Constraining the Deforestation History of Europe: Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions
Abstract
:1. Introduction
2. Materials and Methods
2.1. The REVEALS Pollen-Based Land Cover Reconstructions
2.2. The KK10 and HYDE ALCC Scenarios
2.3. Comparison between REVEALS and the ALCC Scenarios
3. Results
3.1. Comparison at Population Region Scale
3.2. European Totals: An Overview of the Preindustrial Intercomparison
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Uncertainties in the REVEALS Method
References
- Ellis, E.C.; Kaplan, J.O.; Fuller, D.Q.; Vavrus, S.; Goldewijk, K.K.; Verburg, P.H. Used planet: A global history. Proc. Natl. Acad. Sci. USA 2013, 110, 7978–7985. [Google Scholar] [CrossRef] [PubMed]
- Ruddiman, W.F. Earth’s Climate: Past and Future, 3rd ed.; W. H. Freeman: New York, NY, USA, 2013; p. 464. [Google Scholar]
- Ellis, E.C.; Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 2008, 6, 439–447. [Google Scholar]
- Ellis, E.C.; Klein Goldewijk, K.; Siebert, S.; Lightman, D.; Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 2010, 19, 589–606. [Google Scholar] [CrossRef]
- Kaplan, J.O.; Krumhardt, K.M.; Zimmermann, N.E. The effects of land use and climate change on the carbon cycle of Europe over the past 500 years. Glob. Chang. Biol. 2012, 18, 902–914. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Kaplan, J.O.; Prishchepov, A.V.; Rylsky, I.; Chaskovskyy, O.; Tikunov, V.S.; Muller, D. Forest transitions in Eastern Europe and their effects on carbon budgets. Glob. Chang. Biol. 2015, 21, 3049–3061. [Google Scholar]
- Hoffmann, T.; Mudd, S.M.; van Oost, K.; Verstraeten, G.; Erkens, G.; Lang, A.; Middelkoop, H.; Boyle, J.; Kaplan, J.O.; Willenbring, J.; et al. Short communication: Humans and the missing C-sink: Erosion and burial of soil carbon through time. Earth Surf. Dyn. 2013, 1, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Syvitski, J.P.; Kettner, A. Sediment flux and the Anthropocene. Philos. Trans. R. Soc. Lond. A 2011, 369, 957–975. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.H.; Joye, S.B.; Howarth, R.W. Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr. 2006, 51, 351–355. [Google Scholar] [CrossRef]
- Ruddiman, W.F.; Fuller, D.Q.; Kutzbach, J.E.; Tzedakis, P.C.; Kaplan, J.O.; Ellis, E.C.; Vavrus, S.J.; Roberts, C.N.; Fyfe, R.; He, F.; et al. Late Holocene climate: Natural or anthropogenic? Rev. Geophys. 2016, 54, 93–118. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Szilassi, P.; Jordan, G.; van Rompaey, A.; Csillag, G. Impacts of historical land use changes on erosion and agricultural soil properties in the Kali Basin at Lake Balaton, Hungary. Catena 2006, 68, 96–108. [Google Scholar] [CrossRef]
- Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. The importance of land cover change in simulating future climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef] [PubMed]
- Destouni, G.; Jaramillo, F.; Prieto, C. Hydroclimatic shifts driven by human water use for food and energy production. Nat. Clim. Chang. 2012, 3, 213–217. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Markham, B.L.; Helder, D.L. Forty-year calibrated record of earth-reflected radiance from Landsat: A review. Remote Sens. Environ. 2012, 122, 30–40. [Google Scholar] [CrossRef]
- Gerard, F.; Petit, S.; Smith, G.; Thomson, A.; Brown, N.; Manchester, S.; Wadsworth, R.; Bugar, G.; Halada, L.; Bezák, P.; et al. Land cover change in Europe between 1950 and 2000 determined employing aerial photography. Prog. Phys. Geogr. 2010, 34, 183–205. [Google Scholar] [CrossRef] [Green Version]
- Wardell, D.A.; Reenberg, A.; Tøttrup, C. Historical footprints in contemporary land use systems: Forest cover changes in savannah woodlands in the Sudano-Sahelian zone. Glob. Environ. Chang. 2003, 13, 235–254. [Google Scholar] [CrossRef]
- Fuchs, R.; Verburg, P.H.; Clevers, J.G.P.W.; Herold, M. The potential of old maps and encyclopaedias for reconstructing historic European land cover/use change. Appl. Geogr. 2015, 59, 43–55. [Google Scholar] [CrossRef]
- He, F.; Vavrus, S.J.; Kutzbach, J.E.; Ruddiman, W.F.; Kaplan, J.O.; Krumhardt, K.M. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change. Geophys. Res. Lett. 2014, 41, 623–631. [Google Scholar] [CrossRef]
- Kaplan, J.O.; Krumhardt, K.M.; Ellis, E.C.; Ruddiman, W.F.; Lemmen, C.; Goldewijk, K.K. Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 2011, 21, 775–791. [Google Scholar] [CrossRef]
- Kaplan, J.O.; Krumhardt, K.M.; Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 2009, 28, 3016–3034. [Google Scholar] [CrossRef]
- Wang, Z.G.; Hoffmann, T.; Six, J.; Kaplan, J.O.; Govers, G.; Doetterl, S.; Van Oost, K. Human-induced erosion has offset one-third of carbon emissions from land cover change. Nat. Clim. Chang. 2017, 7, 345–349. [Google Scholar] [CrossRef]
- Jungclaus, J.H.; Bard, E.; Baroni, M.; Braconnot, P.; Cao, J.; Chini, L.P.; Egorova, T.; Evans, M.; González-Rouco, J.F.; Goosse, H.; et al. The PMIP4 contribution to CMIP6—Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations. Geosci. Model Dev. 2017, 10, 4005–4033. [Google Scholar] [CrossRef]
- Schmidt, G.A.; Jungclaus, J.H.; Ammann, C.M.; Bard, E.; Braconnot, P.; Crowley, T.J.; Delaygue, G.; Joos, F.; Krivova, N.A.; Muscheler, R.; et al. Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geosci. Model Dev. 2012, 5, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Pongratz, J.; Reick, C.H.; Raddatz, T.; Claussen, M. Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Glob. Biogeochem. Cycles 2009, 23. [Google Scholar] [CrossRef]
- Pongratz, J.; Reick, C.H.; Raddatz, T.; Claussen, M. Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Strandberg, G.; Kjellstrom, E.; Poska, A.; Wagner, S.; Gaillard, M.J.; Trondman, A.K.; Mauri, A.; Davis, B.A.S.; Kaplan, J.O.; Birks, H.J.B.; et al. Regional climate model simulations for Europe at 6 and 0.2 k BP: Sensitivity to changes in anthropogenic deforestation. Clim. Past 2014, 10, 661–680. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, M.J.; Kleinen, T.; Samuelsson, P.; Nielsen, A.B.; Bergh, J.; Kaplan, J.; Poska, A.; Sandström, C.; Strandberg, G.; Trondman, A.K.; et al. Causes of regional change—Land cover. In Second Assessment of Climate Change for the Baltic Sea Basin; The BACC II Author Team, Ed.; Book Section 25; Regional Climate Studies Book Series; Springer: Cham, Switzerland, 2015; pp. 453–477. [Google Scholar]
- Xing, F.; Kettner, A.J.; Ashton, A.; Giosan, L.; Ibanez, C.; Kaplan, J.O. Fluvial response to climate variations and anthropogenic perturbations for the Ebro River, Spain in the last 4000 years. Sci. Total Environ. 2014, 473, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Navarro, L.M.; Proença, V.; Kaplan, J.O.; Pereira, H.M. Maintaining disturbance-dependent habitats. In Rewilding European Landscapes; Pereira, H.M., Navarro, L.M., Eds.; Book Section 8; Springer: Cham, Switzerland, 2015; pp. 143–167. [Google Scholar]
- Zimmermann, P.; Tasser, E.; Leitinger, G.; Tappeiner, U. Effects of land-use and land cover pattern on landscape-scale biodiversity in the European Alps. Agric. Ecosyst. Environ. 2010, 139, 13–22. [Google Scholar] [CrossRef]
- Gaillard, M.J.; Sugita, S.; Mazier, F.; Trondman, A.K.; Brostrom, A.; Hickler, T.; Kaplan, J.O.; Kjellstrom, E.; Kokfelt, U.; Kunes, P.; et al. Holocene land cover reconstructions for studies on land cover-climate feedbacks. Clim. Past 2010, 6, 483–499. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Fang, X.; Ye, Y.; Zhang, X. Accuracy assessment of global historical cropland datasets based on regional reconstructed historical data—A case study in Northeast China. Sci. China Earth Sci. 2010, 53, 1689–1699. [Google Scholar] [CrossRef]
- He, F.; Li, S.; Zhang, X.; Ge, Q.; Dai, J. Comparisons of cropland area from multiple datasets over the past 300 years in the traditional cultivated region of China. J. Geogr. Sci. 2013, 23, 978–990. [Google Scholar] [CrossRef]
- Zhang, X.Z.; He, F.N.; Li, S.C. Reconstructed cropland in the mid-eleventh century in the traditional agricultural area of China: Implications of comparisons among datasets. Reg. Environ. Chang. 2013, 13, 969–977. [Google Scholar] [CrossRef]
- Sugita, S. Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition. Holocene 2007, 17, 229–241. [Google Scholar] [CrossRef]
- Sugita, S. Theory of quantitative reconstruction of vegetation II: All you need is LOVE. Holocene 2007, 17, 243–257. [Google Scholar] [CrossRef]
- Broström, A.; Nielsen, A.B.; Gaillard, M.J.; Hjelle, K.; Mazier, F.; Binney, H.; Bunting, J.; Fyfe, R.; Meltsov, V.; Poska, A.; et al. Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: A review. Veg. Hist. Archaeobot. 2008, 17, 461–478. [Google Scholar] [CrossRef]
- Trondman, A.K.; Gaillard, M.J.; Mazier, F.; Sugita, S.; Fyfe, R.; Nielsen, A.B.; Twiddle, C.; Barratt, P.; Birks, H.J.B.; Bjune, A.E.; et al. Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land cover types) in Europe suitable for climate modelling. Glob. Chang. Biol. 2015, 21, 676–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marquer, L.; Gaillard, M.J.; Sugita, S.; Trondman, A.K.; Mazier, F.; Nielsen, A.B.; Fyfe, R.M.; Odgaard, B.V.; Alenius, T.; Birks, H.J.B.; et al. Holocene changes in vegetation composition in northern Europe: Why quantitative pollen-based vegetation reconstructions matter. Quat. Sci. Rev. 2014, 90, 199–216. [Google Scholar] [CrossRef] [Green Version]
- Prentice, I.C. Pollen representation, source area, and basin size: Toward a unified theory of pollen analysis. Quat. Res. 1985, 23, 76–86. [Google Scholar] [CrossRef]
- Prentice, I.C.; Parsons, R.W. Maximum likelihood linear calibration of pollen spectra in terms of forest composition. Biometrics 1983, 39, 1051–1057. [Google Scholar] [CrossRef]
- Sugita, S. Pollen representation of vegetation in Quaternary sediments: Theory and method in patchy vegetation. J. Ecol. 1984, 82, 881–897. [Google Scholar] [CrossRef]
- Sugita, S. A model of pollen source area for an entire lake surface. Quat. Res. 1993, 39, 239–244. [Google Scholar] [CrossRef]
- Hellman, S.; Gaillard, M.J.; Broström, A.; Sugita, S. The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes: Validation in southern Sweden. J. Quat. Sci. 2008, 23, 21–42. [Google Scholar] [CrossRef]
- Mazier, F.; Gaillard, M.J.; Kuneš, P.; Sugita, S.; Trondman, A.K.; Broström, A. Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary Palynological Database. Rev. Palaeobot. Palynol. 2012, 187, 38–49. [Google Scholar] [CrossRef]
- Soepboer, W.; Sugita, S.; Lotter, A.F.; van Leeuwen, J.F.N.; van der Knaap, W.O. Pollen productivity estimates for quantitative reconstruction of vegetation cover on the Swiss Plateau. Holocene 2007, 17, 65–77. [Google Scholar] [CrossRef]
- Soepboer, W.; Sugita, S.; Lotter, A.F. Regional vegetation-cover changes on the Swiss Plateau during the past two millennia: A pollen-based reconstruction using the REVEALS model. Quat. Sci. Rev. 2010, 29, 472–483. [Google Scholar] [CrossRef]
- Marquer, L.; Gaillard, M.J.; Sugita, S.; Poska, A.; Trondman, A.K.; Mazier, F.; Nielsen, A.B.; Fyfe, R.M.; Jönsson, A.M.; Smith, B.; et al. Quantifying the effects of land use and climate on Holocene vegetation in Europe. Quat. Sci. Rev. 2017, 171, 20–37. [Google Scholar] [CrossRef]
- Klein Goldewijk, K.; Beusen, A.; Van Drecht, G.; De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 2011, 20, 73–86. [Google Scholar] [CrossRef]
- Bohn, U.; Neuhäusl, R.; Gollub, G.; Hettwer, C.; Neuhäuslová, Z.; Raus, T.; Schlüter, H.; Weber, H. Karte der Natürlichen Vegetation Europas/Map of the Natural Vegetation of Europe. Maßstab/Scale 1:2,500,000; Landwirtschaftsverlag: Münster, Germany, 2000/2003. [Google Scholar]
- Leuschner, C.; Ellenberg, H. Ecology of Central European Non-Forest Vegetation: Coastal to Alpine, Natural to Man-Made Habitats: Vegetation Ecology of Central Europe; Springer: Cham, Switzerland, 2017; Volume II. [Google Scholar]
- Svenning, J.C. A review of natural vegetation openness in north-western Europe. Biol. Conserv. 2002, 104, 133–148. [Google Scholar] [CrossRef]
- Crawford, R.M.M. Paludification and forest retreat in northern oceanic environments. Ann. Bot. 2003, 91, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, P.J.E.M. Sinking peat bogs: Enviornmental change in Holland, 1350–1550. Environ. Hist. 2001, 6, 32–45. [Google Scholar] [CrossRef]
- McEvedy, C.; Jones, R. Atlas of World Population History; Penguin: Harmondsworth, UK; New York, NY, USA; Ringwood, VIC, Australia; Markham, ON, Canada; Auckland, New Zealand, 1978; p. 368. [Google Scholar]
- Lemmen, C. World distribution of land cover changes during Pre- and Protohistoric Times and estimation of induced carbon releases. Géomorphologie 2009, 15, 303–312. [Google Scholar] [CrossRef]
- Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 1999, 13, 997–1027. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Hellman, S.E.V.; Gaillard, M.J.; Broström, A.; Sugita, S. Effects of the sampling design and selection of parameter values on pollen-based quantitative reconstructions of regional vegetation: A case study in southern Sweden using the REVEALS model. Veg. Hist. Archaeobot. 2008, 17, 445–459. [Google Scholar] [CrossRef]
- Soepboer, W.; Vervoort, J.M.; Sugita, S.; Lotter, A.F. Evaluating Swiss pollen productivity estimates using a simulation approach. Veg. Hist. Archaeobot. 2007, 17, 497–506. [Google Scholar] [CrossRef]
- Kunes, P.; Svobodova-Svitavska, H.; Kolar, J.; Hajnalova, M.; Abraham, V.; Macek, M.; Tkac, P.; Szabo, P. The origin of grasslands in the temperate forest zone of east-central Europe: Long-term legacy of climate and human impact. Quat. Sci. Rev. 2015, 116, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Santana, V.M.; Marrs, R.H. Flammability properties of British heathland and moorland vegetation: Models for predicting fire ignition. J. Environ. Manag. 2014, 139, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Yallop, A.R.; Thacker, J.I.; Thomas, G.; Stephens, M.; Clutterbuck, B.; Brewer, T.; Sannier, C.A.D. The extent and intensity of management burning in the English uplands. J. Appl. Ecol. 2006, 43, 1138–1148. [Google Scholar] [CrossRef]
- Odgaard, B.V. The Holocene vegetation history of northern West Jutland, Denmark. Opera Bot. 1994, 123, 1–171. [Google Scholar]
- Walsh, K.; Mocci, F. Mobility in the mountains: Late Third and Second Millennia Alpine societies’ engagements with the high-altitude zones in the Southern French Alps. Eur. J. Archaeol. 2011, 14, 88–115. [Google Scholar] [CrossRef]
- Mather, A.S.; Fairbairn, J.; Needle, C.L. The course and drivers of the forest transition: The case of France. J. Rural Stud. 1999, 15, 65–90. [Google Scholar] [CrossRef]
- Mather, A.S.; Needle, C.L. The relationships of population and forest trends. Geogr. J. 2000, 166, 2–13. [Google Scholar] [CrossRef]
- Mather, A.S.; Fairbairn, J. From floods to reforestation: The forest transition in Switzerland. Environ. Hist. 2000, 6, 399–421. [Google Scholar] [CrossRef]
- McCracken, E. The Irish Woods Since Tudor Times: Distribution and Exploitation; David & Charles: Newton Abbot, UK, 1971; p. 184. [Google Scholar]
- Dearing, J.A. Climate-human-environment interactions: Resolving our past. Clim. Past 2006, 2, 187–203. [Google Scholar] [CrossRef]
- Ruddiman, W.F.; Ellis, E.C. Effect of per-capita land use changes on Holocene forest clearance and CO2 emissions. Quat. Sci. Rev. 2009, 28, 3011–3015. [Google Scholar] [CrossRef]
- Williams, M. Dark ages and dark areas: Global deforestation in the deep past. J. Hist. Geogr. 2000, 26, 28–46. [Google Scholar] [CrossRef]
- Shennan, S.; Downey, S.S.; Timpson, A.; Edinborough, K.; Colledge, S.; Kerig, T.; Manning, K.; Thomas, M.G. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 2013, 4, 2486. [Google Scholar] [CrossRef] [PubMed]
- Shennan, S.; Edinborough, K. Prehistoric population history: From the Late Glacial to the Late Neolithic in Central and Northern Europe. J. Archaeol. Sci. 2007, 34, 1339–1345. [Google Scholar] [CrossRef]
- Weninger, B.; Alram-Stern, E.; Bauer, E.; Clare, L.; Danzeglocke, U.; Jöris, O.; Kubatzki, C.; Rollefson, G.; Todorova, H.; van Andel, T. Climate forcing due to the 8200 cal y BP event observed at Early Neolithic sites in the eastern Mediterranean. Quat. Res. 2006, 66, 401–420. [Google Scholar] [CrossRef] [Green Version]
- Crema, E.R.; Bevan, A.; Shennan, S. Spatio-temporal approaches to archaeological radiocarbon dates. J. Archaeol. Sci. 2017, 87, 1–9. [Google Scholar] [CrossRef]
- Kay, A.U.; Champion, L.; Eichhorn, B.; Fuller, D.Q.; Hoehn, A.; Lespez, L.; Linseele, V.; Morin-Rivat, J.; Neumann, K.; Madella, M.; et al. Land use systems in West and Central Africa: 1800 BC to AD 1500. J. World Prehist. 2017. in review. [Google Scholar]
- Kay, A.U.; Kaplan, J.O. Human subsistence and land use in sub-Saharan Africa, 1000 BC to AD 1500: A review, quantification, and classification. Anthropocene 2016, 9, 14–32, Correction in 2016, 16, 67. [Google Scholar] [CrossRef]
- Gaillard, M.J.; LandCover6k Interim Steering Group members. Global anthropogenic land coverchange and its role in past climate. Past Glob. Chang. Mag. 2015, 23, 38–39. [Google Scholar] [CrossRef]
- Trondman, A.K.; Gaillard, M.J.; Sugita, S.; Bjorkman, L.; Greisman, A.; Hultberg, T.; Lageras, P.; Lindbladh, M.; Mazier, F. Are pollen records from small sites appropriate for REVEALS model-based quantitative reconstructions of past regional vegetation? An empirical test in southern Sweden. Veg. Hist. Archaeobot. 2016, 25, 131–151. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaplan, J.O.; Krumhardt, K.M.; Gaillard, M.-J.; Sugita, S.; Trondman, A.-K.; Fyfe, R.; Marquer, L.; Mazier, F.; Nielsen, A.B. Constraining the Deforestation History of Europe: Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions. Land 2017, 6, 91. https://doi.org/10.3390/land6040091
Kaplan JO, Krumhardt KM, Gaillard M-J, Sugita S, Trondman A-K, Fyfe R, Marquer L, Mazier F, Nielsen AB. Constraining the Deforestation History of Europe: Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions. Land. 2017; 6(4):91. https://doi.org/10.3390/land6040091
Chicago/Turabian StyleKaplan, Jed O., Kristen M. Krumhardt, Marie-José Gaillard, Shinya Sugita, Anna-Kari Trondman, Ralph Fyfe, Laurent Marquer, Florence Mazier, and Anne Birgitte Nielsen. 2017. "Constraining the Deforestation History of Europe: Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions" Land 6, no. 4: 91. https://doi.org/10.3390/land6040091