Landscape Risk Assessment Model and Decision Support System for the Protection of the Natural and Cultural Heritage in the Eastern Mediterranean Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Available Data
2.2. Methodology
- The LRA was conducted at the scale of Landscape Descriptive Units (LDUs) that were delineated by the LCA process. This allowed the tool to visualize the hazard impact for the different Landscape Character Types.
- The LRA was formulated through a risk equation as the result of the relation between the two factors Hazard and Landscape Value
- The framework made use of a two-dimensional matrix for a risk legend, borrowed from the ARMONIA EU project, that was reworked and adapted to our study.
- The LRA-LDSS used the scenario-based approach to spatially visualize a series of possible physical landscape transformations due to the increased intensity of a landscape hazard.
3. Landscape Risk Assessment (LRA) and Landscape Decision Support System (LDSS)
3.1. Pre-Assessment Phase
3.2. Risk Appraisal Phase
3.2.1. Landscape Hazard Identification
- Desertification (qualitatively assessed)
- Erosion, (qualitatively assessed)
- Forest Fires (qualitatively assessed), and
- Intensification of urban sprawl patterns (quantitatively assessed)
3.2.2. Landscape Hazards Ranking and Assessment
3.2.3. Landscape Value Identification
- Ecological Values (quantitatively assessed)
- Naturalness of habitat
- Habitat continuity
- Dominant habitat type
- Historical/Cultural Values (quantitatively assessed)
- Archeological sites
- Heritage/historical entities, trails, centers and museums
3.2.4. Landscape Value Assessment
Ecological Integrity
3.2.5. Historical/Cultural Values
3.3. The Judgment/Risk Evaluation Phase
3.4. The Risk Management Phase: Landscape Decision Support System (LDSS)
- It maps and visualizes information on up to four different hazards and the consequent losses on Landscape Value at the scale of the LCA level 1 assessment (1:250,000 scale).
- It enables different scenarios to be run which generate information about hazards and landscape loss for all the study areas in the four partners countries and for each of the LDUs, so that different options for mitigating risks or developing land can be compared
- It enables editing scenarios by altering different indexing weights and LDU ranks
- It provides a knowledge base on hazards
- Credible scenarios are translated into changes on the GIS map.
- The SG queries the user for the appropriate information.
- The scenario(s) are then processed through the model.
LDSS Functionality
4. Results
4.1. Hazard Maps
4.2. Landscape Value Maps
4.3. Landscape Risk Maps
4.4. Landscape Decision Support System
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nogué, J.; Wilbrand, S.M. Landscape identities in Catalonia. Landsc. Res. 2017, 1–12. [Google Scholar] [CrossRef]
- Secretary of State for Foreign and Commonwealth Affairs. European Landscape Convention, Florence; Treaty Section, Foreign and Commonwealth Office: London, UK, 2000.
- Kapustka, L.; Galbraith, H.; Luxon, M.; Yocum, J. Using landscape ecology to focus ecological risk assessment and guide risk management decision-making. Toxicol. Ind. Health 2001, 17, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Kochanek, K.; Tynan, S. The environmental risk assessment for decision support system for water management in the vicinity of open cast mines (ds wmvoc). Ukio Technol. Ekon. Vystym. 2010, 16, 414–431. [Google Scholar] [CrossRef]
- ARMONIA Project. Report on the European scenario of technological and scientific standards reached in spatial planning versus natural risk management. In The Adaptiveness of IWRM: Analysing European IWRM Research; Timmerman, J., Pahl-Wostl, C., Moltgen, J., Eds.; IWA: London, UK, 2008. [Google Scholar]
- Torresan, S.; Critto, A.; Rizzi, J.; Zabeo, A.; Furlan, E.; Marcomini, A. DESYCO: A decision support system for the regional risk assessment of climate change impacts in coastal zones. Ocean Coast. Manag. 2016, 120, 49–63. [Google Scholar] [CrossRef]
- Agostini, P.; Pizzol, L.; Critto, A.; D’Alessandro, M.; Zabeo, A.; Marcomini, A. Regional risk assessment for contaminated sites Part 3: Spatial decision support system. Environ. Int. 2012, 48, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.; Braby, L. An analysis of the relationships between multiple values and physical landscapes at a regional scale using public participation GIS and landscape character classification. Landsc. Urban Plan. 2012, 107, 317–331. [Google Scholar] [CrossRef]
- Beverly, J.; Uto, K.; Wilkes, J.; Bothwell, P. Assessing spatial attributes of forest landscape values: An internet-based participatory mapping approach. Can. J. For. Resour. 2008, 38, 289–303. [Google Scholar] [CrossRef]
- Brown, G.; Reed, P. Validation of a forest values typology for use in national forest planning. For. Sci. 2000, 46, 240–247. [Google Scholar]
- Clement, J.M.; Cheng, A.S. Using analyses of public value orientations, attitudes and preferences to inform national forest planning in Colorado and Wyoming. Appl. Geogr. 2010, 31, 393–400. [Google Scholar] [CrossRef]
- Brown, G.; Weber, D. Measuring change in place values using public participation GIS (PPGIS). Appl. Geogr. 2012, 34, 316–324. [Google Scholar] [CrossRef]
- Tyrväinnen, L.; Mäkinen, K.; Schipperijn, J. Tools for mapping social values of urban woodlands and other green areas. Landsc. Urban Plan. 2007, 79, 5–19. [Google Scholar] [CrossRef]
- Brown, G. Mapping landscape values and development preferences: A method for tourism and residential development planning. Int. J. Tour. Res. 2006, 8, 101–113. [Google Scholar] [CrossRef]
- Raymond, C.; Brown, G. A spatial method for assessing resident and visitor attitudes toward tourism growth and development. J. Sustain. Tour. 2007, 15, 520–540. [Google Scholar] [CrossRef]
- Alessa, N.; Kliskey, A.; Brown, G. Social–ecological hotspots mapping: A spatial approach for identifying coupled social-ecological space. Landsc. Urban Plan. 2008, 85, 27–39. [Google Scholar] [CrossRef]
- Nielsen-Pincus, M. Land Use, Resource Management, and Place: A Case Study in Three Counties of Northern Idaho and Northeastern Oregon. Ph.D. Thesis, University of Idaho, Moscow, ID, USA, 2007. [Google Scholar]
- Pocewicz, A.; Schnitzer, R.; Nielsen-Pincus, M. The Social Geography of Southern Wyoming: Important Places, Development, and Natural Resource Management; The Nature Conservancy: Lander, WY, USA, 2010; 16p. [Google Scholar]
- Raymond, C.; Brown, G. Assessing spatial associations between perceptions of landscape value and climate change risk for use in climate change planning. Clim. Chang. 2011, 104, 653–678. [Google Scholar] [CrossRef]
- La Rosa, D. The observed landscape: Map of visible landscape values in the province of Enna (Italy). J. Maps 2011, 7, 291–303. [Google Scholar] [CrossRef]
- Meyer, B.C.; Grabaum, R. MULBO: Model framework for multicriteria landscape assessment and optimization. A support system for spatial land use decision. Landsc. Res. 2008, 33, 155–179. [Google Scholar] [CrossRef]
- Clay, G.R.; Daniel, T.C. Scenic landscape assessment: The effects of land management jurisdiction on public perception of scenic beauty. Landsc. Urban Plan. 2000, 49, 1–13. [Google Scholar] [CrossRef]
- Meyer, B.C. Landscape assessment. In Landscape Balance and Landscape Assessment; Krönert, R., Steinhardt, U., Volk, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 203–250. [Google Scholar]
- La Rosa, D.; Martinico, F. Assessment of hazards and risks for landscape protection planning in Sicily. J. Environ. Manag. 2013, 127, S155–S167. [Google Scholar] [CrossRef] [PubMed]
- Antrop, M. Sustainable landscapes: Contraction, fiction or utopia. Landsc. Urban Plan. 2006, 75, 187–197. [Google Scholar] [CrossRef]
- Bacon, C.M. Disaster Risk and Sustainable Development. In The Routledge Handbook of Hazards and Disaster Risk Reduction; Wisner, B., Gaillard, J.C., Kelman, I., Eds.; Routledge: London, UK, 2011; pp. 156–167. [Google Scholar]
- Dransch, D.; Etter, J.; Walz, U. Maps for natural risk management. In Proceedings of the 22nd International Cartographic Conference, La Coruna, Spain, 9–16 July 2005. [Google Scholar]
- Menoni, S.; Margottini, C. Inside Risk: A Strategy for Sustainable Risk Mitigation; Foreword; Springer: Milan, Italy, 2011. [Google Scholar]
- Walker, G.; Deeming, H.; Margottini, C.; Menoni, S. Introduction to Sustainable Risk Mitigation for a more resilient Europe. In Inside Risk: A Strategy for Sustainable Risk Mitigation; Foreword; Menoni, S., Margottini, C., Eds.; Springer: Milan, Italy, 2011. [Google Scholar]
- Martinico, F.; La Rosa, S.D. The Use of GIS in Landscape Protection Plan in Sicily. In Urban and Regional Data Management (UDMS) Annual 2009; Krek, A., Rumor, M., Zlatanova, S., Fendel, E., Eds.; Taylor & Francis: London, UK, 2009; pp. 315–325. [Google Scholar]
- De Ayala, A.; Hoyos, D.; Mariel, P. Suitability of discrete choice experiments for landscape management under the European Landscape Convention. J. For. Econ. 2015, 21, 79–96. [Google Scholar] [CrossRef]
- Johnston, R.J.; Duke, J.M. Willingness to pay for agricultural land preservation and policy process attributes: Does the method matter? Am. J. Agric. Econ. 2007, 89, 1098–1115. [Google Scholar] [CrossRef]
- Burley, J.B.; Burley, C.J. A risk assessment of landscape hazards for building sites in the Front Range Mountains of Colorado. Landsc. Res. 1996, 21, 137–158. [Google Scholar] [CrossRef]
- Fernandes, J.P. Landscape ecology and conservation management e evaluation of alternatives in a highway EIA process. Environ. Impact Assess. Rev. 2000, 20, 665–680. [Google Scholar] [CrossRef]
- Antrop, M. Background concepts for integrated landscape analysis. Agric. Ecosyst. Environ. 2000, 77, 17–28. [Google Scholar] [CrossRef]
- Williamson, D. Scenic perceptions of Australian landscapes. Landsc. Aust. 1979, 2, 94–101. [Google Scholar]
- Leonard, M.; Hammond, R. Landscape Character Types of Victoria-With Frames of Reference for Scenic Quality Assessment; Forest Commission of Victoria: Melbourne, Australia, 1984. [Google Scholar]
- Daniel, T.C.; Vining, J. Methodological Issues in the assessment of landscape quality. In Behaviour and the Natural Environment; Altman, I., Wohwill, J.F., Eds.; Plenum Press: New York, NY, USA, 1983; pp. 39–83. [Google Scholar]
- Regional Forest Agreements Act 2002. Australia.
- Butler, A. Dynamics of integrating landscape values in landscape character assessment: The hidden dominance of the objective outsider. Landsc. Res. 2016, 41, 239–252. [Google Scholar] [CrossRef]
- Brown, G. Mapping spatial attributes in survey research for natural resource management: Methods and applications. Soc. Nat. Resour. 2004, 18, 17–39. [Google Scholar] [CrossRef]
- Brown, G.; Raymond, C. The relationship between place attachment and landscape values: Toward mapping place attachment. Appl. Geogr. 2007, 27, 89–111. [Google Scholar] [CrossRef]
- Brown, G.; Raymond, C.M. Methods for identifying land use conflict potential using participatory mapping. Landsc. Urban Plan. 2014, 122, 196–208. [Google Scholar] [CrossRef]
- Jones, M. Analysing landscape values expressed in planning conflicts over change in the landscape. In Re-Marc-able Landscapes: Marc-ante Landschappen; Eetvelde, V., Van Sevenant, M., Van De Velde, L., Eds.; Academia Press: Gent, Belgium, 2009; pp. 193–205. [Google Scholar]
- Stephenson, J. The cultural values model: An integrated approach to values in landscapes. Landsc. Urban Plan. 2008, 84, 127–139. [Google Scholar] [CrossRef]
- Henningsson, M.; Blicharska, M.; Antonson, H.; Mikusiński, G.; Göransson, G.; Angelstam, P.; Jönsson, S. Perceived landscape values and public participation in a road-planning process—A case study in Sweden. J. Environ. Plan. Manag. 2014, 58, 631–653. [Google Scholar] [CrossRef]
- Hay, R. A rooted sense of place in cross-cultural perspective. Can. Geogr. 1998, 42, 245–266. [Google Scholar] [CrossRef]
- Gray, J. A rural sense of place: Intimate experience in planning a countryside for life. Plan. Theory Pract. 2013, 4, 93–96. [Google Scholar] [CrossRef]
- De Angelis, D.L.; Pearlstine, L.; Mazzotti, F.J.; Barnes, T.; Duever, M.; Starners, J. Spatial Decision Support Systems for Landscape Ecological Evaluations in the Southwest Florida Feasibility Study; US Geological Survey Report; U.S. Department of the Interior: Washington, DC, USA, 2004.
- Greiving, S.; Fleischhauer, M.; Lückenkötter, J. A methodology for an integrated risk assessment of spatially relevant hazards. J. Environ. Plan. Manag. 2006, 49, 1–19. [Google Scholar] [CrossRef]
- Rauscher, H.M. Ecosystem management decision support for Federal forests in the United States: A review. For. Ecol. 1999, 114, 173–197. [Google Scholar] [CrossRef]
- He, J.; Sun, Y. Applying a spatial decision support system to the integrated regional planning of China. Environ. Plan. B Urban Anal. City Sci. 2015, 42, 1161–1176. [Google Scholar] [CrossRef]
- Fedra, K.; Feoli, E. GIS technology and spatial analysis in coastal zone management. EEZ Technol. 1998, 3, 171–179. [Google Scholar]
- Wilkerson, G.W.; McAnally, W.H.; Martin, J.L.; Ballweber, J.A.; Pevey, K.C.; Diaz-Ramirez, J.; Moore, A. Latis: A spatial decision support system to assess low-impact site development strategies. Adv. Civ. Eng. 2010. [Google Scholar] [CrossRef]
- Simoes, M. GIS and spatial decision support system for environmental degradation monitoring. In Proceedings of the 7th International Seminar on GIS in Developing Countries, Johor, Malaysia, 10–12 May 2004. [Google Scholar]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; de Vries, H.J.M.; Gaffin, S.; Gregory, K.; Grubler, A.; Jung, T.Y.; Kram, T.; Lebre La Rovere, E.; et al. Intergovernmental Panel on Climate Change (IPCG) Special Report on Emission Scenarios (SRES); Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2000. [Google Scholar]
- Attardi, R.; Cerreta, M.; Poli, G. A Collaborative Multi-Criteria Spatial Decision Support System for Multifunctional Landscape Evaluation. In Computational Science and Its Applications—ICCSA 2015; Lecture Notes in Computer Science; Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C.M., Taniar, D., Apduhan, B.O., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Alcamo, J. Scenarios as Tools for International Environmental Assessments; Environmental Issue Report; European Environment Agency (EEA): Copenhagen, Denmark, 2001. [Google Scholar]
- Frede, H.-G.; Bach, M.; Fohrer, N.; Möller, D.; Steiner, N. Multifunktionalitat der Landschaft—Methoden und Modelle. Petermanns Geogr. Mitt. 2002, 146, 58–63. [Google Scholar]
- Ryan, R.L.; Fábos, J.G.; Allan, J.J. Understanding opportunities and challenges for collaborative greenway planning in New England. Landsc. Urban Plan. 2006, 76, 172–191. [Google Scholar] [CrossRef]
- El Asmar, E.A.; Ebohonb, J.O.; Taki, A. Bottom-up approach to sustainable urban development in Lebanon: The case of Zouk Mosbeh. Sustain. Cities Soc. 2012, 2, 37–44. [Google Scholar] [CrossRef]
- Arciniegas, G.; Janssen, R. Spatial decision support for collaborative land use planning workshops. Landsc. Urban Plan. 2012, 107, 332–342. [Google Scholar] [CrossRef]
- Urban and Regional Data Management. UDMS Annual 2009; Krek, A., Rumor, M., Zlatanova, S., Fendel, E.M., Eds.; Taylor & Francis: London, UK, 2009. [Google Scholar]
- Bonanno, E.J.; Apostolakis, G.E.; Salter, P.F.; Ghassemi, A.; Jennings, S. Application of risk assessment and decision analysis to the evaluation, ranking and selection of environmental remediation alternatives. J. Hazard. Mater. 2000, 71, 35–57. [Google Scholar] [CrossRef]
- Agnoletti, M. Rural landscape, nature conservation and culture: Some notes on research trends and management approaches from a (southern) European perspective. Landsc. Urban Plan. 2004, 126, 66–73. [Google Scholar] [CrossRef]
Hazard | Jordan Yarmuk | Jordan Mujib | Cyprus | Greece Lesvos | Greece Epirus | Lebanon | Total |
---|---|---|---|---|---|---|---|
Intensification of urban sprawl patterns | 6 | 0 | 5 | 6 | 5 | 6 | 28 |
Erosion | 5 | 0 | 3 | 5 | 6 | 5 | 24 |
Desertification | 4 | 4 | 4 | 4 | 4 | 4 | 24 |
Loss of agricultural lands | 3 | 5 | 2 | 0 | 2 | 3 | 15 |
Forest fires | 1 | 0 | 1 | 3 | 1 | 2 | 8 |
Landscape transformation by new planned developments | 2 | 6 | 6 | 0 | 3 | 1 | 18 |
Flood | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Attribute | Formula | Total Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LANDFORM | water body | deep valley | mountainous areas | valley | high uplands | uplands | high plateau | hills | plateau | Low lands | 100/6 X RANK | 20% |
RANK | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 6 | ||
SETTLEMENT | Unsettled | Sparsely Settled | Settled-Medium Spaced | Settled-Closely Spaced | Settled | Settled to Urban | Urban | 100/4 X RANK | 40% | |||
RANK | 1 | 2 | 3 | 4 | 0 | 0 | 0 | |||||
INFORMAL SETTLEMENTS | Unsettled | Sparsely Settled | Settled-Medium Spaced | Settled-Closely Spaced | Settled | Settled to Urban | Urban | 100/4 X RANK | 10% | |||
RANK | 4 | 3 | 2 | 1 | 0 | 0 | 0 | |||||
GEOLOGY/SLOPE | No Risk | Low | Medium | High | 100/3 X RANK | 30% | ||||||
RANK | 3 | 2 | 1 | 0 | ||||||||
GEOLOGY | Limestone | Sandstone | Chalk | Bare Rock | Alluvials | Marl | Volcanics | Shales | Fluvials | |||
RANK | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||
SLOPE % Range | 0 | 1–12 | 13–20 | 21–35 | 36–50 | 51+ | ||||||
RANK | 6 | 5 | 4 | 3 | 2 | 1 |
Greece | Cultural values (architecture, traditional settlements, field patterns, terraces) |
Environmental values (vegetation, geomorphology, fauna) | |
Historical values (archeological and monumental sites) | |
Economic values (agricultural, tourist) | |
Cyprus | Cultural Integrity (change of use, survival of cultural pattern, visual impact of change) |
Ecological integrity (naturalness of LDU, habitat continuity, number of main habitat types, dominant type, intensity of management) | |
Jordan | Geology |
Natural Landforms | |
Vegetation | |
Fauna environment | |
Landscape diversity | |
Historical roads and town centers |
Value | Total Value per LDU/100 | ||||||
---|---|---|---|---|---|---|---|
Habitat Continuity | Continuous | Linked Patches | Separate Patches | Fragmented | /4 | value/4 | |
Rank | 4 | 3 | 2 | 1 | |||
+ | |||||||
Habitat Type | Herbaceous | Low Scrub | Tall Scrub | Woodland | Cultivation | ||
Rank | 1 | 2 | 3 | 4 | 2 | /4 | Value/4 |
+ | |||||||
Naturalness of LDU | Mostly natural | Semi Natural | Even Mix | Mostly cultivated | |||
Rank | 4 | 1 | 3 | 2 | /4 | Value/4 | |
= | |||||||
Total/12 | Cumm. Total/12 × 100 |
Dominant Habitat | Type | Rank | Description |
---|---|---|---|
Herbaceous | <0.2 m | 1 | Natural grasslands, rocky landscapes, bare rocks. |
Low Scrub | 0.2 to 1 m | 2 | Sclerophyllus beg. |
Cultivation | Field crops, orchards, groves | 2 | Groves, agriculture, cultivation patterns. |
Tall Scrub | 0.5 m to 1.5 m | 3 | Transitional woodland-shrub. |
Woodland | 1.2 m | 4 | Forests (coniferous, broad leaved). |
Naturalness | Rank | Description |
---|---|---|
Mostly Natural | 4 | A mostly natural LDU |
Even Mix | 3 | A mix between a natural and cultivated LDU |
Mostly Cultivated | 2 | Mostly agricultural field crops, orchards, groves, terraces |
Semi Natural | 1 | A mix of unnatural and cultivated LDUs |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trovato, M.G.; Ali, D.; Nicolas, J.; El Halabi, A.; Meouche, S. Landscape Risk Assessment Model and Decision Support System for the Protection of the Natural and Cultural Heritage in the Eastern Mediterranean Area. Land 2017, 6, 76. https://doi.org/10.3390/land6040076
Trovato MG, Ali D, Nicolas J, El Halabi A, Meouche S. Landscape Risk Assessment Model and Decision Support System for the Protection of the Natural and Cultural Heritage in the Eastern Mediterranean Area. Land. 2017; 6(4):76. https://doi.org/10.3390/land6040076
Chicago/Turabian StyleTrovato, Maria Gabriella, Dana Ali, Jessica Nicolas, Ammar El Halabi, and Sarah Meouche. 2017. "Landscape Risk Assessment Model and Decision Support System for the Protection of the Natural and Cultural Heritage in the Eastern Mediterranean Area" Land 6, no. 4: 76. https://doi.org/10.3390/land6040076