Analysis of Habitat Quality Changes in Mountainous Areas Using the PLUS Model and Construction of a Dynamic Restoration Framework for Ecological Security Patterns: A Case Study of Golog Tibetan Autonomous Prefecture, Qinghai Province, China
Abstract
1. Introduction
2. Overview of the Study Area and Data Sources
2.1. Overview of the Study Area
2.2. Data Sources
3. Research Methods
3.1. Land-Use Prediction
3.1.1. PLUS Model
3.1.2. Markov Model
3.1.3. Model Validation
3.2. Construction of Ecological Security Patterns
3.2.1. Identification of Ecological Sources Using the InVEST Model
3.2.2. Constructing Ecological Resistance Surface Based on the Minimum Cumulative Resistance (MCR) Model
3.2.3. Constructing Ecological Corridors and Ecological Strategic Nodes Using Circuit Theory
3.3. Technical Framework Diagram
4. Results and Analysis
4.1. Validation of PLUS Model Simulation Results
4.2. Land-Use Pattern Changes in Golog Tibetan Autonomous Prefecture from 2020 to 2030
4.3. Spatiotemporal Evolution of Habitat Quality in Golog Tibetan Autonomous Prefecture from 2020 to 2030
4.4. Construction of the Ecological Security Pattern in Golog Tibetan Autonomous Prefecture
4.4.1. Identification of Ecological Source Area and Construction of Resistance Surface
4.4.2. Construction of Ecological Corridors and Ecological Strategic Nodes
5. Discussion
5.1. Comparison with Related Studies
5.2. Ecological Security Pattern Restoration and Improvement
5.3. Limitations and Uncertainties
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Li, J.; Chu, J. Research on land-use evolution and ecosystem services value response in mountainous counties based on the SD-PLUS model. Ecol. Evol. 2022, 12, e9431. [Google Scholar] [CrossRef]
- Solow, A.R. On detecting ecological impacts of extreme climate events and why it matters. Philos. Trans. R. Soc. B-Biol. Sci. 2017, 372, 20160136. [Google Scholar] [CrossRef]
- Shen, X.; Liu, M.; Hanson, J.O.; Wang, J.; Locke, H.; Watson, J.E.M.; Ellis, E.C.; Li, S.; Ma, K. Countries’ differentiated responsibilities to fulfill area-based conservation targets of the Kunming-Montreal Global Biodiversity Framework. One Earth 2023, 6, 548–559. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J. Analysis of the main elements and implications of the Kunming-Montreal Global Biodiversity Framework. Biodivers. Sci. 2023, 31, 23020. [Google Scholar] [CrossRef]
- Fu, B.J.; Liu, Y.X.; Meadows, M.E. Ecological restoration for sustainable development in China. Natl. Sci. Rev. 2023, 10, nwad033. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xie, Z.Y.; Wu, H.; Wang, L. Ecological degradation and green development at crossroads: Incorporating the sustainable development goals into the regional green transformation and reform. Environ. Dev. Sustain. 2024, 1–13. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, D.S.; Chen, H. Full Title: Quantifying the ecological carrying capacity of alpine grasslands on the Qinghai-Tibet Plateau. Ecol. Indic. 2022, 136, 108634. [Google Scholar] [CrossRef]
- Lu, T.; Li, C.J.; Zhou, W.X.; Liu, Y.X. Fuzzy Assessment of Ecological Security on the Qinghai-Tibet Plateau Based on Pressure-State-Response Framework. Remote Sens. 2023, 15, 1293. [Google Scholar] [CrossRef]
- Haack, B.; Mahabir, R.; Kerkering, J. Remote sensing-derived national land cover land use maps: A comparison for Malawi. Geocarto Int. 2015, 30, 270–292. [Google Scholar] [CrossRef]
- Wu, T.; Feng, F.; Lin, Q.; Bai, H. A spatio-temporal prediction of NDVI based on precipitation: An application for grazing management in the arid and semi-arid grasslands. Int. J. Remote Sens. 2020, 41, 2359–2373. [Google Scholar] [CrossRef]
- Uddin, M.S.; Mahalder, B.; Mahalder, D. Assessment of Land Use Land Cover Changes and Future Predictions Using CA-ANN Simulation for Gazipur City Corporation, Bangladesh. Sustainability 2023, 15, 12329. [Google Scholar] [CrossRef]
- Jin, S.H.; Liu, X.; Yang, J.J.; Lv, J.C.; Gu, Y.C.; Yan, J.S.; Yuan, R.Y.; Shi, Y.D. Spatial-temporal changes of land use/cover change and habitat quality in Sanjiang plain from 1985 to 2017. Front. Environ. Sci. 2022, 10, 1032584. [Google Scholar] [CrossRef]
- Zhang, C.X.; Jia, C.; Gao, H.G.; Shen, S.G. Ecological Security Pattern Construction in Hilly Areas Based on SPCA and MCR: A Case Study of Nanchong City, China. Sustainability 2022, 14, 11368. [Google Scholar] [CrossRef]
- Lin, X.; Fu, H. Multi-scenario simulation analysis of cultivated land based on PLUS model-a case study of Haikou, China. Front. Ecol. Evol. 2023, 11, 1197419. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, X.; Pan, G.Y.; Zhao, J.Y.; Zhao, Y. Hydrological responses to co-impacts of climate change and land use/cover change based on CMIP6 in the Ganjiang River, Poyang Lake basin. Anthropocene 2023, 41, 100368. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Han, Y.; Yang, L.; Que, H.; Wang, R. Scenario Simulation of the Relationship between Land-Use Changes and Ecosystem Carbon Storage: A Case Study in Dongting Lake Basin, China. Int. J. Environ. Res. Public Health 2023, 20, 4835. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.C.; Zheng, W.T.; Deng, X.Z. Dynamics of land use efficiency with ecological intercorrelation in regional development. Landsc. Urban Plan. 2018, 177, 303–316. [Google Scholar] [CrossRef]
- Luo, D.; Zhang, W.T. A comparison of Markov model-based methods for predicting the ecosystem service value of land use in Wuhan, central China. Ecosyst. Serv. 2014, 7, 57–65. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Shaamala, A.; Obeidat, R.; Al-Kofahi, S. Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon 2020, 6, e05092. [Google Scholar] [CrossRef]
- Mei, Z.X.; Wu, H.; Li, S.Y. Simulating land-use changes by incorporating spatial autocorrelation and self-organization in CLUE-S modeling: A case study in Zengcheng District, Guangzhou, China. Front. Earth Sci. 2018, 12, 299–310. [Google Scholar] [CrossRef]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.C.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liu, J.C.; Liu, B.Y.; Wu, L.J.; Miao, H.Y.; Liu, J.G.; Jiang, K.; Ding, H.; Gao, W.C.; Liu, T.Z. Prediction of land use for the next 30 years using the PLUS model’s multi-scenario simulation in Guizhou Province, China. Sci. Rep. 2024, 14, 13143. [Google Scholar] [CrossRef]
- Islam, S.; Li, Y.C.; Ma, M.G.; Chen, A.X.; Ge, Z.X. Simulation and Prediction of the Spatial Dynamics of Land Use Changes Modelling Through CLUE-S in the Southeastern Region of Bangladesh. J. Indian Soc. Remote Sens. 2021, 49, 2755–2777. [Google Scholar] [CrossRef]
- Hou, X.Y.; Song, B.Y.; Zhang, X.Y.; Wang, X.L.; Li, D. Multi-scenario Simulation and Spatial-temporal Analysis of LUCC in China’s Coastal Zone Based on Coupled SD-FLUS Model. Chin. Geogr. Sci. 2024, 34, 579–598. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.S.; Li, S.J.; Li, Y.X. Multi-Scenario Simulation Analysis of Land Use Impacts on Habitat Quality in Tianjin Based on the PLUS Model Coupled with the InVEST Model. Sustainability 2022, 14, 6923. [Google Scholar] [CrossRef]
- Liu, P.J.; Hu, Y.C.; Jia, W.T. Land use optimization research based on FLUS model and ecosystem services-setting Jinan City as an example. Urban Clim. 2021, 40, 100984. [Google Scholar] [CrossRef]
- Li, N.; Sun, P.L.; Zhang, J.Y.; Mo, J.X.; Wang, K. Spatiotemporal evolution and driving factors of ecosystem services’ transformation in the Yellow River basin, China. Environ. Monit. Assess. 2024, 196, 252. [Google Scholar] [CrossRef]
- Tang, H.; Peng, J.; Jiang, H.; Lin, Y.F.; Dong, J.Q.; Liu, M.L.; Meersmans, J. Spatial analysis enables priority selection in conservation practices for landscapes that need ecological security. J. Environ. Manag. 2023, 345, 118888. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Gan, X.Y.; Dai, W.N.; Huang, Y. Construction of an Ecological Security Pattern and the Evaluation of Corridor Priority Based on ESV and the “Importance-Connectivity” Index: A Case Study of Sichuan Province, China. Sustainability 2022, 14, 3985. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Shi, P.J.; Zhang, X.B.; Tong, H.L.; Zhang, W.P.; Liu, Y. Research on Landscape Pattern Construction and Ecological Restoration of Jiuquan City Based on Ecological Security Evaluation. Sustainability 2021, 13, 5732. [Google Scholar] [CrossRef]
- Afriyanie, D.; Julian, M.M.; Riqqi, A.; Akbar, R.; Suroso, D.S.A.; Kustiwan, I. Re-framing urban green spaces planning for flood protection through socio-ecological resilience in Bandung City, Indonesia. Cities 2020, 101, 102710. [Google Scholar] [CrossRef]
- Duan, J.Q.; Cao, Y.; Liu, B.; Liang, Y.Y.; Tu, J.Y.; Wang, J.H.; Li, Y.Y. Construction of an Ecological Security Pattern in Yangtze River Delta Based on Circuit Theory. Sustainability 2023, 15, 12374. [Google Scholar] [CrossRef]
- Lv, L.; Guo, W.; Zhao, X.S.; Li, J.; Ji, X.L.; Chao, M.J. Integrated assessment and prediction of ecological security in typical ecologically fragile areas. Environ. Monit. Assess. 2024, 196, 286. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.S.; Jiang, P.H.; Li, M.C. Assessing potential ecosystem service dynamics driven by urbanization in the Yangtze River Economic Belt, China. J. Environ. Manag. 2021, 292, 112734. [Google Scholar] [CrossRef]
- Andersson, E.; Tengö, M.; McPhearson, T.; Kremer, P. Cultural ecosystem services as a gateway for improving urban sustainability. Ecosyst. Serv. 2015, 12, 165–168. [Google Scholar] [CrossRef]
- Xia, X.S.; Liang, W.; Lv, S.H.; Pan, Y.Z.; Chen, Q. Remote Sensing Identification and Stability Change of Alpine Grasslands in Guoluo Tibetan Autonomous Prefecture, China. Sustainability 2024, 16, 5041. [Google Scholar] [CrossRef]
- Cui, X.F.; Deng, W.; Yang, J.X.; Huang, W.; de Vries, W.T. Construction and optimization of ecological security patterns based on social equity perspective: A case study in Wuhan, China. Ecol. Indic. 2022, 136, 108714. [Google Scholar] [CrossRef]
- Dong, R.C.; Zhang, X.Q.; Li, H.H. Constructing the Ecological Security Pattern for Sponge City: A Case Study in Zhengzhou, China. Water 2019, 11, 284. [Google Scholar] [CrossRef]
- Nie, W.B.; Bin, X.; Yang, F.; Shi, Y.; Liu, B.T.; Wu, R.W.; Lin, W.; Pei, H.; Bao, Z.Y. Simulating future land use by coupling ecological security patterns and multiple scenarios. Sci. Total Environ. 2023, 859, 160262. [Google Scholar] [CrossRef]
- Huang, C.; Zhou, Y.; Wu, T.; Zhang, M.Y.; Qiu, Y. A cellular automata model coupled with partitioning CNN-LSTM and PLUS models for urban land change simulation. J. Environ. Manag. 2024, 351, 119828. [Google Scholar] [CrossRef]
- Kou, J.; Wang, J.J.; Ding, J.L.; Ge, X.Y. Spatial Simulation and Prediction of Land Use/Land Cover in the Transnational Ili-Balkhash Basin. Remote Sens. 2023, 15, 3059. [Google Scholar] [CrossRef]
- Xu, X.H.; Kong, W.J.; Wang, L.G.; Wang, T.J.; Luo, P.P.; Cui, J.J. A novel and dynamic land use/cover change research framework based on an improved PLUS model and a fuzzy multiobjective programming model. Ecol. Inform. 2024, 80, 102460. [Google Scholar] [CrossRef]
- Al-sharif, A.A.A.; Pradhan, B. Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arab. J. Geosci. 2014, 7, 4291–4301. [Google Scholar] [CrossRef]
- Cao, X.F.; Liu, Z.S.; Li, S.J.; Gao, Z.J. Integrating the Ecological Security Pattern and the PLUS Model to Assess the Effects of Regional Ecological Restoration: A Case Study of Hefei City, Anhui Province. Int. J. Environ. Res. Public Health 2022, 19, 6640. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.L.; Zhao, L.H. A novel composite fractional order battery model with online parameter identification and truncation approximation calculation. Energy 2025, 322, 135561. [Google Scholar] [CrossRef]
- Zhao, L.S.; Liu, G.S.; Xian, C.L.; Nie, J.Q.; Xiao, Y.; Zhou, Z.G.; Li, X.T.; Wang, H.M. Simulation of Land Use Pattern Based on Land Ecological Security: A Case Study of Guangzhou, China. Int. J. Environ. Res. Public Health 2022, 19, 9281. [Google Scholar] [CrossRef]
- Dong, X.; Wang, F.; Fu, M.C. Research progress and prospects for constructing ecological security pattern based on ecological network. Ecol. Indic. 2024, 168, 112800. [Google Scholar] [CrossRef]
- Gao, J.B.; Du, F.J.; Zuo, L.Y.; Jiang, Y. Integrating ecosystem services and rocky desertification into identification of karst ecological security pattern. Landsc. Ecol. 2021, 36, 2113–2133. [Google Scholar] [CrossRef]
- Hu, C.G.; Wang, Z.Y.; Huang, G.L.; Ding, Y.C. Construction, Evaluation, and Optimization of a Regional Ecological Security Pattern Based on MSPA-Circuit Theory Approach. Int. J. Environ. Res. Public Health 2022, 19, 16184. [Google Scholar] [CrossRef]
- Kang, J.M.; Zhang, X.; Zhu, X.W.; Zhang, B.L. Ecological security pattern: A new idea for balancing regional development and ecological protection. A case study of the Jiaodong Peninsula, China. Glob. Ecol. Conserv. 2021, 26, e01472. [Google Scholar] [CrossRef]
- Zhang, J.X.; Cao, Y.M.; Ding, F.S.; Wu, J.; Chang, I.S. Regional Ecological Security Pattern Construction Based on Ecological Barriers: A Case Study of the Bohai Bay Terrestrial Ecosystem. Sustainability 2022, 14, 5384. [Google Scholar] [CrossRef]
- Zhang, H.F.; Li, S.D.; Liu, Y.; Xu, M. Assessment of the Habitat Quality of Offshore Area in Tongzhou Bay, China: Using Benthic Habitat Suitability and the InVEST Model. Water 2022, 14, 1574. [Google Scholar] [CrossRef]
- Zhao, L.S.; Yu, W.Y.; Meng, P.; Zhang, J.S.; Zhang, J.X. InVEST model analysis of the impacts of land use change on landscape pattern and habitat quality in the Xiaolangdi Reservoir area of the Yellow River basin, China. Land Degrad. Dev. 2022, 33, 2870–2884. [Google Scholar] [CrossRef]
- Li, X.W.; Hou, X.Y.; Song, Y.; Shan, K.; Zhu, S.Y.; Yu, X.B.; Mo, X.Q. Assessing Changes of Habitat Quality for Shorebirds in Stopover Sites: A Case Study in Yellow River Delta, China. Wetlands 2019, 39, 67–77. [Google Scholar] [CrossRef]
- Wang, S.Y.; Liang, X.N.; Wang, J.Y. Parameter assignment for InVEST habitat quality module based on principal component analysis and grey coefficient analysis. Math. Biosci. Eng. 2022, 19, 13928–13948. [Google Scholar] [CrossRef]
- Sun, X.Y.; Jiang, Z.; Liu, F.; Zhang, D.Z. Monitoring spatio-temporal dynamics of habitat quality in Nansihu Lake basin, eastern China, from 1980 to 2015. Ecol. Indic. 2019, 102, 716–723. [Google Scholar] [CrossRef]
- Wu, L.L.; Sun, C.G.; Fan, F.L. Estimating the Characteristic Spatiotemporal Variation in Habitat Quality Using the InVEST Model-A Case Study from Guangdong-Hong Kong-Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Jiang, W.Y.; Cai, Y.L.; Tian, J.J. The application of minimum cumulative resistance model in the evaluation of urban ecological land use efficiency. Arab. J. Geosci. 2019, 12, 714. [Google Scholar] [CrossRef]
- Liu, G.S.; Liang, Y.Z.; Cheng, Y.X.; Wang, H.M.; Yi, L. Security Patterns and Resistance Surface Model in Urban Development: Case Study of Sanshui, China. J. Urban Plan. Dev. 2017, 143, 05017011. [Google Scholar] [CrossRef]
- Beita, C.M.; Murillo, L.F.S.; Alvarado, L.D.A. Ecological corridors in Costa Rica: An evaluation applying landscape structure, fragmentation-connectivity process, and climate adaptation. Conserv. Sci. Pract. 2021, 3, e475. [Google Scholar] [CrossRef]
- Liu, Z.H.; Huang, Q.D.; Tang, G.P. Identification of urban flight corridors for migratory birds in the coastal regions of Shenzhen city based on three-dimensional landscapes. Landsc. Ecol. 2021, 36, 2043–2057. [Google Scholar] [CrossRef]
- Chen, X.Q.; Kang, B.Y.; Li, M.Y.; Du, Z.B.; Zhang, L.; Li, H.Y. Identification of priority areas for territorial ecological conservation and restoration based on ecological networks: A case study of Tianjin City, China. Ecol. Indic. 2023, 146, 109809. [Google Scholar] [CrossRef]
- Yu, Q.; Yue, D.P.; Wang, Y.H.; Kai, S.; Fang, M.Z.; Ma, H.; Zhang, Q.B.; Huang, Y. Optimization of ecological node layout and stability analysis of ecological network in desert oasis: A typical case study of ecological fragile zone located at Deng Kou County (Inner Mongolia). Ecol. Indic. 2018, 84, 304–318. [Google Scholar] [CrossRef]
- Wang, N.; Wang, G.S.; Gun, W.L.; Liu, M. Spatio-Temporal Changes in Habitat Quality and Linkage with Landscape Characteristics Using InVEST-Habitat Quality Model: A Case Study at Changdang Lake National Wetland, Changzhou, China. Pol. J. Environ. Stud. 2022, 31, 5269–5284. [Google Scholar] [CrossRef]
- Yu, D.; Wang, D.Y.; Li, W.B.; Liu, S.H.; Zhu, Y.L.; Wu, W.J.; Zhou, Y.H. Decreased Landscape Ecological Security of Peri-Urban Cultivated Land Following Rapid Urbanization: An Impediment to Sustainable Agriculture. Sustainability 2018, 10, 394. [Google Scholar] [CrossRef]
- Berberoglu, S.; Akin, A.; Clarke, K.C. Cellular automata modeling approaches to forecast urban growth for adana, Turkey: A comparative approach. Landsc. Urban Plan. 2016, 153, 11–27. [Google Scholar] [CrossRef]
- Wang, J.; Bai, Y.; Huang, Z.D.; Ashraf, A.; Ali, M.; Fang, Z.; Lu, X. Identifying ecological security patterns to prioritize conservation and restoration:A case study in Xishuangbanna tropical region, China. J. Clean. Prod. 2024, 444, 141222. [Google Scholar] [CrossRef]
- Chen, S.; Yao, S.B. Identifying the drivers of land expansion and evaluating multi-scenario simulation of land use: A case study of Mashan County, China. Ecol. Inform. 2023, 77, 102201. [Google Scholar] [CrossRef]
- Yussif, K.; Dompreh, E.B.; Gasparatos, A. Sustainability of urban expansion in Africa: A systematic literature review using the Drivers-Pressures-State-Impact-Responses (DPSIR) framework. Sustain. Sci. 2023, 18, 1459–1479. [Google Scholar] [CrossRef]
- Agriculture and Forest Meteorology; New Agriculture and Forest Meteorology Data Have Been Reported by Researchers at CSIRO (Productivity and evapotranspiration of two contrasting semiarid ecosystems following the 2011 global carbon land sink anomaly). Agric. Week 2016, 220, 151–159.
- Ma, X.F.; Zhang, H.F. Variations in the Value and Trade-Offs/Synergies of Ecosystem Services on Topographic Gradients in Qinghai Province, China. Sustainability 2022, 14, 15546. [Google Scholar] [CrossRef]
- Liu, S.H.; Wang, D.Y.; Li, H.; Li, W.B.; Wu, W.J.; Zhu, Y.L. The Ecological Security Pattern and Its Constraint on Urban Expansion of a Black Soil Farming Area in Northeast China. ISPRS Int. J. Geo-Inf. 2017, 6, 263. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, C.R.; He, Q.S.; Liu, Y.L. Urban Ecological Security Simulation and Prediction Using an Improved Cellular Automata (CA) Approach-A Case Study for the City of Wuhan in China. Int. J. Environ. Res. Public Health 2017, 14, 643. [Google Scholar] [CrossRef]
- Liu, P.; Jia, S.J.; Han, R.M.; Zhang, H.W. Landscape Pattern and Ecological Security Assessment and Prediction Using Remote Sensing Approach. J. Sens. 2018, 2018, 1058513. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Ge, H.L.; Li, X.N.; Huang, X.Y.; Ma, S.L.; Bai, Q.F. Spatiotemporal patterns and prediction of landscape ecological security in Xishuangbanna from 1996-2030. PLoS ONE 2023, 18, e0292875. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.L.; Qing, G.; Wang, Y.X.; Qiu, S.C.; Luo, N. Landscape Ecological Security of the Lijiang River Basin in China: Spatiotemporal Evolution and Pattern Optimization. Sustainability 2024, 16, 5777. [Google Scholar] [CrossRef]
- Li, J.H.; Wang, Y.; Shi, G.; Pei, X.D.; Zhang, C.; Zhou, L.H.; Yang, G.J. Ecological security pattern construction using landscape ecological quality: A case study of Yanchi County, northern China. J. Arid Land 2025, 17, 19–42. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.Q.; Jiang, W.G.; Qiu, H.H. Construction of ecological security pattern based on ecological carrying capacity assessment 1990-2040: A case study of the Southwest Guangxi Karst- Beibu Gulf. Ecol. Model. 2023, 479, 110322. [Google Scholar] [CrossRef]
- Yang, J.X.; Deng, W.; Zhang, G.H.; Cui, X.F. Linking endangered species protection to construct and optimize ecological security patterns in the National ecological Civilization construction Demonstration Zone: A case study of Yichang, China. Ecol. Indic. 2024, 158, 111579. [Google Scholar] [CrossRef]
- Wang, G.C.Z. The Construction of Biodiversity Database of the Dongling Mountain. 2005. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=aa2392c7755f5c97194394d8d7d98b6e&site=xueshu_se (accessed on 27 September 2024).
- Ouyang, Q.L.; Zheng, B.H.; Luo, X.; Wu, S.Y. Construction of Ecological Security Pattern of Urban Agglomeration Based on Multi-Scale Ecological Corridor Networks. Ecosyst. Health Sustain. 2024, 10, 0253. [Google Scholar] [CrossRef]
- Jin, Y.-L.; Zhou, D.-M.; Zhou, F.; Yang, J.; Zhu, X.-Y.; Ma, J.; Zhang, J. Construction and optimization of ecological security network in the Shule River Basin, China. Ying Yong Sheng Tai Xue Bao 2023, 34, 1063–1072. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Song, Y.H. Study on the Construction of the Ecological Security Pattern of the Lancang River Basin (Yunnan Section) Based on InVEST-MSPA-Circuit Theory. Sustainability 2023, 15, 477. [Google Scholar] [CrossRef]
- Ran, Y.J.; Lei, D.M.; Li, J.; Gao, L.P.; Mo, J.X.; Liu, X. Identification of crucial areas of territorial ecological restoration based on ecological security pattern: A case study of the central Yunnan urban agglomeration, China. Ecol. Indic. 2022, 143, 109318. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, B.J.; Wang, H.L.; Hu, M.C.A. Analysis of the Spatiotemporal Changes in Watershed Landscape Pattern and Its Influencing Factors in Rapidly Urbanizing Areas Using Satellite Data. Remote Sens. 2021, 13, 1168. [Google Scholar] [CrossRef]
- Oestreich, W.K.Z. Animal Migration and Behavioral Flexibility in an Era of Rapid Global Change. 2022. Available online: https://purl.stanford.edu/vd767vn4069 (accessed on 27 September 2024).
Data | Source | Resolution | ||
---|---|---|---|---|
Land-use data | Land-use data for 2000 | Globeland 30 (https://www.webmap.cn, accessed on 28 August 2023) | 30 m × 30 m | |
Land-use data for 2010 | Globeland 30 (https://www.webmap.cn, accessed on 28 August 2023) | 30 m × 30 m | ||
Land-use data for 2020 | Globeland 30 (https://www.webmap.cn, accessed on 28 August 2023) | 30 m × 30 m | ||
Driving factor data | Socio-economic data | Population density | Resource and Environmental Science Data Platform (https://www.resdc.cn, accessed on 20 September 2024) | 1000 m × 1000 m |
GDP | Resource and Environmental Science Data Platform (https://www.resdc.cn, accessed on 20 September 2024) | 1000 m × 1000 m | ||
Distance to roads | National Catalogue Service For Geographic Information (https://www.webmap.cn, accessed on 20 September 2024) | - | ||
Distance to settlements | National Catalogue Service For Geographic Information (https://www.webmap.cn, accessed on 20 September 2024) | - | ||
Climate and environmental data | Distance to water bodies | National Catalogue Service For Geographic Information (https://www.webmap.cn, accessed on 20 September 2024) | - | |
Soil type | Resource and Environmental Science Data Platform (https://www.resdc.cn, accessed on 20 September 2024) | 1000 m × 1000 m | ||
Average annual evaporation | Resource and Environmental Science Data Platform (https://www.resdc.cn, accessed on 20 September 2024) | 1000 m × 1000 m | ||
Average annual precipitation | Resource and Environmental Science Data Platform (https://www.resdc.cn, accessed on 20 September 2024) | 1000 m × 1000 m | ||
Average annual temperature | Resource and Environmental Science Data Platform (https://www.resdc.cn, accessed on 20 September 2024) | 1000 m × 1000 m | ||
DEM | Geospatial Data Cloud (https://www.gscloud.cn, accessed on 21 September 2024) | 30 m × 30 m | ||
Slope | Generated by DEM | 30 m × 30 m |
a | b | c | d | e | f | g | h | i | |
---|---|---|---|---|---|---|---|---|---|
a | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
b | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
c | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
d | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
e | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
f | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
g | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
h | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
a | b | c | d | e | f | g | h | i | |
---|---|---|---|---|---|---|---|---|---|
Neighborhood weight | 0.36 | 0.55 | 0.9 | 0.3 | 0.11 | 0.1 | 0.33 | 0.17 | 0.33 |
Threat Factor | Maximum Influence Distance/km | Weight | Spatial Attenuation Type |
---|---|---|---|
Cultivated land | 10 | 1 | linear |
Artificial surface | 4 | 0.6 | exponential |
Nudation | 8 | 0.8 | linear |
Road | 6 | 0.6 | linear |
Land-Use Type | Habitat Suitability | Threat Factor Sensitivity | |||
---|---|---|---|---|---|
Cultivated Land | Artificial Surface | Nudation | Road | ||
Cultivated land | 0 | 0 | 0 | 0 | 0 |
Forestland | 1 | 0.8 | 0.8 | 0.7 | 0.7 |
Grassland | 0.8 | 0.8 | 0.7 | 0.7 | 0.5 |
Scrubland | 0.8 | 0.8 | 0.4 | 0.6 | 0.6 |
Wetland | 0.7 | 0.5 | 0.5 | 0.7 | 0.3 |
Water | 0.9 | 0.6 | 0.5 | 0.6 | 0.5 |
Artificial surface | 0 | 0 | 0 | 0 | 0 |
Nudation | 0.2 | 0.1 | 0.3 | 0 | 0.5 |
Glaciers and permanent snow | 0.6 | 0.3 | 0.3 | 0.5 | 0.4 |
Resistance Factors | Resistance Value | Weight | |||||
---|---|---|---|---|---|---|---|
100 | 75 | 50 | 25 | 1 | |||
Human influencing factors | Distance from road | 0–5000 | 5000–10,000 | 10,000–15,000 | 15,000–25,000 | >25,000 | 0.1 |
Distance from settlements | 0–10,000 | 10,000–20,000 | 20,000–30,000 | 30,000–40,000 | >40,000 | 0.1 | |
Natural influencing factors | Distance to water | >8000 | 6000–8000 | 4000–6000 | 2000–4000 | 0–2000 | 0.1 |
DEM | >6000 | 6000–5000 | 5000–4000 | 4000–3000 | 0–3000 | 0.15 | |
Slope | >60 | 45–60 | 30–45 | 15–30 | 0–15 | 0.15 | |
Land-use type | Artificial surface | Nudation, Cultivated land | Glaciers and permanent snow | Forestland, Grassland, Scrubland | Water, Wetland, Forestland | 0.2 | |
Habitat quality | 0–0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | 0.8–1 | 0.2 |
Habitat Quality | Habitat Value | 2020 | 2030 | ||
---|---|---|---|---|---|
Area/km2 | Area Proportion/% | Area/km2 | Area Proportion/% | ||
Very poor | 0–0.2 | 3176.67 | 4.28 | 4558.29 | 6.16 |
Poor | 0.2–0.4 | 1610.94 | 2.17 | 3162.70 | 4.28 |
Medium | 0.4–0.6 | 1561.74 | 2.10 | 8971.10 | 12.13 |
Good | 0.6–0.8 | 58,348.91 | 78.63 | 49,931.58 | 67.49 |
Excellent | 0.8–1 | 9512.99 | 12.82 | 7354.73 | 9.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Liu, H.; Liu, H.; Chen, Y.; Fu, X.; Zhang, Y.; Xia, J.; Zhang, Z.; Chen, Q. Analysis of Habitat Quality Changes in Mountainous Areas Using the PLUS Model and Construction of a Dynamic Restoration Framework for Ecological Security Patterns: A Case Study of Golog Tibetan Autonomous Prefecture, Qinghai Province, China. Land 2025, 14, 1509. https://doi.org/10.3390/land14081509
Dong Z, Liu H, Liu H, Chen Y, Fu X, Zhang Y, Xia J, Zhang Z, Chen Q. Analysis of Habitat Quality Changes in Mountainous Areas Using the PLUS Model and Construction of a Dynamic Restoration Framework for Ecological Security Patterns: A Case Study of Golog Tibetan Autonomous Prefecture, Qinghai Province, China. Land. 2025; 14(8):1509. https://doi.org/10.3390/land14081509
Chicago/Turabian StyleDong, Zihan, Haodong Liu, Hua Liu, Yongfu Chen, Xinru Fu, Yang Zhang, Jiajia Xia, Zhiwei Zhang, and Qiao Chen. 2025. "Analysis of Habitat Quality Changes in Mountainous Areas Using the PLUS Model and Construction of a Dynamic Restoration Framework for Ecological Security Patterns: A Case Study of Golog Tibetan Autonomous Prefecture, Qinghai Province, China" Land 14, no. 8: 1509. https://doi.org/10.3390/land14081509
APA StyleDong, Z., Liu, H., Liu, H., Chen, Y., Fu, X., Zhang, Y., Xia, J., Zhang, Z., & Chen, Q. (2025). Analysis of Habitat Quality Changes in Mountainous Areas Using the PLUS Model and Construction of a Dynamic Restoration Framework for Ecological Security Patterns: A Case Study of Golog Tibetan Autonomous Prefecture, Qinghai Province, China. Land, 14(8), 1509. https://doi.org/10.3390/land14081509