Perceptual-Preference-Based Touring Routes in Xishu Gardens Using Panoramic Digital-Twin Modeling
Abstract
:1. Introduction
- (1)
- (2)
- (3)
- (1)
- Algorithm-driven approaches, which employ exact or heuristic search algorithms as well as deep learning [24], effectively identify visitors’ spatial distribution pattern using GPS trajectories and social media tags [22,30,31], yet fail to capture psychological dimensions such as emotional arousal levels and cognitive processing depth.
- (2)
- (3)
- Achieving the synchronized acquisition of mobile data alongside the corresponding environmental variables remains challenging. Although Google Street View Imagery (GVI) is widely adopted as an environmental data source [35,36], its spatial coverage is significantly constrained by the physical accessibility limitations of street view collection devices.
- The identification of perceptual preference routes using an improved Ward–K-medoids hybrid clustering algorithm.
- The elucidation of multi-dimensional differences in perception preferences across route types.
- The development of path selection and management strategies under an emotion–cognition–behavior synergy framework.
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Data Acquisition and Processing
Panoramic Data Acquisition
Behavioral Data Capture
Perceptual Data Acquisition
2.2.2. Tour Route Clustering Identification
2.2.3. Experimental Protocol
- (1)
- System Pre-Adaptation PhaseThe participants underwent platform training and familiarized themselves with the protocol.
- Cognitive Simulation Requirements: Establish a sense of virtual spatial immersion (predefined garden exploration scenarios).
- Hardware Configuration Standards: Computer terminals with stable internet connectivity.
- Interaction Constraints: A continuous browsing duration of at least 10 min with tab-switching operations.
- (2)
- Baseline Data Collection Phase
- Demographic Characteristics: Professional category and disciplinary background (multiselection classification).
- Experience Profiling: Historical garden visitation experience and familiarity (5-point Likert scale).
- Ethical Compliance: Electronic informed consent forms (including data usage authorization clauses).
- (3)
- Free Exploration Observation Phase
- Interaction Modality: Mouse-controlled 720° panoramic view switching and viewpoint navigation.
- Termination Criteria: Meeting the minimum duration threshold (10 min) and manual termination triggers.
- Data Acquisition Mechanism: Real-time logging of spatiotemporal behavior trajectories and interfacial interaction event streams.
3. Results
3.1. Descriptive Statistical Analysis
3.2. Perceptual-Preference-Based Route Identification
3.2.1. Du Fu Thatched Cottage
3.2.2. San Su Shrine
3.2.3. Wangjiang Tower Park
3.3. Perceptual Preference Metrics Evaluation
3.3.1. Emotion–Cognition–Behavior Characteristics
3.3.2. Emotion–Cognition–Behavior Spatial Distribution
4. Discussion
4.1. Interpretation of Perceptual-Preference Characteristics
4.1.1. Spatial Universalism of Dual-Modal Itinerary Systems
4.1.2. Synergistic Mechanisms of Affective–Cognitive–Behavioral Multi-Dimensional Responses
- (1)
- The negative feedback between pathway complexity and behavioral efficiency.
- (2)
- The buffering effects of scene narratives on the perceptual steady state.
4.2. Spatial Layouts and Perceptual Preference Itineraries
4.3. Perception-Driven Itinerary Strategies: Framework Applications and Strategic Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Taylor, K. Cultural Landscapes and Asia: Reconciling International and Southeast Asian Regional Values. Landsc. Res. 2009, 34, 7–31. [Google Scholar] [CrossRef]
- Thomas, S. Heritage and Community Engagement: Collaboration or Contestation? 1st ed.; Watson, S., Waterton, E., Eds.; Routledge: London, UK, 2021; p. 19. ISBN 9781315875064. [Google Scholar]
- Li, M.; Wu, B.; Cai, L. Tourism development of World Heritage Sites in China: A geographic perspective. Tour. Manag. 2008, 29, 308–319. [Google Scholar] [CrossRef]
- ICOMOS. Heritage at Risk World Report 2016–2019: On Monuments and Sites in Danger. International Council on Monuments and Sites. 2019, p. 9. Available online: https://www.icomos.org/en/what-we-do/risk-preparedness/heritage-at-risk-reports (accessed on 18 March 2025).
- Guo, L.; Ma, W.; Gong, X.; Zhang, D.; Zhai, Z.; Li, M. Digital preservation of classical gardens at the San Su Shrine. Herit. Sci. 2024, 12, 66. [Google Scholar] [CrossRef]
- Ulrich, R.S. Aesthetic and affective response to natural environment. In Behavior and the Natural Environment; Altman, I., Wohlwill, J.F., Eds.; Springer: Boston, MA, USA, 1983; pp. 85–125. ISBN 978-1-4613-3541-2. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Halbwachs, M. On Collective Memory; University of Chicago Press: Chicago, IL, USA, 2020. [Google Scholar]
- Kong, L.; Liu, Z.; Pan, X.; Wang, Y.; Guo, X.; Wu, J. How do different types and landscape attributes of urban parks affect visitors’ positive emotions? Landsc. Urban Plan. 2022, 226, 104482. [Google Scholar] [CrossRef]
- Del Bosque, I.R.; San Martín, H. Tourist satisfaction a cognitive-affective model. Ann. Tour. Res. 2008, 35, 551–573. [Google Scholar] [CrossRef]
- DeLucio, J.; Múgica, M. Landscape preferences and behaviour of visitors to Spanish national parks. Landsc. Urban Plan. 1994, 29, 145–160. [Google Scholar] [CrossRef]
- Hosany, S. Appraisal determinants of tourist emotional responses. J. Travel Res. 2012, 51, 303–314. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, T.; Zhang, W.; Meng, H.; Zhang, Z. Research on visual behavior characteristics and cognitive evaluation of different types of forest landscape spaces. Urban For. Urban Green. 2020, 54, 126788. [Google Scholar] [CrossRef]
- Yang, W.; Chen, Q.; Huang, X.; Xie, M.; Guo, Q. How do aesthetics and tourist involvement influence cultural identity in heritage tourism? The mediating role of mental experience. Front. Psychol. 2022, 13, 990030. [Google Scholar] [CrossRef]
- Li, Y.; Deng, Q.; Peng, F.; He, M. Development and verification of the wellness tourism experience scale. J. Travel Res. 2025, 64, 158–171. [Google Scholar] [CrossRef]
- Li, X.; Xia, B.; Lusk, A.; Liu, X.; Lu, N. The Humanmade Paradise: Exploring the perceived dimensions and their associations with aesthetic pleasure for Liu Yuan, a Chinese classical garden. Sustainability 2019, 11, 1350. [Google Scholar] [CrossRef]
- De Bruyn, C.; Said, F.B.; Meyer, N.; Soliman, M. Research in tourism sustainability: A comprehensive bibliometric analysis from 1990 to 2022. Heliyon 2023, 9, e18874. [Google Scholar] [CrossRef] [PubMed]
- Agapito, D. The senses in tourism design: A bibliometric review. Ann. Tour. Res. 2020, 83, 102934. [Google Scholar] [CrossRef]
- Vada, S.; Dupre, K.; Zhang, Y. Route tourism: A narrative literature review. Curr. Issues Tour. 2022, 26, 879–889. [Google Scholar] [CrossRef]
- Han, Y.; Guan, H.; Duan, J. Tour route multiobjective optimization design based on the tourist satisfaction. Discret. Dyn. Nat. Soc. 2014, 2014, 603494. [Google Scholar] [CrossRef]
- Huang, W.; Wang, L. Towards big data behavioral analysis: Rethinking GPS trajectory mining approaches from geographic, semantic, and quantitative perspectives. ARIN 2022, 1, 7. [Google Scholar] [CrossRef]
- Zheng, X.; You, H.; Huang, H.; Sun, L.; Yu, Q.; Luo, Y. Two-stage greedy algorithm based on crowd sensing for tour route recommendation. Appl. Soft Comput. 2024, 153, 111260. [Google Scholar] [CrossRef]
- Zhang, S.; Luo, Z.; Yang, L.; Teng, F.; Li, T. A survey of route recommendations: Methods, applications, and opportunities. Inf. Fusion 2024, 108, 102413. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, B.; Pulido-Fernández, J.I. Selecting the best route in a theme park through multi-objective programming. In Tourism Spaces; Routledge: London, UK, 2021; pp. 23–41. ISBN 9781003152453. [Google Scholar]
- Damos, M.A.; Zhu, J.; Li, W.; Hassan, A.; Khalifa, E. A Novel Urban Tourism Path Planning Approach Based on a Multiobjective Genetic Algorithm. ISPRS Int. J. Geo-Inf. 2021, 10, 530. [Google Scholar] [CrossRef]
- Zheng, W.; Liao, Z.; Qin, J. Using a four-step heuristic algorithm to design personalized day tour route within a tourist attraction. Tour. Manag. 2017, 62, 335–349. [Google Scholar] [CrossRef]
- Ciscal-Terry, W.; Dell’Amico, M.; Hadjidimitriou, N.S.; Iori, M. An analysis of drivers route choice behaviour using GPS data and optimal alternatives. J. Transp. Geogr. 2016, 51, 119–129. [Google Scholar] [CrossRef]
- Schönherr, S. Tourism actors’ responsible behavior: A systematic literature review. J. Hosp. Tour. Res. 2024, 48, 671–683. [Google Scholar] [CrossRef]
- Liu, W.; Wang, B.; Yang, Y.; Mou, N.; Zheng, Y.; Zhang, L.; Yang, T. Cluster analysis of microscopic spatio-temporal patterns of tourists’ movement behaviors in mountainous scenic areas using open GPS-trajectory data. Tour. Manag. 2022, 93, 104614. [Google Scholar] [CrossRef]
- Qiao, S.; Yeh, A.G.O. Understanding the effects of environmental perceptions on walking behavior by integrating big data with small data. Landsc. Urban Plan. 2023, 240, 104879. [Google Scholar] [CrossRef]
- Bubalo, M.; Van Zanten, B.T.; Verburg, P.H. Crowdsourcing geo-information on landscape perceptions and preferences: A review. Landsc. Urban Plan. 2019, 184, 101–111. [Google Scholar] [CrossRef]
- Wang, S.; Cao, J.; Philip, S.Y. Deep learning for spatio-temporal data mining: A survey. IEEE Trans. Knowl. Data Eng. 2020, 34, 3681–3700. [Google Scholar] [CrossRef]
- Wang, H.; Zhi, W.; Batista, G.; Chandra, R. Pedestrian trajectory prediction using goal-driven and dynamics-based deep learning framework. Expert Syst. Appl. 2025, 271, 126557. [Google Scholar] [CrossRef]
- Danish, M.; Labib, S.M.; Ricker, B.; Helbich, M. A citizen science toolkit to collect human perceptions of urban environments using open street view images. Comput. Environ. Urban Syst. 2025, 116, 102207. [Google Scholar] [CrossRef]
- Fan, Z.; Feng, C.C.; Biljecki, F. Coverage and bias of street view imagery in mapping the urban environment. Comput. Environ. Urban Syst. 2025, 117, 102253. [Google Scholar] [CrossRef]
- National Government Service Platform. Available online: https://ncha.gjzwfw.gov.cn (accessed on 18 March 2025).
- Wei, C.; Yu, M.; Liu, F.; Chen, M.; Zhang, Q. Heritage Value Identification and Evaluation of Xishu Celebrity Memorial Garden. Chin. Landsc. Archit. 2023, 39, 127–132. [Google Scholar] [CrossRef]
- Sichuan Provincial Department of Culture and Tourism. Available online: https://wlt.sc.gov.cn/scwlt/c100297/introduce.shtml (accessed on 18 March 2025).
- Guo, L.; Xu, J.; Li, J.; Zhu, Z. Digital preservation of du fu thatched cottage memorial garden. Sustainability 2023, 15, 1359. [Google Scholar] [CrossRef]
- Xie, J.; Luo, S.; Furuya, K.; Kagawa, T.; Yang, M. A preferred road to mental restoration in the Chinese classical garden. Sustainability 2022, 14, 4422. [Google Scholar] [CrossRef]
- Turner, A.; Penn, A. Encoding natural movement as an agent-based system: An investigation into human pedestrian behaviour in the built environment. Environ. Plan. B Plan. Des. 2002, 29, 473–490. [Google Scholar] [CrossRef]
- Biljecki, F.; Ledoux, H.; Stoter, J. An improved LOD specification for 3D building models. Comput. Environ. Urban Syst. 2016, 59, 25–37. [Google Scholar] [CrossRef]
- Yaqoob, A.; Bi, T.; Muntean, G.M. A survey on adaptive 360 video streaming: Solutions, challenges and opportunities. IEEE Commun. Surv. Tutor. 2020, 22, 2801–2838. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, E.S.; Tan, P.Y.; Qi, J.; Ho, R.; Sia, A.; Cao, Y. Beyond just green: Explaining and predicting restorative potential of urban landscapes using panorama-based metrics. Landsc. Urban Plan. 2024, 247, 105044. [Google Scholar] [CrossRef]
- South, L.; Saffo, D.; Vitek, O.; Dunne, C.; Borkin, M.A. Effective use of Likert scales in visualization evaluations: A systematic review. Comput. Graph. Forum 2022, 41, 43–55. [Google Scholar] [CrossRef]
- Daniel, T.C.; Boster, R.S. Measuring Landscape Aesthetics: The Scenic Beauty Estimation Method; USDA Forest Service Research Paper RM-167; Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1976. [Google Scholar]
- Jin, W.; Zhu, B.; Fukuda, H. Research on ancient town style construction strategies based on coupled quantitative analysis of AI visual recognition and scenic beauty evaluation. Front. Archit. Res. 2025, 14, 654–671. [Google Scholar] [CrossRef]
- Bergroth, L.; Hakonen, H.; Raita, T. A survey of longest common subsequence algorithms. Proc. Int. Symp. String Process. Inf. Retr. 2000, 7, 39. [Google Scholar] [CrossRef]
- Burgess, N.; Maguire, E.A.; O’Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 2002, 35, 625–641. [Google Scholar] [CrossRef] [PubMed]
- Zipf, G.K. Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology; Ravenio Books; American Sociological Association: Washington, DC, USA, 2016. [Google Scholar]
- Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Ohly, H.; White, M.P.; Wheeler, B.W.; Bethel, A.; Ukoumunne, O.C.; Nikolaou, V.; Garside, R. Attention Restoration Theory: A systematic review of the attention restoration potential of exposure to natural environments. J. Toxicol. Environ. Health Part B 2016, 19, 305–343. [Google Scholar] [CrossRef] [PubMed]
- Amboni, M.; Barone, P.; Hausdorff, J.M. Cognitive contributions to gait and falls: Evidence and implications. Mov. Disord. 2013, 28, 1520–1533. [Google Scholar] [CrossRef]
- Burtan, D.; Joyce, K.; Burn, J.F.; Handy, T.C.; Ho, S.; Leonards, U. The nature effect in motion: Visual exposure to environmental scenes impacts cognitive load and human gait kinematics. R. Soc. Open Sci. 2021, 8, 201100. [Google Scholar] [CrossRef]
- Huan, L.; Chen, M.; Zhang, Q.; Li, Y.; Wu, Y. Research on the Aesthetic Construction Method of Block Park Scenes under the Concept of Scenes City Management: A Case Study of Wangjianglou Block in Chengdu. Chin. Landsc. Archit. 2022, 38, 47–52. [Google Scholar] [CrossRef]
- Lyu, B.; Zeng, C.; Deng, S.; Liu, S.; Jiang, M.; Li, N.; Chen, Q. Bamboo forest therapy contributes to the regulation of psychological responses. J. For. Res. 2019, 24, 61–70. [Google Scholar] [CrossRef]
- Zeng, C.; Lyu, B.; Deng, S.; Yu, Y.; Li, N.; Lin, W.; Chen, Q. Benefits of a three-day bamboo forest therapy session on the physiological responses of university students. Int. J. Environ. Res. Public Health 2020, 17, 3238. [Google Scholar] [CrossRef]
- Guo, L.; Gong, X.; Li, Y.; Zhang, D.; Elsadek, M.; Yun, J.; Ahmad, H.; Yao, M.; Li, N. Multisensory Health and Well-Being of Chinese Classical Gardens: Insights from Humble Administrator’s Garden. Land 2025, 14, 317. [Google Scholar] [CrossRef]
Characteristic | DFTC N = 12,379 | SSS N = 11,391 | WTP N = 10,614 |
---|---|---|---|
Pleasure Level | |||
1 | 77 (0.6%) | 18 (0.2%) | 10 (<0.1%) |
2 | 255 (2.1%) | 192 (1.7%) | 130 (1.2%) |
3 | 3563 (29%) | 2891 (25%) | 2281 (21%) |
4 | 5771 (47%) | 5295 (46%) | 5016 (47%) |
5 | 2713 (22%) | 2995 (26%) | 3177 (30%) |
Beauty Estimation | |||
1 | 42 (0.3%) | 19 (0.2%) | 7 (<0.1%) |
2 | 378 (3.1%) | 263 (2.3%) | 122 (1.1%) |
3 | 3335 (27%) | 2750 (24%) | 2186 (21%) |
4 | 5504 (44%) | 5171 (45%) | 4810 (45%) |
5 | 3120 (25%) | 3188 (28%) | 3489 (33%) |
Count time | 13 (7, 26) | 11 (6, 19) | 12 (7, 20) |
Parameters | Route I | Route II |
---|---|---|
Tour Route Structure | Bidirectional Reciprocal Structure | Unidirectional Linear Structure |
Total Movement Count | 41 | 18 |
Trajectory Repetition Rate | 0.561 (23/41) | - |
Maximum Visit Frequency at a Node | Node 2/3/4/5/6 (MVF = 3) | All nodes (MVF = 1) |
Parameters | Route I | Route II |
---|---|---|
Tour Route Structure | Nested Recursive Structure | Local Recursive Circuit |
Total Movement Count | 45 | 20 |
Trajectory Repetition Rate | 0.689 (31/45) | 0.05 (1/20) |
Maximum Visit Frequency at a Node | Node 2\4\5\6\7\8\9\10\11\13 (MVF = 4) | Node 13 (MVF = 2) |
Parameters | Route I | Route II |
---|---|---|
Tour Route Structure | Branched Loop Configuration | Local Recursive Circuit |
Total Movement Count | 30 | 15 |
Trajectory Repetition Rate | 0.267(8/30) | 0 |
Maximum Visit Frequency at a Node | Node 9 (MVF = 3) | Node 9 (MVF = 2) |
Characteristic | DFTC | SSS | WTP | |||
---|---|---|---|---|---|---|
Route 1 | Route 2 | Route 1 | Route 2 | Route 1 | Route 2 | |
Significance | 3.86 | 3.9 | 3.97 | 3.93 | 4.06 | 4.01 |
Beauty | 3.92 | 3.94 | 3.98 | 3.97 | 4.07 | 4.10 |
Dwell time | 18.2 | 46.6 | 13.6 | 30.5 | 13.9 | 34.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, X.; Zhu, Z.; Guo, L.; Zhong, Y.; Zhang, D.; Li, J.; Yao, M.; Yong, W.; Li, M.; Huang, Y. Perceptual-Preference-Based Touring Routes in Xishu Gardens Using Panoramic Digital-Twin Modeling. Land 2025, 14, 932. https://doi.org/10.3390/land14050932
Gong X, Zhu Z, Guo L, Zhong Y, Zhang D, Li J, Yao M, Yong W, Li M, Huang Y. Perceptual-Preference-Based Touring Routes in Xishu Gardens Using Panoramic Digital-Twin Modeling. Land. 2025; 14(5):932. https://doi.org/10.3390/land14050932
Chicago/Turabian StyleGong, Xueqian, Zhanyuan Zhu, Li Guo, Yong Zhong, Deshun Zhang, Jing Li, Manqin Yao, Wei Yong, Mengjia Li, and Yujie Huang. 2025. "Perceptual-Preference-Based Touring Routes in Xishu Gardens Using Panoramic Digital-Twin Modeling" Land 14, no. 5: 932. https://doi.org/10.3390/land14050932
APA StyleGong, X., Zhu, Z., Guo, L., Zhong, Y., Zhang, D., Li, J., Yao, M., Yong, W., Li, M., & Huang, Y. (2025). Perceptual-Preference-Based Touring Routes in Xishu Gardens Using Panoramic Digital-Twin Modeling. Land, 14(5), 932. https://doi.org/10.3390/land14050932