Progressive Framework for Analyzing Driving Mechanisms of Ecosystem Services in Resource-Exhausted Cities: A Case Study of Fushun, China
Abstract
:1. Introduction
- Assess the spatiotemporal evolution and spatial autocorrelation of ecosystem services in Fushun, a typical resource-exhausted city. This includes evaluating water retention, soil conservation, carbon storage, and habitat quality using the InVEST model, and applying Moran’s I and local indicators of spatial association (LISA) to detect spatial clustering and interdependencies among services.
- Identify key drivers and interaction mechanisms of ecosystem service dynamics through a progressive analytical framework (“single—factor analysis—interaction analysis—global regression—geographically weighted regression”), revealing spatial heterogeneity and scale dependence.
- Propose ecological optimization strategies by integrating insights from Fushun’s economic boom (2000s) and ecological restoration policies (post-2015), offering guidance for sustainable urban transitions in similar resource-exhausted cities.
2. Materials and Methods
2.1. Study Area
2.2. Research Framework
2.3. Data Sources and Description
2.4. InVEST Model
2.4.1. Annual Water Yield Module
2.4.2. SDR Module
2.4.3. Carbon Storage
2.4.4. Habitat Quality Module
2.5. Spatial Autocorrelation Analysis of Ecosystem Services
2.6. Optimal Parameter-Based Geo-Detector (OPGD)
2.7. OLS and MGWR Models
3. Results
3.1. Spatiotemporal Evolution Characteristics of Ecosystem Services
3.2. Spatial Autocorrelation of Ecosystem Services
3.2.1. Global Spatial Autocorrelation
3.2.2. Local Spatial Autocorrelation
3.3. Single and Interactive Factors of OPGD
3.3.1. Factor Detection
3.3.2. Interactive Factor Detection
3.4. Analysis of Driving Mechanisms Using OLS and MGWR
3.4.1. Pearson Correlation Coefficient Analysis
3.4.2. Global Regression Model: OLS
3.4.3. Multi-Scale Geographically Weighted Regression Model: MGWR Model
- 1.
- Comparison Between Models
- 2.
- Results of MGWR Model
- 3.
- Changes in Driving Mechanisms (2000–2020)
4. Discussion
4.1. Comparison with Existing Studies
4.2. Recommendations
4.2.1. Optimizing Land Use Structure to Enhance Ecosystem Services
4.2.2. Strengthening Ecosystem Management in Urban–Rural Transitional Zones
4.2.3. Preserving Natural Factors and Utilizing Ecological Baseline Conditions
4.2.4. Promoting Technological and Policy Synergies for Sustainable Development
4.2.5. Addressing Climate Change by Building Resilient Ecosystems
4.3. Limitations
5. Conclusions
- (1)
- The ESs in Fushun underwent varying degrees of change from 2000 to 2020: water provision and soil conservation showed an overall increasing trend, while carbon storage and habitat quality exhibited slight declines. Land use changes, climate factors, and policy measures played critical roles in these dynamics.
- (2)
- Single-factor analysis using the optimal parameter-based geographical detector revealed that GDP and average precipitation were the primary influencing factors in 2000, indicating the combined impact of natural conditions and economic activities. By 2020, GDP’s explanatory power had increased significantly, and the land use comprehensive index emerged as a key factor, highlighting the growing influence of economic development and land use changes on ESs.
- (3)
- Interaction analysis revealed significant synergistic effects and enhancement trends among drivers between 2000 and 2020. In 2000, the interaction between GDP and average precipitation or temperature had the highest explanatory power for spatial heterogeneity in ESs. By 2020, the synergy between GDP and precipitation intensified, with the Proportion of Water Area showing significant interactive effects with other factors. These findings underscore the central role of land use patterns in shaping ES changes.
- (4)
- Spatial heterogeneity analysis using the MGWR model indicated substantial changes in ES distribution and drivers from 2000 to 2020. In 2000, socio-economic variables, such as GDP, population density, and nighttime light indices, were key determinants, reflecting the direct regulatory role of human activities during early economic development. By 2020, the influence of natural factors and land use characteristics had grown, reflecting the increasing support of natural background conditions due to policies like reforestation and ecological restoration. MGWR results further revealed regional variations in factor impacts, such as the pronounced negative effects of built-up and arable land in transitional zones and the strong positive roles of elevation and NDVI in ecological source areas.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ESs | Ecosystem services |
LULC | Land use and land cover |
GWR | Geographically weighted regression |
MGWR | Multi-scale geographically weighted regression |
WY | Annual water yield |
SDR | Sediment Delivery Ratio |
HQ | Habitat quality |
CS | Carbon storage |
OPGD | The Optimal Parameter-based Geo-detector |
OLS | Ordinary Least Squares |
VIF | Variance Inflation Factor |
EL | Average Elevation |
SLO | Average Slope |
Pcul | Proportion of Cultivated Land |
PF | Proportion of Forest Land |
PG | Proportion of Grassland |
PW | Proportion of Water Area |
Pcon | Proportion of Construction Land |
AT | Average temperature |
PRE | Average precipitation |
LUI | Land use intensity |
RD | Road network density |
PD | Population density |
NTL | Nighttime light index |
Appendix A
LULC | Maximum Root Depth | Kc | LULC_Veg |
---|---|---|---|
cultivated land | 350 | 0.65 | 1 |
forest | 3000 | 1 | 1 |
grass | 2000 | 0.65 | 1 |
water | 1 | 1 | 0 |
construction land | 1 | 0.3 | 0 |
unused land | 1 | 0.5 | 0 |
LULC | C | P |
---|---|---|
cultivated land | 0.2 | 0.3 |
forest | 0.006 | 1 |
grass | 0.05 | 1 |
water | 0 | 0 |
construction land | 0 | 0 |
unused land | 1 | 1 |
LULC | C_Above | C_Below | C_Soil | C_Dead |
---|---|---|---|---|
cultivated land | 4.75 | 0 | 33.51 | 0 |
forest | 53.55 | 26.8 | 170.56 | 2.56 |
grass | 24.38 | 19.59 | 52.29 | 22.74 |
water | 2.45 | 0.62 | 80.11 | 0.1 |
construction land | 0 | 0 | 0 | 0 |
unused land | 0 | 0 | 0 | 0 |
Threat | Max_Dist | Weight | Decay |
---|---|---|---|
cultivated land | 7 | 0.8 | linear |
construction land | 10 | 1 | index |
unused land | 3 | 0.8 | linear |
LULC | Habitat | Cultivated Land | Construction Land | Unused Land |
---|---|---|---|---|
cultivated land | 0 | 0 | 0 | 0 |
forest | 1 | 0.8 | 0.8 | 0.5 |
grass | 0.7 | 0.4 | 0.7 | 0.7 |
water | 1 | 0.9 | 0.8 | 0.7 |
construction land | 0 | 0 | 0 | 0 |
unused land | 0 | 0 | 0 | 0 |
Variable | Intercept | GDP | PRE | SLO | PD | NLI | LUI |
---|---|---|---|---|---|---|---|
coefficient | 0.088 | 0.641 | 0.532 | 1.037 | 0.408 | −0.47 | 0.575 |
SD | 0.032 | 0.085 | 0.142 | 0.147 | 0.171 | 0.168 | 0.165 |
t-values | 2.78 | 7.58 | 3.743 | 7.068 | 2.388 | −2.796 | 3.583 |
VIF | - | 3.723 | 4.063 | 6.832 | 5.561 | 9.213 | 8.924 |
Variable | Intercept | GDP | EL | NDVI | Pcon | PD | RD | Pcul | PW |
---|---|---|---|---|---|---|---|---|---|
coefficient | 0.021 | −0.023 | 0.879 | 1.615 | −0.197 | 0.346 | −0.026 | −0.269 | 0.33 |
SD | 0.02 | 0.06 | 0.093 | 0.091 | 0.08 | 0.131 | 0.145 | 0.097 | 0.078 |
t-values | 1.055 | −0.384 | 9.441 | 17.65 | −2.473 | 2.642 | −0.178 | −2.771 | 4.218 |
VIF | - | 3.53 | 6.225 | 10.312 | 6.237 | 4.352 | 6.31 | 3.447 | 1.496 |
Index | 2000 | 2010 | 2020 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WY | SC | CS | HQ | WY | SC | CS | HQ | WY | SC | CS | HQ | |
Moran’s I | 0.675 | 0.667 | 0.658 | 0.828 | 0.682 | 0.671 | 0.655 | 0.806 | 0.679 | 0.674 | 0.655 | 0.796 |
E Index | −0.012 | −0.012 | −0.012 | −0.012 | −0.012 | −0.012 | −0.012 | −0.012 | −0.012 | −0.012 | −0.012 | −0.012 |
variance | 0.0041 | 0.0041 | 0.0041 | 0.0042 | 0.0041 | 0.0041 | 0.0041 | 0.0042 | 0.0041 | 0.0041 | 0.0041 | 0.0042 |
z-score | 10.688 | 10.565 | 10.394 | 12.933 | 10.805 | 10.648 | 10.346 | 12.585 | 10.738 | 10.717 | 10.354 | 12.427 |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
References
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Almenar, J.B.; Elliot, T.; Rugani, B.; Philippe, B.; Gutierrez, T.N.; Sonnemann, G.; Geneletti, D. Nexus between nature-based solutions, ecosystem services and urban challenges. Land Use Policy 2021, 100, 104898. [Google Scholar] [CrossRef]
- Andersson, E.; Barthel, S.; Borgström, S.; Colding, J.; Elmqvist, T.; Folke, C.; Gren, Å. Reconnecting cities to the biosphere: Stewardship of green infrastructure and urban ecosystem services. Ambio 2014, 43, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Boyanova, K.; Nedkov, S.; Burkhard, B. Applications of GIS-based hydrological models in mountain areas in Bulgaria for ecosystem services assessment: Issues and advantages. In Sustainable Mountain Regions: Challenges and Perspectives in Southeastern Europe; Springer: New York, NY, USA, 2016; pp. 35–51. [Google Scholar]
- Basse, R.M.; Omrani, H.; Charif, O.; Gerber, P.; Bódis, K. Land use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Appl. Geogr. 2014, 53, 160–171. [Google Scholar] [CrossRef]
- Rimal, B.; Sharma, R.; Kunwar, R.; Keshtkar, H.; Stork, N.E.; Rijal, S.; Rahman, S.A.; Baral, H. Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosyst. Serv. 2019, 38, 100963. [Google Scholar] [CrossRef]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future land-use changes and its impacts on terrestrial ecosystem services: A review. Sci. Total Environ. 2021, 781, 146716. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Wang, Y.; Liu, Y.; Zhang, Y.; Zhang, Y. What factors affect the synergy and tradeoff between ecosystem services, and how, from a geospatial perspective? J. Clean. Prod. 2020, 257, 120454. [Google Scholar] [CrossRef]
- Tallis, H.; Ricketts, T.; Guerry, A.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; Vigerstol, K.; Pennington, D.; Mendoza, G. InVEST 2.1 Beta User’s Guide. The Natural Capital Project. 2011. Available online: https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/en/index.html (accessed on 25 November 2024).
- Yu, Y.; Xiao, Z.; Bruzzone, L.; Deng, H. Mapping and Analyzing the Spatiotemporal Patterns and Drivers of Multiple Ecosystem Services: A Case Study in the Yangtze and Yellow River Basins. Remote Sens. 2024, 16, 411. [Google Scholar] [CrossRef]
- Yang, J.; Zhai, D.-L.; Fang, Z.; Alatalo, J.M.; Yao, Z.; Yang, W.; Su, Y.; Bai, Y.; Zhao, G.; Xu, J. Changes in and driving forces of ecosystem services in tropical southwestern China. Ecol. Indic. 2023, 149, 110180. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, T.; Wang, J.; Xu, X. Analyzing the Factors Driving the Changes of Ecosystem Service Value in the Liangzi Lake Basin—A GeoDetector-Based Application. Sustainability 2023, 15, 15763. [Google Scholar] [CrossRef]
- Deng, C.; Shen, X.; Liu, C.; Liu, Y. Spatiotemporal characteristics and socio-ecological drivers of ecosystem service interactions in the Dongting Lake Ecological Economic Zone. Ecol. Indic. 2024, 167, 112734. [Google Scholar] [CrossRef]
- Wang, C.; Ma, L.; Zhang, Y.; Chen, N.; Wang, W.J. Spatiotemporal dynamics of wetlands and their driving factors based on PLS-SEM: A case study in Wuhan. Sci. Total Environ. 2022, 806, 151310. [Google Scholar] [CrossRef] [PubMed]
- Lyu, R.; Clarke, K.C.; Zhang, J.; Feng, J.; Jia, X.; Li, J. Spatial correlations among ecosystem services and their socio-ecological driving factors: A case study in the city belt along the Yellow River in Ningxia, China. Appl. Geogr. 2019, 108, 64–73. [Google Scholar] [CrossRef]
- Han, P.; Hu, H.; Zhou, J.; Wang, M.; Zhou, Z. Integrating key ecosystem services to study the spatio-temporal dynamics and determinants of ecosystem health in Wuhan’s central urban area. Ecol. Indic. 2024, 166, 112352. [Google Scholar] [CrossRef]
- Kang, J.; Li, C.; Zhang, B.; Zhang, J.; Li, M.; Hu, Y. How do natural and human factors influence ecosystem services changing? A case study in two most developed regions of China. Ecol. Indic. 2023, 146, 109891. [Google Scholar] [CrossRef]
- Geng, T.W.; Chen, H.; Zhang, H.; Shi, Q.Q.; Liu, D. Spatiotemporal evolution of land ecosystem service value and its influencing factors in Shaanxi province based on GWR. J. Nat. Resour. 2020, 35, 1714–1727. [Google Scholar]
- Liu, W.; Zhan, J.; Zhao, F.; Wang, C.; Zhang, F.; Teng, Y.; Chu, X.; Kumi, M.A. Spatio-temporal variations of ecosystem services and their drivers in the Pearl River Delta, China. J. Clean. Prod. 2022, 337, 130466. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhong, J.-L.; Zhang, Q.-F.; Xiang, X.; Huang, H. Exploring the coupling coordination and key factors between urbanization and land use efficiency in ecologically sensitive areas: A case study of the Loess Plateau, China. Sustain. Cities Soc. 2022, 86, 104148. [Google Scholar] [CrossRef]
- Xu, G.; Jiang, Y.; Wang, S.; Qin, K.; Ding, J.; Liu, Y.; Lu, B. Spatial disparities of self-reported COVID-19 cases and influencing factors in Wuhan, China. Sustain. Cities Soc. 2022, 76, 103485. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Li, C.; Gao, B.; Zheng, K.; Wang, M.; Deng, Y.; Fan, X. Spatial relationships and impact effects between urbanization and ecosystem health in urban agglomerations along the Belt and Road: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area. Int. J. Environ. Res. Public Health 2022, 19, 16053. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically weighted regression. Sage Handb. Spat. Anal. 2009, 1, 243–254. [Google Scholar]
- Yu, P.; Zhang, S.; Yung, E.H.; Chan, E.H.; Luan, B.; Chen, Y. On the urban compactness to ecosystem services in a rapidly urbanising metropolitan area: Highlighting scale effects and spatial non-stationary. Environ. Impact Assess. Rev. 2023, 98, 106975. [Google Scholar] [CrossRef]
- Shilong, W.; Lufeng, Y.; Ting, Z.; Rongfang, L.; Yuliang, W.; Zilong, Z. The effects of landscape patterns on ecosystem services of urban agglomeration in semi-arid area under scenario modeling. Ecol. Indic. 2024, 167, 112610. [Google Scholar] [CrossRef]
- Yu, H.; Yang, J.; Sun, D.; Li, T.; Liu, Y. Spatial Responses of Ecosystem Service Value during the Development of Urban Agglomerations. Land 2022, 11, 165. [Google Scholar] [CrossRef]
- Li, S.; Xiao, W.; Zhao, Y.; Lv, X. Incorporating ecological risk index in the multi-process MCRE model to optimize the ecological security pattern in a semi-arid area with intensive coal mining: A case study in northern China. J. Clean. Prod. 2020, 247, 119143. [Google Scholar] [CrossRef]
- Jiang, S.; Feng, F.; Zhang, X.; Xu, C.; Jia, B.; Lafortezza, R. Ecological transformation is the key to improve ecosystem health for resource-exhausted cities: A case study in China based on future development scenarios. Sci. Total Environ. 2024, 921, 171147. [Google Scholar] [CrossRef]
- Yu, S.; Wang, R.; Zhang, X.; Miao, Y.; Wang, C. Spatiotemporal Evolution of Urban Shrinkage and Its Impact on Urban Resilience in Three Provinces of Northeast China. Land 2023, 12, 1412. [Google Scholar] [CrossRef]
- Clark, M.; Hall, K.R.; Martin, D.M.; Beaty, B.; Lloyd, S.; Galgamuwa, G.P.; Shirer, R.; Zimmerman, C.L.; Shallows, K.M. Prioritizing restoration sites that improve connectivity in the Appalachian landscape, USA. Conserv. Sci. Pract. 2023, 5, e13046. [Google Scholar] [CrossRef]
- Peng, J.; Xu, Y.; Cai, Y.; Xiao, H. The role of policies in land use/cover change since the 1970s in ecologically fragile karst areas of Southwest China: A case study on the Maotiaohe watershed. Environ. Sci. Policy 2011, 14, 408–418. [Google Scholar] [CrossRef]
- Ding, T.; Chen, J.; Fang, Z.; Chen, J. Assessment of coordinative relationship between comprehensive ecosystem service and urbanization: A case study of Yangtze River Delta urban Agglomerations, China. Ecol. Indic. 2021, 133, 108454. [Google Scholar] [CrossRef]
- Fang, Z.; Bai, Y.; Jiang, B.; Alatalo, J.M.; Liu, G.; Wang, H. Quantifying variations in ecosystem services in altitude-associated vegetation types in a tropical region of China. Sci. Total Environ. 2020, 726, 138565. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Tao, Y.; Yang, G.; Ou, W.; Pueppke, S.; Sun, X.; Chen, G.; Tao, Q. Impact of land use change on multiple ecosystem services in the rapidly urbanizing Kunshan City of China: Past trajectories and future projections. Land Use Policy 2019, 85, 419–427. [Google Scholar] [CrossRef]
- Ge, G.; Zhang, J.; Chen, X.; Liu, X.; Hao, Y.; Yang, X.; Kwon, S. Effects of land use and land cover change on ecosystem services in an arid desert-oasis ecotone along the Yellow River of China. Ecol. Eng. 2022, 176, 106512. [Google Scholar] [CrossRef]
- Su, K.; Liu, H.; Wang, H. Spatial–temporal changes and driving force analysis of ecosystems in the Loess Plateau Ecological Screen. Forests 2022, 13, 54. [Google Scholar] [CrossRef]
- Liu, Q.; Qiao, J.; Li, M.; Huang, M. Spatiotemporal heterogeneity of ecosystem service interactions and their drivers at different spatial scales in the Yellow River Basin. Sci. Total Environ. 2024, 908, 168486. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, T.; Chen, J.; Xue, S.; Zhou, Q.; Wang, Y.; Wang, Y.; Huang, Z.; Yang, S. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef]
- Pan, N.; Guan, Q.; Wang, Q.; Sun, Y.; Li, H.; Ma, Y. Spatial Differentiation and Driving Mechanisms in Ecosystem Service Value of Arid Region: A case study in the middle and lower reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Liu, X.; Duan, Z.; Shan, Y.; Duan, H.; Wang, S.; Song, J.; Wang, X. Low-carbon developments in Northeast China: Evidence from cities. Appl. Energy 2019, 236, 1019–1033. [Google Scholar] [CrossRef]
- Guo, C.-J.; Liu, Y.-X.; Li, H.-F.; Sun, Y.-T.; Yu, Y.-C. Landscape characteristics and construction of landscape ecological security pattern in West Open Pit of Fushun mine. J. Shenyang Agric. Univ. 2021, 52, 442–450. [Google Scholar]
- Peng, J.; Li, S.; Xiaoji, H.; Ji, G.; Maomao, W. Control. Spatial-temporal distribution characteristics and influencing factors of geological disasters in the open-pit mining area of western Fushun, Liaoning Province. Chin. J. Geol. Hazard Control 2022, 33, 68–76. [Google Scholar]
- Xu, H.; Cheng, W. Landscape Analysis and Ecological Risk Assessment during 1995–2020 Based on Land Utilization/Land Coverage (LULC) and Random Forest: A Case Study of the Fushun Open-Pit Coal Area in Liaoning, China. Sustainability 2024, 16, 2442. [Google Scholar] [CrossRef]
- Xiao, P.; Yan, X.; Wang, X.; Deng, Y.; Xie, S.; Sun, L.; Xing, Y. Research on Ecological Protection and Restoration Technology of Fushun West Open pit Mine in Liaoning Province. Adv. Eng. Technol. Res. 2024, 12, 188. [Google Scholar] [CrossRef]
- Yan, F.; Shangguan, W.; Zhang, J.; Hu, B. Depth-to-bedrock map of China at a spatial resolution of 100 meters. Sci. Data 2020, 7, 2. [Google Scholar] [CrossRef]
- Fuh, B.-p. On the calculation of the evaporation from land surface. Chin. J. Atmos. Sci. 1981, 5, 23–31. [Google Scholar] [CrossRef]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 89–97. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436, 35–50. [Google Scholar] [CrossRef]
- Budyko, M.I.; Miller, D.H. Climate and Life; Academic Press: London, UK, 1974. [Google Scholar]
- Berti, A.; Tardivo, G.; Chiaudani, A.; Rech, F.; Borin, M. Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agric. Water Manag. 2014, 140, 20–25. [Google Scholar] [CrossRef]
- Lv, L.; Li, Q.; Yang, Y. Change and influencing factors of water conservation in Liaoning province during 2001—2020. Bull. Soil Water Conserv. 2022, 42, 290–296. [Google Scholar]
- Zhou, W.Z.; Liu, G.H.; Pan, J.J. Soil Available Water Capacity and it’s Empirical and Statistical Models-with Special Reference to Black Soils in Northeast China. J. Arid. Land Resour. Environ. 2003, 4, 88–95. [Google Scholar]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Renard, K.G.; Freimund, J.R. Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol. 1994, 157, 287–306. [Google Scholar] [CrossRef]
- Lychuk, T.E.; Izaurralde, R.C.; Hill, R.L.; McGill, W.B.; Williams, J.R. Biochar as a global change adaptation: Predicting biochar impacts on crop productivity and soil quality for a tropical soil with the Environmental Policy Integrated Climate (EPIC) model. Mitig. Adapt. Strat. Glob. Change 2015, 20, 1437–1458. [Google Scholar] [CrossRef]
- Li, P.; Chen, J.; Li, Y.; Wu, W. Using the InVEST-PLUS Model to Predict and Analyze the Pattern of Ecosystem Carbon storage in Liaoning Province, China. Remote Sens. 2023, 15, 4050. [Google Scholar] [CrossRef]
- Pan, H.; Wang, J.; Du, Z.; Wu, Z.; Zhang, H.; Ma, K. Spatiotemporal evolution of ecosystem services and its potential drivers in coalfields of Shanxi Province, China. Ecol. Indic. 2023, 148, 110109. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, F.; Wang, Z. Research on optimization of ecological service function and planning control of land resources planning based on ecological protection and restoration. Environ. Technol. Innov. 2021, 24, 101904. [Google Scholar] [CrossRef]
- Baró, F.; Gómez-Baggethun, E.; Haase, D. Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management. Ecosyst. Serv. 2017, 24, 147–159. [Google Scholar] [CrossRef]
- Li, S.; Zhao, X.; Pu, J.; Miao, P.; Wang, Q.; Tan, K. Optimize and control territorial spatial functional areas to improve the ecological stability and total environment in karst areas of Southwest China. Land Use Policy 2021, 100, 104940. [Google Scholar] [CrossRef]
- McPhearson, T.; Andersson, E.; Elmqvist, T.; Frantzeskaki, N. Resilience of and through urban ecosystem services. Ecosyst. Serv. 2015, 12, 152–156. [Google Scholar] [CrossRef]
- McPhearson, T.; Hamstead, Z.A.; Kremer, P. Urban ecosystem services for resilience planning and management in New York City. Ambio 2014, 43, 502–515. [Google Scholar] [CrossRef]
- Liu, J.; Yan, Q.; Zhang, M.J.S.o.T.T.E. Ecosystem carbon storage considering combined environmental and land-use changes in the future and pathways to carbon neutrality in developed regions. Ecosyst. Serv. 2023, 903, 166204. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Dong, X.; Wang, X.-C.; Zhao, B.; Fan, W.; Wei, H.; Zhang, P.; Liu, R. Evaluating the future terrestrial ecosystem contributions to carbon neutrality in Qinghai-Tibet Plateau. J. Clean. Prod. 2022, 374, 133914. [Google Scholar] [CrossRef]
- Siedlarczyk, E.; Winczek, M.; Zięba-Kulawik, K.; Wężyk, P. Smart green infrastructure in a smart city–the case study of ecosystem services evaluation in krakow based on i-Tree eco software. Geosci. Eng. 2019, 65, 36–43. [Google Scholar] [CrossRef]
- Corbera, E.; Soberanis, C.G.; Brown, K. Institutional dimensions of Payments for Ecosystem Services: An analysis of Mexico’s carbon forestry programme. Ecol. Econ. 2009, 68, 743–761. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Y.; Guo, D.; Lu, W.; Xu, H. How does ecological protection redline policy affect regional land use and ecosystem services? Environ. Impact Assess. Rev. 2023, 100, 107062. [Google Scholar] [CrossRef]
- Iniesta-Arandia, I.; García-Llorente, M.; Aguilera, P.A.; Montes, C.; Martín-López, B. Socio-cultural valuation of ecosystem services: Uncovering the links between values, drivers of change, and human well-being. Ecol. Econ. 2014, 108, 36–48. [Google Scholar] [CrossRef]
- Lü, Y.; Fu, B.; Feng, X.; Zeng, Y.; Liu, Y.; Chang, R.; Sun, G.; Wu, B. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the loess plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar] [CrossRef]
- Ren, Q.; Liu, D.; Liu, Y.; Liu, Y. Spatio-temporal dynamics and socio-ecological determinants of ecosystem service interplays in Shandong Province’s coastal region (2000–2020): Implications for environmental protection and sustainable ecosystem management. Environ. Res. 2024, 243, 117824. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Y.; Meng, R.; Li, S.; Zheng, L.; Song, M. Multi-scale matching and simulating flows of ecosystem service supply and demand in the Wuhan metropolitan area, China. J. Clean. Prod. 2024, 476, 143648. [Google Scholar] [CrossRef]
Data Type | Specific Data | Source and Description |
---|---|---|
LULC | Land use grid data from 2000 to 2020 | Resource and environment science and data center, 30 m accuracy. https://www.resdc.cn/ (accessed on 25 November 2024) |
Annual rainfall | Annual average precipitation data from 2000 to 2020 | National Qinghai–Tibet Plateau scientific data center, 1 km accuracy, data format is NetCDFhttps://data.tpdc.ac.cn/home/ (accessed on 25 November 2024) |
Annual potential evapotranspiration | Annual average potential evapotranspiration data from 2000 to 2020 | National Earth System Science Data Center shared service platform, 1 km accuracy, evaporation unit is 0.1 mm. http://www.geodata.cn/ (accessed on 25 November 2024) |
Depth of root restricted layer | Soil grid data from 2000 to 2020 | Depth-to-bedrock map of China at a spatial resolution of 100 meters [45] |
Available water content of plants | Grid data of available water content of plants from 2000 to 2020 | ISRIC global dataset, 1 km accuracy |
River basin | Vector map of primary and secondary basins | Resource and environment science and data center, 1 km accuracy. https://www.resdc.cn/ (accessed on 25 November 2024) |
DEM | The optical data of Aster GDEM V3 satellite has a spatial resolution of 30 m. | Geospatial data cloud. http://www.gscloud.cn/ (accessed on 25 November 2024) |
Rainfall erosivity factor | Grid data of rainfall erosivity from 2000 to 2020 | National Qinghai–Tibet Plateau scientific data center, calculated by formula |
Erodibility | Grid data of soil erodibility from 2000 to 2020 | ISRIC global dataset, calculated |
Time | Index | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 | X16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | q | 0.690 | 0.139 | 0.094 | 0.083 | 0.081 | 0.117 | 0.223 | 0.097 | 0.105 | 0.361 | 0.086 | 0.119 | 0.027 | 0.060 | 0.041 | 0.169 |
sig | 0.000 | 0.094 | 0.215 | 0.533 | 0.188 | 0.493 | 0.104 | 0.565 | 0.143 | 0.000 | 0.301 | 0.121 | 0.901 | 0.329 | 0.756 | 0.106 | |
2020 | q | 0.855 | 0.139 | 0.094 | 0.046 | 0.068 | 0.034 | 0.139 | 0.105 | 0.111 | 0.407 | 0.106 | 0.132 | 0.375 | 0.060 | 0.091 | 0.070 |
sig | 0.000 | 0.094 | 0.215 | 0.760 | 0.267 | 0.835 | 0.100 | 0.376 | 0.184 | 0.000 | 0.568 | 0.261 | 0.000 | 0.329 | 0.141 | 0.745 |
Diagnosis Factor | OLS | MGWR | ||
---|---|---|---|---|
2000 | 2020 | 2000 | 2020 | |
AICc | −26.085 | −142.52 | −159.498 | −190.015 |
R2 | 0.939 | 0.98 | 0.994 | 0.996 |
Adj.R2 | 0.936 | 0.978 | 0.993 | 0.995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Gao, Y.; Qian, H. Progressive Framework for Analyzing Driving Mechanisms of Ecosystem Services in Resource-Exhausted Cities: A Case Study of Fushun, China. Land 2025, 14, 913. https://doi.org/10.3390/land14050913
Pan Y, Gao Y, Qian H. Progressive Framework for Analyzing Driving Mechanisms of Ecosystem Services in Resource-Exhausted Cities: A Case Study of Fushun, China. Land. 2025; 14(5):913. https://doi.org/10.3390/land14050913
Chicago/Turabian StylePan, Yuyan, Yanpeng Gao, and Hongchang Qian. 2025. "Progressive Framework for Analyzing Driving Mechanisms of Ecosystem Services in Resource-Exhausted Cities: A Case Study of Fushun, China" Land 14, no. 5: 913. https://doi.org/10.3390/land14050913
APA StylePan, Y., Gao, Y., & Qian, H. (2025). Progressive Framework for Analyzing Driving Mechanisms of Ecosystem Services in Resource-Exhausted Cities: A Case Study of Fushun, China. Land, 14(5), 913. https://doi.org/10.3390/land14050913