Spatiotemporal Dynamics of Heat-Related Health Risks of Elderly Citizens in Nanchang, China, Under Rapid Urbanization
Abstract
1. Introduction
2. Methods
2.1. The Study Area
2.2. The Conceptual Framework for Heat Risk Assessment
2.3. Heat Hazards
2.4. Human Exposure
2.5. Heat Vulnerability
2.6. Validation
2.7. Data Statistics and Analysis
3. Results
3.1. The Spatial Distribution of Heat Hazards in Nanchang from 2002 to 2020
3.2. The Spatial Distribution of Human Exposure in Nanchang from 2002 to 2020
3.3. The Spatial Distribution of Heat Vulnerability in Nanchang from 2002 to 2020
3.4. The Spatial Distribution of Heat Risk in Nanchang from 2002 to 2020
3.5. The Correlation Between Land Use Changes and the Heat Risk Index in Nanchang from 2002 to 2020
4. Discussion
4.1. The Spatiotemporal Distribution and Evolution of Health Risks from Heatwaves
4.2. The Effects of Land Use Changes on Heat Risk
4.3. Spatial Disparities in Heat Vulnerability and Human Exposure
4.4. Mitigation Measures for Heatwave Health Risks
4.5. Limitations and Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Domeisen, D.I.; Eltahir, E.A.; Fischer, E.M.; Knutti, R.; Perkins-Kirkpatrick, S.E.; Schär, C.; Seneviratne, S.I.; Weisheimer, A.; Wernli, H. Prediction and projection of heatwaves. Nat. Rev. Earth Environ. 2023, 4, 36–50. [Google Scholar] [CrossRef]
- Wei, J.; Han, W.; Wang, W.; Zhang, L.; Rajagopalan, B. Intensification of heatwaves in China in recent decades: Roles of climate modes. Npj Clim. Atmos. Sci. 2023, 6, 98. [Google Scholar] [CrossRef]
- Wu, S.; Luo, M.; Zhao, R.; Li, J.; Sun, P.; Liu, Z.; Wang, X.; Wang, P.; Zhang, H. Local mechanisms for global daytime, nighttime, and compound heatwaves. Npj Clim. Atmos. Sci. 2023, 6, 36. [Google Scholar] [CrossRef]
- Liu, J.; Qi, J.; Yin, P.; Liu, W.; He, C.; Gao, Y.; Zhou, L.; Zhu, Y.; Kan, H.; Chen, R. Rising cause-specific mortality risk and burden of compound heatwaves amid climate change. Nat. Clim. Change 2024, 14, 1201–1209. [Google Scholar] [CrossRef]
- Thompson, V.; Mitchell, D.; Hegerl, G.; Collins, M.; Leach, N.; Slingo, J. The most at-risk regions in the world for high-impact heatwaves. Nat. Commun. 2023, 14, 2152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hajat, S.; Zhao, L.; Chen, H.; Cheng, L.; Ren, M.; Gu, K.; Ji, J.S.; Liang, W.; Huang, C. The burden of heatwave-related preterm births and associated human capital losses in China. Nat. Commun. 2022, 13, 7565. [Google Scholar] [CrossRef]
- Nishio, H.; Kawakatsu, T.; Yamaguchi, N. Beyond heat waves: Unlocking epigenetic heat stress memory in Arabidopsis. Plant Physiol. 2024, 194, 1934–1951. [Google Scholar] [CrossRef]
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot weather and heat extremes: Health risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef]
- Tian, Y.; Kleidon, A.; Lesk, C.; Zhou, S.; Luo, X.; Ghausi, S.A.; Wang, G.; Zhong, D.; Zscheischler, J. Characterizing heatwaves based on land surface energy budget. Commun. Earth Environ. 2024, 5, 617. [Google Scholar] [CrossRef]
- García-León, D.; Casanueva, A.; Standardi, G.; Burgstall, A.; Flouris, A.D.; Nybo, L. Current and projected regional economic impacts of heatwaves in Europe. Nat. Commun. 2021, 12, 5807. [Google Scholar] [CrossRef]
- Crichton, D. The risk triangle. In Natural Disaster Management: A Presentation to Commemorate the International Decade for Natural Disaster Reduction (IDNDR) 1990–2000; Ingleton, J., Ed.; Tudor Rose: Leicester, UK, 1999. [Google Scholar]
- Buscail, C.; Upegui, E.; Viel, J.-F. Mapping heatwave health risk at the community level for public health action. Int. J. Health Geogr. 2012, 11, 38. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C.J. Including the urban heat island in spatial heat health risk assessment strategies: A case study for Birmingham, UK. Int. J. Health Geogr. 2011, 10, 42. [Google Scholar] [CrossRef]
- Chen, Q.; Ding, M.; Yang, X.; Hu, K.; Qi, J. Spatially explicit assessment of heat health risk by using multi-sensor remote sensing images and socioeconomic data in Yangtze River Delta, China. Int. J. Health Geogr. 2018, 17, 15. [Google Scholar] [CrossRef]
- Islam, J.; Hu, W. Heatwaves and Dengue Outbreak in Bangladesh After the Pandemic–An Urgent Call for Climate-Driven Early Warning Systems. Clin. Infect. Dis. 2024, 78, 1075–1076. [Google Scholar] [CrossRef]
- Chen, T.-L.; Lin, H.; Chiu, Y.-H. Heat vulnerability and extreme heat risk at the metropolitan scale: A case study of Taipei metropolitan area, Taiwan. Urban Clim. 2022, 41, 101054. [Google Scholar] [CrossRef]
- Reid, C.E.; O’neill, M.S.; Gronlund, C.J.; Brines, S.J.; Brown, D.G.; Diez-Roux, A.V.; Schwartz, J. Mapping community determinants of heat vulnerability. Environ. Health Perspect. 2009, 117, 1730–1736. [Google Scholar] [CrossRef]
- Yoo, C.; Im, J.; Weng, Q.; Cho, D.; Kang, E.; Shin, Y. Diurnal urban heat risk assessment using extreme air temperatures and real-time population data in Seoul. Iscience 2023, 26, 108123. [Google Scholar] [CrossRef] [PubMed]
- Adeyeri, O.E.; Zhou, W.; Laux, P.; Wang, X.; Dieng, D.; Widana, L.A.; Usman, M. Land use and land cover dynamics: Implications for thermal stress and energy demands. Renew. Sustain. Energy Rev. 2023, 179, 113274. [Google Scholar] [CrossRef]
- Harmay, N.S.M.; Kim, D.; Choi, M. Urban heat island associated with land use/land cover and climate variations in Melbourne, Australia. Sustain. Cities Soc. 2021, 69, 102861. [Google Scholar] [CrossRef]
- Taylor, J.; Wilkinson, P.; Davies, M.; Armstrong, B.; Chalabi, Z.; Mavrogianni, A.; Symonds, P.; Oikonomou, E.; Bohnenstengel, S.I. Mapping the effects of urban heat island, housing, and age on excess heat-related mortality in London. Urban Clim. 2015, 14, 517–528. [Google Scholar] [CrossRef]
- Zhou, Y.; Gu, S.; Yang, H.; Li, Y.; Zhao, Y.; Li, Y.; Yang, Q. Spatiotemporal variation in heatwaves and elderly population exposure across China. Sci. Total Environ. 2024, 917, 170245. [Google Scholar] [CrossRef]
- Ouyang, Z.; Sciusco, P.; Jiao, T.; Feron, S.; Lei, C.; Li, F.; John, R.; Fan, P.; Li, X.; Williams, C.A.; et al. Albedo changes caused by future urbanization contribute to global warming. Nat. Commun. 2022, 13, 3800. [Google Scholar] [CrossRef]
- Aubrecht, C.; Özceylan, D. Identification of heat risk patterns in the US National Capital Region by integrating heat stress and related vulnerability. Environ. Int. 2013, 56, 65–77. [Google Scholar] [CrossRef]
- Romero-Lankao, P.; Qin, H.; Dickinson, K. Urban vulnerability to temperature-related hazards: A meta-analysis and meta-knowledge approach. Glob. Environ. Change 2012, 22, 670–683. [Google Scholar] [CrossRef]
- Li, L.; Zhan, W.; Hu, L.; Chakraborty, T.; Wang, Z.; Fu, P.; Wang, D.; Liao, W.; Huang, F.; Fu, H.; et al. Divergent urbanization-induced impacts on global surface urban heat island trends since 1980s. Remote Sens. Environ. 2023, 295, 113650. [Google Scholar] [CrossRef]
- Chen, M.; Younes, J.; Farahani, A.V.; Kilpeläinen, S.; Kosonen, R.; Ghaddar, N.; Ghali, K.; Melikov, A.K. Evaluating thermal response when elderly people using local cooling devices: Correlation among overall and local thermal sensation with skin temperature. Build. Environ. 2024, 251, 111217. [Google Scholar] [CrossRef]
- Falchetta, G.; De Cian, E.; Sue Wing, I.; Carr, D. Global projections of heat exposure of older adults. Nat. Commun. 2024, 15, 3678. [Google Scholar] [CrossRef]
- Xi, D.; Liu, L.; Zhang, M.; Huang, C.; Burkart, K.G.; Ebi, K.; Zeng, Y.; Ji, J.S. Risk factors associated with heatwave mortality in Chinese adults over 65 years. Nat. Med. 2024, 30, 1489–1498. [Google Scholar] [CrossRef]
- Seino, K.; Nakamura, K.; Alemi, S. Social interactions and heat stress mitigation among elderly people in a healthy city. Lancet Planet. Health 2024, 8, S12. [Google Scholar] [CrossRef]
- Kim, Y.-O.; Lee, W.; Kim, H.; Cho, Y. Social isolation and vulnerability to heatwave-related mortality in the urban elderly population: A time-series multi-community study in Korea. Environ. Int. 2020, 142, 105868. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, Z. The Impacts of Heatwaves on Population Distribution in the Subtropical City: A Case Study of Nanchang, China. Land 2025, 14, 1209. [Google Scholar] [CrossRef]
- Zhang, X.; Estoque, R.C.; Murayama, Y. An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustain. Cities Soc. 2017, 32, 557–568. [Google Scholar] [CrossRef]
- Chen, Z.-a.; Chen, Y.; Liu, Z.; Wei, X.; Zheng, X. Dynamic simulation of land use change and habitat quality assessment under climate change scenarios in Nanchang, China. Environ. Sci. Pollut. Res. 2024, 31, 2569–2582. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, B. Spatiotemporal analysis of land use/cover changes in Nanchang area, China. Int. J. Digit. Earth 2015, 8, 312–333. [Google Scholar] [CrossRef]
- Duo, L.; Li, Y.; Zhang, M.; Zhao, Y.; Wu, Z.; Zhao, D. Spatiotemporal pattern evolution of urban ecosystem resilience based on “resistance-adaptation-vitality”: A case study of Nanchang city. Front. Earth Sci. 2022, 10, 902444. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, H.; Chen, Y. Spatial correlation and interaction effect intensity between territorial spatial ecological quality and new urbanization level in Nanchang metropolitan area, China. Ecol. Indic. 2023, 156, 111163. [Google Scholar] [CrossRef]
- Hu, K.; Yang, X.; Zhong, J.; Fei, F.; Qi, J. Spatially explicit mapping of heat health risk utilizing environmental and socioeconomic data. Environ. Sci. Technol. 2017, 51, 1498–1507. [Google Scholar] [CrossRef]
- Yang, X.; Yue, W.; Gao, D. Spatial improvement of human population distribution based on multi-sensor remote-sensing data: An input for exposure assessment. Int. J. Remote Sens. 2013, 34, 5569–5583. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Zhang, W.; Zheng, C.; Chen, F. Mapping heat-related health risks of elderly citizens in mountainous area: A case study of Chongqing, China. Sci. Total Environ. 2019, 663, 852–866. [Google Scholar] [CrossRef]
- Hondula, D.M.; Georgescu, M.; Balling, R.C., Jr. Challenges associated with projecting urbanization-induced heat-related mortality. Sci. Total Environ. 2014, 490, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Luque-García, L.; Bataineh, S.; Al-Bakri, J.; Abdulla, F.; Al-Delaimy, W. The heat-mortality association in Jordan: Effect modification by greenness, population density and urbanization level. Sci. Total Environ. 2024, 952, 176010. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ooba, M.; Seposo, X.T.; Togawa, T.; Hijioka, Y.; Takahashi, K.; Nakamura, S. Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators. Nat. Commun. 2020, 11, 1581. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584, 1040–1055. [Google Scholar] [CrossRef]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Taleghani, M.; Tenpierik, M.; van den Dobbelsteen, A.; Sailor, D.J. Heat mitigation strategies in winter and summer: Field measurements in temperate climates. Build. Environ. 2014, 81, 309–319. [Google Scholar] [CrossRef]
- Crank, P.J.; Sailor, D.J.; Ban-Weiss, G.; Taleghani, M. Evaluating the ENVI-met microscale model for suitability in analysis of targeted urban heat mitigation strategies. Urban Clim. 2018, 26, 188–197. [Google Scholar] [CrossRef]
- Onishi, A.; Cao, X.; Ito, T.; Shi, F.; Imura, H. Evaluating the potential for urban heat-island mitigation by greening parking lots. Urban For. Urban Green. 2010, 9, 323–332. [Google Scholar] [CrossRef]
- Osei-Kyei, R.; Chan, A.P. Review of studies on the Critical Success Factors for Public–Private Partnership (PPP) projects from 1990 to 2013. Int. J. Proj. Manag. 2015, 33, 1335–1346. [Google Scholar] [CrossRef]
- Aleksandrowicz, O.; Vuckovic, M.; Kiesel, K.; Mahdavi, A. Current trends in urban heat island mitigation research: Observations based on a comprehensive research repository. Urban Clim. 2017, 21, 1–26. [Google Scholar] [CrossRef]
- Taleghani, M.; Crank, P.J.; Mohegh, A.; Sailor, D.J.; Ban-Weiss, G.A. The impact of heat mitigation strategies on the energy balance of a neighborhood in Los Angeles. Sol. Energy 2019, 177, 604–611. [Google Scholar] [CrossRef]
- Alhadad, S.B.; Tan, P.M.; Lee, J.K. Efficacy of heat mitigation strategies on core temperature and endurance exercise: A meta-analysis. Front. Physiol. 2019, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhao, L.; Yu, J. Spatiotemporal evolution of healthcare service capacity at township health centers in China. Front. Public Health 2023, 11, 1229453. [Google Scholar] [CrossRef]
- Jamei, E.; Ossen, D.; Seyedmahmoudian, M.; Sandanayake, M.; Stojcevski, A.; Horan, B. Urban design parameters for heat mitigation in tropics. Renew. Sustain. Energy Rev. 2020, 134, 110362. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Hu, T. Changes in extreme high temperature warning indicators over China under different global warming levels. Sci. China Earth Sci. 2024, 67, 1895–1909. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xuan, J.; Li, S.; Huang, C.; Zhang, X.; Mao, R. Spatiotemporal Dynamics of Heat-Related Health Risks of Elderly Citizens in Nanchang, China, Under Rapid Urbanization. Land 2025, 14, 1541. https://doi.org/10.3390/land14081541
Xuan J, Li S, Huang C, Zhang X, Mao R. Spatiotemporal Dynamics of Heat-Related Health Risks of Elderly Citizens in Nanchang, China, Under Rapid Urbanization. Land. 2025; 14(8):1541. https://doi.org/10.3390/land14081541
Chicago/Turabian StyleXuan, Jinijn, Shun Li, Chao Huang, Xueling Zhang, and Rong Mao. 2025. "Spatiotemporal Dynamics of Heat-Related Health Risks of Elderly Citizens in Nanchang, China, Under Rapid Urbanization" Land 14, no. 8: 1541. https://doi.org/10.3390/land14081541
APA StyleXuan, J., Li, S., Huang, C., Zhang, X., & Mao, R. (2025). Spatiotemporal Dynamics of Heat-Related Health Risks of Elderly Citizens in Nanchang, China, Under Rapid Urbanization. Land, 14(8), 1541. https://doi.org/10.3390/land14081541