Impact of Slow-Forming Terraces on Erosion Control and Landscape Restoration in Central Africa’s Steep Slopes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Erosion Pins Installation in the Plots
- Plot with slow-forming terraces: Two pins (1D right, 1G left) were placed immediately downstream of the upstream ditch, about 1 m apart. Two pins (2D, 2G) were set in the middle of the anti-erosion ditches, between the upstream and downstream ditches. Two pins (3D, 3G) were placed immediately upstream of the downstream ditch or near the embankment. Two pins (4D, 4G) were installed inside the erosion control ditch downstream.
- Control plot: Pins were aligned in the same positions as those in the progressive earthworks plot, with the same numbering prefixed by a “t.”
2.3. Data Collection and Processing
2.3.1. Surface Conditions Data Collection and Processing
- ➢
- The covered surfaces at ground level (CoS%) include all litter (L%), vegetation (Veg%), and stones not integrated into the mass of the soil (SNI%);
- ➢
- The open surfaces (OS%) mainly include cracks (Crk%), galleries, and clods (Cld%) that form traps favoring infiltration;
- ➢
- The closed surfaces (CS%) correspond to areas blocked by a film or impact crust (Cr%) or visible stones integrated into the ground (SI%), as well as areas already eroded (AE%).
2.3.2. Erosion Data Collection and Processing
3. Results
3.1. Impacts of Slow-Forming Terraces on the Surface Condition in Plots with Corn Cultivation
3.1.1. Isare Commune
3.1.2. Buhinyuza Commune
3.2. Effect of Slow-Forming Terraces on the Quantity of Sediments Inside Plots and in Ditches with Corn Plants
3.2.1. Isare Commune
3.2.2. Buhinyuza Commune
3.3. Effect of Slow-Forming Terraces on Erosion Reduction
4. Discussion
4.1. Impacts of Slow-Forming Terraces on Surface Conditions
4.2. Impacts of Slow-Forming Terraces’ Erosion and Sedimentation
4.3. Effect of the Non-Vegetated Embankments of PT in the Reduction and Increase in Sediments
4.3.1. Effect of the Non-Vegetated Embankments of PT in the Reduction of Eroded Sediments Inside the Plots
4.3.2. Effect of the Non-Vegetated Embankments of PT in the Increase in Retained Sediments in the Anti-Erosion Ditch Downstream of Plots
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chavda, M.H.; Chaudhari, P.P. Water Erosion Causes, Effects and Remediation. Just Agric. 2022, 2, 32. [Google Scholar]
- Morgan, R. Soil Erosion and Conservation, 2nd ed.; Longman Publishing Group: Harlow and J. Wiley &. Sons: New York, NY, USA, 1995. [Google Scholar]
- FAOSTAT. FAO Statistical Pocketbook; World Food and Agriculture Organization FAO: Rome, Italy, 2015. [Google Scholar]
- Kebede, W.; Mulder, J.; Birhanu, B. Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review. Agric. Water Manag. 2018, 207, 67–79. [Google Scholar]
- Pimentel, D. Soil erosion: A food and environmental threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- UNEP. The Economics of Land Degradation in Africa; ELD Initiative: Bonn, Germany, 2015; Available online: www.eld-initiative.org (accessed on 5 May 2025).
- Roose, E. Introduction à la Gestion Conservatoire de l’eau, de la Biomasse et de la Fertilité des sols (GCES) [Introduction to the Conservative Management of Water, Biomass and Soil Fertility]; Bulletin pédologique de la FAO; FAO: Rome, Italy, 1994; pp. 370–387. [Google Scholar]
- Cerdan, O.; Govers, G.; Le Bissonnais, Y.; Van Oost, K.; Poesen, J.; Saby, N.; Gobin, A.; Vacca, A.; Quinton, J.; Auerswald, K.; et al. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 2010, 122, 167–177. [Google Scholar] [CrossRef]
- Willcocks, T.J.; Twomlow, S.J. A review of tillage methods and soil and water conservation in southern. Afr. Soil. Tillage Res. 1993, 27, 73–94. [Google Scholar] [CrossRef]
- Spaan, W.P.; Sikking, A.F.S.; Hoogmoed, W.B. Vegetation barrier and tillage effects on runoff and sediment in an alley crop system on a luvisol in Burkina Faso. Soil. Tillage Res. 2005, 83, 194–203. [Google Scholar] [CrossRef]
- Babalola, O.; Oshunsanya, S.O.; Are, K. Effects of vetiver grass (Vetiveria nigritana) strips, vetiver grass mulch and an organomineral fertilizer on soil, water and nutrient losses and maize (Zea mays, L.) yields. Soil. Tillage Res 2007, 96, 6–18. [Google Scholar] [CrossRef]
- Nkonge, L.K.; Gathenya, J.M.; Kiptala, J.K.; Cheruiyot, C.K.; Petroselli, A. An ensemble of weight of evidence and logistic regression for gully erosion susceptibility mapping in the Kakia-Esamburmbur catchment, Kenya. Water 2023, 15, 1292. [Google Scholar] [CrossRef]
- Tully, K.; Sullivan, C.; Weil, R.; Sanchez, P. The State of soil degradation in subsaharan Africa: Baselines, trajectories, and solutions. Sustainability 2015, 7, 6523–6552. [Google Scholar] [CrossRef]
- Umukiza, E.; Ntole, R.; Chikavumbwa, S.R.; Bwambale, E.; Sibale, D.; Apollonio, C.; Petroselli, A. Rainwater harvesting in arid and semi-arid lands of Africa: Challenges and opportunities. Acta Sci. Pol. Form. Circumiectus 2023, 22, 41–52. [Google Scholar] [CrossRef]
- Kassie, M.; Zikhali, P.; Pender, J.; Köhlin, G. The economics of sustainable land management practices in the Ethiopian Highlands. J. Agric. Econ. 2010, 61, 605–627. [Google Scholar] [CrossRef]
- Himeidan, Y.E.; Kweka, E.J. Malaria in East African highlands during the past 30 years: Impact of environmental changes. Front. Physiol. 2010, 3, 315. [Google Scholar] [CrossRef] [PubMed]
- Wickama, J.; Okoba, B.; Sterk, G. Effectiveness of sustainable land management measures in West Usambara highlands, Tanzania. Catena 2014, 118, 91–102. [Google Scholar] [CrossRef]
- Chirwa, P.W.; Mahamane, L. Overview of restoration and management practices in the degraded landscapes of the Sahelian and dryland forests and woodlands of East and southern Africa. South. For. J. For. Sci. 2017, 79, 87–94. [Google Scholar] [CrossRef]
- Saiz, G.; Wandera, F.M.; Pelster, D.E.; Ngetich, W.; Okalebo, J.R.; Rufino, M.C.; Butterbach-Bahl, K. Long-term assessment of soil and water conservation measures (Fanya-juu terraces) on soil organic matter in South Eastern Kenya. Geoderma 2016, 274, 1–9. [Google Scholar] [CrossRef]
- Karamage, F.; Zhang, C.; Ndayisaba, F.; Shao, H.; Kayiranga, A.; Fang, X.; Nahayo, L.; Muhire Nyesheja, E.; Tian, G. Extent of Cropland and Related Soil Erosion Risk in Rwanda. Sustainability 2016, 8, 609. [Google Scholar] [CrossRef]
- Mwango, S.B.; Msanya, B.M.; Mtakwa, P.W.; Kimaro, D.N.; Deckers, J.; Poesen, J. Effectiveness of mulching under Miraba in controlling soil erosion, fertility restoration and crop yield in the Usambara Mountains, Tanzania. Land Degrad. Dev. 2016, 27, 1266–1275. [Google Scholar] [CrossRef]
- Semalulu, O.; Kasenge, V.; Nakanwagi, A.; Wagoire, W.; Tukahirwa, J. Financial loss due to soil erosion in the Mt. Elgon hillsides, Uganda: A need for action. Soil Sci. Environ. Manag. 2015, 3, 29–35. [Google Scholar]
- Programme d’Action National de Lutte contre la Dégradation des Terres. La préservation des sols contre l’érosion est un devoir écologique national et individuel (Art.29 du code de l’Environnement) [National Action Program against Land Degradation. Preserving Soils Against Erosion Is a National and Individual Ecological Duty (Art. 29 of the Environmental Code)]. 2005; 67p. Available online: http://extwprlegs1.fao.org/docs/pdf/bur149852.pdf (accessed on 5 May 2025).
- Tekwa, I.J.; Kundiri, A.M.; Chiroma, A.M. Efficiency test of modeled empirical equations in predicting soil loss from ephemeral gully erosion around Mubi, Northeast Nigeria. Int. Soil Water Conserv. Res. 2016, 4, 12–19. [Google Scholar] [CrossRef]
- Mathieu, C. Erosion and anti-erosion control in Burundi. In Proceedings of the Seminar on Soil Erosion Kivu, Bukavu, Zaire, 23–28 January 1984; Available online: http://www.sist.sn/gsdl/collect/bre1/index/assoc/HASH9c0e.dir/06-071-081.pdf (accessed on 5 May 2025).
- Rishirumuhirwa, T. Role of the Banana Tree in the Functioning of Farms on the High Plateaus of East Africa (Application to the case of the Kirimiro-Burundi Region). Master’s Thesis, EPFL, Lausanne, Switzerland, 1997. [Google Scholar]
- Simonard, T.; Duchaufour, H.; Bizimana, M.; Mikokoro, C. La conservation des sols en milieu paysan burundais. Etude et hiérarchisation des stratégies antiérosives [Soil conservation in Burundian rural areas. Study and prioritization of anti-erosion strategies]. Les Cah. D’outre-Mer 1994, 47, 49–64. [Google Scholar]
- Biratu, A.A.; Bedadi, B.; Gebreyohannis, S.G.; Hordofa, T.; Kidane, D.A.; Melesse, A.M. Implications of land management pactirces on selected ecosystem services in the agricultural landscapes of Ethiopia: A review. Int. J. River Basin Manag. 2021, 21, 3–20. [Google Scholar] [CrossRef]
- Rutebuka, J.; Munyeshuli Uwimanzi, A.; Nkundwakazi, O.; Mbarushimana Kagabo, D.; Muhinda Mbonigaba, J.J.; Vermeir, P.; Verdoodt, A. Effectiveness of terracing techniques for controlling soil erosion by water in Rwanda. J. Environ. Manag. 2021, 277, 111–369. [Google Scholar] [CrossRef] [PubMed]
- Feeney, C.J.; Robinson, D.A.; Thomas, A.R.C.; Borrelli, P.; Cooper, D.M.; May, L. Agricultural practices drive elevated rates of topsoil decline across Kenya, but terracing and reduced tillage can reverse this. Sci. Total Environ. 2023, 870, 161925. [Google Scholar] [CrossRef] [PubMed]
- Gabiri, G.; Obando, J.A.; Tenywa, M.M.; Majaliwa, J.G.; Kizza, C.L.; Zizinga, A.; Buruchara, R. Soil and Nutrient Losses under Cultivated Bush and Climbing Beans on Terraced Humid Highland Slopes of Southwestern Uganda. J. Sci. Res. Rep. 2015, 8, 1–16. [Google Scholar] [CrossRef]
- Roose, E. Les Terrasses AntiéRosives en Afrique. Typologie, Efficacité, Limites et Ameliorations [Anti-Rrosion Terraces in Africa. Typology, Efficiency, Limits and Improvements]. 2006, pp. 105–118. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers15-07/010043095.pdf (accessed on 1 July 2025).
- Sabir, M.; Roose, E.; Al Karkouri, J. Les Techniques Traditionnelles de Gestion de l’eau, de la Biomasse et de la Fertilité des sols (Traditional Techniques for Water, Biomass and Soil Fertility Management). 2010, pp. 117–193. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers12-09/010054917.pdf (accessed on 1 July 2025).
- Apollonio, C.; Petroselli, A.; Tauro, F.; Cecconi, M.; Biscarini, C.; Zarotti, C.; Grimaldi, S. Hillslope Erosion Mitigation: An Experimental Proof of a Nature-Based Solution. Sustainability 2021, 13, 6058. [Google Scholar] [CrossRef]
- Dan, C.X.; Liu, G.; Zhao, Y.G.; Shu, C.B.; Shen, E.S.; Liu, C.; Tan, Q.H.; Zhang, Q.; Guo, Z.; Zhang, Y. The effects of typical grass cover combined with biocrusts on slope hydrology and soil erosion during rainstorms on the Loess Plateau of China: An experimental study. Hydrol. Process. 2022, 37, e14794. [Google Scholar] [CrossRef]
- Nsabiyumva, J.M.V.; Apollonio, C.; Castelli, G.; Petroselli, A.; Sabir, M.; Preti, F. Agricultural Practices for Hillslope Erosion Mitigation: A Case Study in Morocco. Water 2023, 15, 2120. [Google Scholar] [CrossRef]
- Salvaneschi, P.; Pica, A.; Apollonio, C.; Andrisano, T.; Pecci, M.; Petroselli, A.; Schirone, B. Assessing the Efficiency of Two Silvicultural Approaches for Soil Erosion Mitigation Using a Novel Monitoring Apparatus. Land 2024, 13, 1321. [Google Scholar] [CrossRef]
- Piras, F.; Castelli, G.; Santoro, A.; Gakunde, F.; Nsabiyumva, J.M.V.; Allegri, M.; Agnoletti, M.; Apollonio, C.; Nijimbere, S.; Hicintuka, C.; et al. A Collaborative Evaluation of a Large-1 Scale Integrated Landscape Restoration Project in the Steep-Slope Regions of Central Africa. Earth Arxiv 2025, 39. [Google Scholar] [CrossRef]
- Preti, F.; Crocetti, C.; Nijimbere, S.; Nsabiyumva, J.M.V.; Hicintuka, C.; Castelli, G. Soil and Water Bioengineering (SWBE) in Africa: First Experience and Lessons-learned in Burundi. Ecological Engineering. Ecol. Eng. 2025, 212, 107510. [Google Scholar] [CrossRef]
- Bey, A.; Díaz, A.S.-P.; Maniatis, D.; Marchi, G.; Mollicone, D.; Ricci, S.; Bastin, J.-F.; Moore, R.; Federici, S.; Rezende, M.; et al. Collect earth: Land use and land cover assessment through augmented visual interpretation. Remote Sens. 2016, 8, 807. [Google Scholar] [CrossRef]
- Baert, G.; Kervyn, F.; Laghmouch, M.; Nimbona, I.; Sendegeya, M.; Van Ranst, E.; Verdoodt, A. Carte pédologique du Burundi, feuille 19: Buhinyuza. Burundi. Ministère de l’Agriculture. Institut des Sciences Agronomiques du Burundi (ISABU) [Soil map of Burundi, sheet 19: Buhinyuza. Burundi. Ministry of Agriculture. Institute of Agronomic Sciences of Burundi]. ISBN 9789491615627, 2014, 1 map pages. Available online: http://hdl.handle.net/1854/LU-5332976 (accessed on 1 July 2025).
- Köppen, W. Die Klimate des Erde-Grundsriss der Klimakunde [The Climates of the Earth-Outline of Climatology]; Walter de Gruyter & Co.: Berlin, Germany; Leipzig, Germany, 2023; 369p. [Google Scholar]
- Étude d’Impact Environnemental et Social (EIES) [Environmental and Social Impact Study], February, 2021, 127p. Available online: https://www.obpe.bi/wp-content/uploads/2023/04/EIES_PRRPB.pdf (accessed on 1 July 2025).
- GIZ. Analyse intégrée de la vulnérabilité au Burundi, Volume II, ‘‘Analyse de la Vulnérabilité au niveau local’’[Integrated Vulnerability Analysis in Burundi, ‘‘Vulnerability Analysis at the Local Level’’]; GIZ: Bonn, Germany, 2014; Volume II. [Google Scholar]
- Moeyersons, J. Soil loss by rainwash: A case study from Rwanda. Zeitschrift fur. Geomorphology 1990, 34, 385–408. [Google Scholar]
- Roose, E. Méthodes de mesure des états de surface du sol, de la rugosité et des autres caractéristiques qui peuvent aider au diagnostic de terrain des risques de ruissellement et d’érosion, en particulier sur les versants cultivés des montagnes [Methods for measuring soil surface conditions, roughness and other characteristics that can help in the field diagnosis of runoff and erosion risks, particularly on cultivated mountain slopes]. Bull. Réseau Eros. 1996, 16, 87–97. [Google Scholar]
- Available online: https://soilgrids.org/ (accessed on 18 July 2023).
- Bensalah, N.; Sabir, M.; Roose, E.; Laouina, A. Indicateurs des risques de ruissellement et d′érosion en vue d′une gestion durable des eaux et sols (Bassin versant de Bouregreg, Maroc) [Indicators of Runoff and Erosion Risks for Sustainable Water and Soil Management (Bouregreg Watershed, Morocco)]. Presses universitaires du Septentrion. 2008. Available online: https://books.openedition.org/septentrion/9220?lang=fr (accessed on 5 May 2025).
- Zangiski, F.; Miquellut, D.J.; Bertol, I.; Ramos, J.C. Soil roughness indexes and their relationship with water erosion. Pesq. Agropec. Bras. Brasília 2018, 53, 756–764. [Google Scholar] [CrossRef]
- Bougère, J.; Hebert, A.; Michellon, R. Protection Contre L’érosion [Protection Against Erosion]; 1989; 17p, Available online: https://agritrop.cirad.fr/471277/1/ID471277.pdf (accessed on 1 July 2025).
- Samake, O.; Traoré, K.; Bengaly, A. Estimation of Soil Erosion Under Cultivation in the Sudanian Zone of Mali: Case of the Village of Kani (Koutiala Circle). Master’s Thesis, Rural Polytechnic Institute of Formation and Applied Research, Bamako, Mali, 2017; 88p. [Google Scholar]
- Martinez-Graña, A.; Goy, J.; Zazo, C. Water and wind erosion risk in parks natural. A case study in “The Batuecas-Sierra de Francia” and “Quilamas” protected parks (Central system, Spain). Int. J. Environ. Res. 2014, 8, 61–68. [Google Scholar]
- Cerdà, A. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Can. J. Soil Sci. 1998, 78, 321–330. [Google Scholar] [CrossRef]
- Rey, F.; Ballais, J.L.; Marre, A.; Rovéra, G. Role of Vegetation in Protecting against Surface Water Erosion [R?le de la végétation dans la protection contre l’érosion hydrique de surface]. Comptes Rendus Geosci. 2004, 336, 991–998. [Google Scholar] [CrossRef]
- Mostepha-oui, T.; Merdas, S.; Sakaa, B.; Hanafi, M.T. Cartographie des risques d’érosion hydrique par l’application de l’équation universelle de pertes en sol à l’aide d’un Système d’Information Géographique dans le bassin versant d’El Hamel (Boussaâda) [Mapping of wa-ter erosion risks by applying the universal soil loss equation using a Geographic Information System in the El Hamel watershed (Boussaâda)]. J. Algérien Des Régions Arides 2013, 1–17. Available online: https://www.researchgate.net/publication/260001382 (accessed on 1 July 2025).
- Beuselinck, L.; Steegen, A.; Govers, G.; Nachtergaele, J.; Takken, I.; Poesen, J. Characteristics of sediment deposits formed by intense rainfall events in small catchments in the Belgian Loam Belt. Geomorphology 2000, 32, 69–82. [Google Scholar] [CrossRef]
- Cosandey, C.; Didon-Lescot, J.F.; Martin, C. Forêt et écoulements: Étude des processus responsables des modifications du bilan d’écoulement annuel à l’occasion d’une coupe forestière [Forest and flows: Study of the processes responsible for changes in the annual flow balance during forest felling]. Forêt Méditerranéenne 2000, 21, 154–155. [Google Scholar]
- Dalton, P.A.; Smith, R.J.; Truong, P.N.V. Vetiver grass hedges for erosion control on a cropped flood plain: Hedge hydraulics. Agric. Water Manag. 1996, 31, 91–104. [Google Scholar] [CrossRef]
- Valle Junior, R.F.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Environmental land use conflicts: A threat to soil conservation. Land Use Policy 2014, 41, 172–185. [Google Scholar] [CrossRef]
- Durán, Z.H.V.; Francia, M.J.R.; Rodríguez, P.C.R.; Martínez, R.A.; Carcéles, R.B. Soil-erosion and runoff prevention by plant covers in a mountainous area (SE Spain): Implications for sustainable agriculture. Environmentalist 2006, 26, 309–319. [Google Scholar] [CrossRef]
- Chirino, E.; Bonet, A.; Bellot, J.; Sánchez, J. Effects of 30-year-old Aleppo pine plantations on runoff, soil erosion, and plant diversity in a semi-arid landscape in south eastern Spain. Catena 2006, 65, 19–29. [Google Scholar] [CrossRef]
- IAPAR. 10 Years of Research: Technical Report 1972–1982; Paraná Agronomic Institute Foundation: Londrina, Brazil, 1984; 233p. [Google Scholar]
- Chow, T.L.; Rees, H.W.; Daigle, J.L. Effectiveness of terraces grassed waterway systems for soil and water conservation: A field evaluation. J. Soil Water Conserv. 1999, 54, 577–583. [Google Scholar] [CrossRef]
- Vogel, H. Deterioration of a mountainous agro-ecosystem in the Third World due to emigration of rural labour. Mt. Res. Dev. 1988, 8, 321–329. [Google Scholar] [CrossRef]
- Harden, C.P. Interrelationships between land abandonment and land degradation: A case from the Ecuadorian Andes. Mt. Res. Dev. 1996, 16, 274–280. [Google Scholar] [CrossRef]
- Gallart, F.; Llorens, P.; Latron, J. Studying the role of old agricultural terraces on runoff generation in a small Mediterranean mountainous basin. J. Hydrol. 1994, 159, 291–303. [Google Scholar] [CrossRef]
- Lasanta, T.; Arnaez, J.; Oserin, M.; Ortigosa, L.M. Marginal lands and erosion in terraced fields in the Mediterranean mountains. Mt. Res. Dev. 2001, 21, 69–76. [Google Scholar] [CrossRef]
Project Area | ||||||||
---|---|---|---|---|---|---|---|---|
Province (Commune) | Bujumbura (Isare) | Muyinga (Buhinyuza) | ||||||
Slope [%] | Coordinates (lat/long) | Altitude [m a.s.l.] | Gasave and Karehe | Slope [%] | Coordinates (lat/long) | Altitude [m a.s.l.] | ||
Study plots | Butuhurana | 18.56 | −3.32133° 29.43947° | 1274 | Karehe | 43.2 | −3.01784° 30.40513° | 1400 |
Giterama I | 17 | −3.32076° 29.43254° | 1108 | Gasave I | 22.3 | −2.95191° 30.42748° | 1500 | |
Giterama II | 18.1 | −3.32038° 29.43239° | 1089 | Gasave II | 24.9 | −2.95191° 30.42752° | 1502 |
Monitoring | Surface Conditions in PT at Isare | Surface Conditions in n_PT at Isare | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
OS% | CS% | CoS% | BS% | Ri% | OS% | CS% | CoS% | BS% | Ri% | |
16 to 22 December 2022 | 97.17 | 2.83 | 3.43 | 96.57 | 1.76 | 97.60 | 2.40 | 2.40 | 96.43 | 1.30 |
26 to 28 January 2023 | 78.33 | 21.67 | 47.33 | 52.67 | 5.37 | 72.33 | 27.67 | 27.67 | 55.00 | 10.37 |
2 to 4 March 2023 | 79.00 | 21.00 | 66.67 | 33.33 | 4.45 | 68.33 | 31.67 | 31.67 | 35.00 | 11.12 |
1 to 9 April 2023 | 77.33 | 22.67 | 90.67 | 9.33 | 3.61 | 61.67 | 38.33 | 38.33 | 17.67 | 11.86 |
6 to 10 May 2023 | 80.33 | 19.67 | 96.83 | 3.17 | 2.41 | 61.33 | 38.67 | 38.67 | 4.00 | 10.93 |
Global Average (GA%) of Surfaces Conditions | |||||
---|---|---|---|---|---|
OS%% | CS% | CoS% | BS% | Ri% | |
Surface conditions in PT at Isare | 82.43 | 17.57 | 60.99 | 39.01 | 3.52 |
Surface conditions in nPT at Isare | 72.25 | 27.75 | 58.18 | 41.62 | 9.12 |
Monitoring | Surface Conditions in PT | Surface Conditions in n_PT | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
OS% | CS% | CoS% | BS% | Ri% | OS% | CS% | CoS% | BS% | Ri% | |
30 to 31 December 2022 | 84.00 | 16.00 | 18.17 | 81.84 | 1.03 | 83.90 | 16.10 | 18.70 | 81.30 | 1.30 |
5 February 2023 | 67.33 | 32.67 | 62.33 | 37.67 | 15.09 | 73.33 | 26.67 | 59.67 | 40.33 | 14.91 |
6 March 2023 | 69.00 | 31.00 | 90.33 | 9.67 | 15.65 | 75.00 | 25.00 | 92.67 | 7.33 | 14.63 |
11 April 2023 | 71.33 | 28.67 | 98.00 | 2.00 | 15.84 | 76.33 | 23.67 | 97.00 | 3.00 | 15.84 |
17 May 2023 | 73.33 | 26.67 | 99.17 | 0.83 | 15.56 | 80.00 | 20.00 | 98.87 | 1.13 | 15.35 |
Global Average in Surface Conditions at Buhinyuza | |||||
---|---|---|---|---|---|
OS% | CS% | CoS% | BS% | Ri% | |
Surface conditions in PT | 73.00 | 27.00 | 73.60 | 26.40 | 12.63 |
Surface conditions in n_PT | 77.71 | 22.29 | 73.38 | 26.62 | 12.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vianney Nsabiyumva, J.M.; Apollonio, C.; Castelli, G.; Bresci, E.; Petroselli, A.; Sabir, M.; Hicintuka, C.; Preti, F. Impact of Slow-Forming Terraces on Erosion Control and Landscape Restoration in Central Africa’s Steep Slopes. Land 2025, 14, 1419. https://doi.org/10.3390/land14071419
Vianney Nsabiyumva JM, Apollonio C, Castelli G, Bresci E, Petroselli A, Sabir M, Hicintuka C, Preti F. Impact of Slow-Forming Terraces on Erosion Control and Landscape Restoration in Central Africa’s Steep Slopes. Land. 2025; 14(7):1419. https://doi.org/10.3390/land14071419
Chicago/Turabian StyleVianney Nsabiyumva, Jean Marie, Ciro Apollonio, Giulio Castelli, Elena Bresci, Andrea Petroselli, Mohamed Sabir, Cyrille Hicintuka, and Federico Preti. 2025. "Impact of Slow-Forming Terraces on Erosion Control and Landscape Restoration in Central Africa’s Steep Slopes" Land 14, no. 7: 1419. https://doi.org/10.3390/land14071419
APA StyleVianney Nsabiyumva, J. M., Apollonio, C., Castelli, G., Bresci, E., Petroselli, A., Sabir, M., Hicintuka, C., & Preti, F. (2025). Impact of Slow-Forming Terraces on Erosion Control and Landscape Restoration in Central Africa’s Steep Slopes. Land, 14(7), 1419. https://doi.org/10.3390/land14071419