 13, 603. [Google Scholar] [CrossRef]
- Cai, R.; Ma, W.; Su, Y. Effects of member size and selective incentives of agricultural cooperatives on product quality. Brit. Food J. 2016, 118, 858–870. [Google Scholar] [CrossRef]
- Grashuis, J.; Su, Y. A review of the empirical literature on farmer cooperatives: Performance, ownership and governance, finance, and member attitude. Ann. Public Coop. Econ. 2019, 90, 77–102. [Google Scholar] [CrossRef]
- Qorri, D.; Felföldi, J. Research Trends in Agricultural Marketing Cooperatives: A Bibliometric Review. Agriculture 2024, 14, 199. [Google Scholar] [CrossRef]
- Li, C.L.; Zhou, H.; Lv, X.Y.; Li, X. A study on the spillover effect and path of large-scale farmers on small-scale farmers’ drug application behavior. J. Agrotech. Econ. 2024, 9, 22–36. [Google Scholar] [CrossRef]
- Rathke, G.-W.; Wienhold, B.J.; Wilhelm, W.W. Tillage and rotation effect on corn–soybean energy balances in eastern Nebraska. Soil Tillage Res. 2007, 97, 60–70. [Google Scholar] [CrossRef]
- Dahlin, A.S.; Rusinamhodzi, L. Yield and labor relations of sustainable intensification options for smallholder farmers in sub-Saharan Africa. A meta-analysis. Agron. Sustain. Dev. 2019, 39, 32. [Google Scholar] [CrossRef]
- Ma, W.L.; Zhu, Z.K.; Zhou, X.S. Agricultural mechanization and cropland abandonment in rural China. Appl. Econ. Lett. 2022, 29, 526–533. [Google Scholar] [CrossRef]
- Abebaw, D.; Haile, M.G. The impact of cooperatives on agricultural technology adoption: Empirical evidence from Ethiopia. Food Policy 2013, 38, 82–91. [Google Scholar] [CrossRef]
- Li, C.; Shi, Y.; Khan, S.U.; Zhao, M. Research on the impact of agricultural green production on farmers’technical efficiency: Evi-dence from China. Environ. Sci. Pollut. 2021, 28, 38535–38551. [Google Scholar] [CrossRef]
- Zheng, L.; Su, L.; Jin, S. Reducing land fragmentation to curb cropland abandonment: Evidence from rural China. Can. J. Agric. Econ. Can. Agroecon. 2023, 71, 355–373. [Google Scholar] [CrossRef]
- Tadesse, G.; Abate, G.T.; Ergano, K. The Boundary of Smallholder Producers’ Cooperatives: A Conceptual and Empirical Analysis. J. Agric. Econ. 2019, 70, 529–549. [Google Scholar] [CrossRef]
- Ma, W.; Zhu, Z. A Note: Reducing cropland abandonment in China—Do agricultural cooperatives play a role? J. Agric. Econ. 2020, 71, 929–935. [Google Scholar] [CrossRef]
- Deininger, K.; Savastano, S.; Carletto, C. Land fragmentation, cropland abandonment, and land market operation in Albania. World Dev. 2012, 40, 2108–2122. [Google Scholar] [CrossRef]
- Zavalloni, M.; D’Alberto, R.; Raggi, M.; Viaggi, D. Farmland abandonment, public goods and the CAP in a marginal area of Italy. Land Use Policy 2021, 107, 104365. [Google Scholar] [CrossRef]
- Cai, Z.; Li, S.; Du, G.; Xue, R. Linking Smallholder Farmers to the Heilongjiang Province Crop Rotation Project: Assessing the Impact on Production and Well-Being. Sustainability 2022, 14, 38. [Google Scholar] [CrossRef]
- Zheng, L.; Qian, W. The impact of land certification on cropland abandonment: Evidence from rural China. China Agric. Econ. Rev. 2022, 14, 509–526. [Google Scholar] [CrossRef]
- Candemir, A.; Duvaleix, S.; Latruffe, L. Agricultural cooperatives and farm sustainability—A literature review. J. Econ. Surv. 2021, 35, 1118–1144. [Google Scholar] [CrossRef]
- Lowder, S.K.; S’anchez, M.V.; Bertini, R. Which farms feed the world and has farmland become more concentrated? World Dev. 2021, 142, 105455. [Google Scholar] [CrossRef]
Variables | Descriptive | Min | Max | Mean | SD |
---|---|---|---|---|---|
Crop rotation | Proportion of crop rotation area to total cultivated area | 0 | 1 | 0.171 | 0.274 |
NABEs | Are there NABEs in village? (yes = 1; no = 0) | 0 | 1 | 0.209 | 0.407 |
Gender | Gender of head of household (M = 1; F = 0) | 0 | 1 | 0.901 | 0.298 |
Age | Age of head of household (years) | 24 | 81 | 53.686 | 9.792 |
Education | Duration of education of head of household (years) | 0 | 16 | 7.028 | 3.029 |
Family size | Number of persons in household | 1 | 7 | 3.850 | 3.359 |
Agricultural labor | Proportion of household farm labor | 1 | 7 | 2.255 | 1.634 |
Agricultural income | Proportion of household farm income | 0.307 | 0.862 | 0.633 | 0.477 |
Farmland area | Area of household farmland (hectares) | 0.602 | 4.130 | 1.981 | 0.542 |
Farmland blocks | Number of blocks of farmland owned by household | 1 | 82 | 9.109 | 1.981 |
Machines | Number of machineries owned by household | 0 | 48 | 3.484 | 3.157 |
Variables | Model 1 | Model 2 | Model 3 |
---|---|---|---|
NABEs | 0.219 *** (0.047) | 0.178 *** (0.047) | 0.139 *** (0.050) |
Gender | 0.205 *** (0.071) | 0.159 ** (0.073) | |
Age | 0.001 (0.002) | 0.002 (0.002) | |
Education | 0.018 *** (0.006) | 0.014 ** (0.007) | |
Family size | 0.005 (0.019) | ||
Agricultural labor | −0.028 (0.059) | ||
Agricultural income | −0.052 (0.058) | ||
Farmland area | 0.235 *** (0.047) | ||
Farmland blocks | −0.004 * (0.003) | ||
Machines | −0.092 * (0.063) * | ||
Observations | 798 | 798 | 780 |
Log-likelihood | −580.003 | −570.137 | −545.683 |
Variables | Model 4 | Model 5 | Model 6 |
---|---|---|---|
NABEs | 69.955 * (40.289) | 0.216 * (0.127) | |
Number of NABEs (log) | 0.079 ** (0.041) | ||
Control variables | YES | YES | YES |
Observations | 780 | 780 | 780 |
R-squared | 0.795 |
Variables | Model 7 | Model 8 | Model 9 | Model 10 |
---|---|---|---|---|
NABEs | 0.295 *** (0.069) | 0.032 ** (0.042) | 0.025 ** (0.023) | 0.023 ** (0.030) |
Control variables | YES | YES | YES | YES |
Observations | 778 | 773 | 764 | 762 |
R-squared | 0.915 | 0.823 | 0.678 | 0.746 |
Variables | Model 11 | Model 12 | Model 13 |
---|---|---|---|
NABEs | 0.132 *** (0.052) | 0.078 * (0.061) | 0.078 *** (0.055) |
Control variables | YES | YES | YES |
Observations | 533 | 464 | 136 |
Variables | Model 14 | Model 15 |
---|---|---|
NABEs | 0.157 ** (0.056) | 0.059 * (0.114) |
Control variables | YES | YES |
Observations | 566 | 214 |
Variables | Model 16 | Model 17 | Model 18 | Model 19 | Model 20 |
---|---|---|---|---|---|
NABEs | 0.063 (0.019) | 0.453 *** (0.115) | 0.056 ** (0.080) | 0.117 * (0.101) | 0.131 (0.114) |
Control variables | YES | YES | YES | YES | YES |
Observations | 97 | 296 | 193 | 127 | 58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Fan, X.; Du, G. Transition Through Collaboration: New Agricultural Business Entities Can Promote Crop Rotation Adoption in Heilongjiang, China. Land 2025, 14, 814. https://doi.org/10.3390/land14040814
Li S, Fan X, Du G. Transition Through Collaboration: New Agricultural Business Entities Can Promote Crop Rotation Adoption in Heilongjiang, China. Land. 2025; 14(4):814. https://doi.org/10.3390/land14040814
Chicago/Turabian StyleLi, Shengsheng, Xiaoyu Fan, and Guoming Du. 2025. "Transition Through Collaboration: New Agricultural Business Entities Can Promote Crop Rotation Adoption in Heilongjiang, China" Land 14, no. 4: 814. https://doi.org/10.3390/land14040814
APA StyleLi, S., Fan, X., & Du, G. (2025). Transition Through Collaboration: New Agricultural Business Entities Can Promote Crop Rotation Adoption in Heilongjiang, China. Land, 14(4), 814. https://doi.org/10.3390/land14040814