Linking Arable Crop Occurrence with Site Conditions by the Use of Highly Resolved Spatial Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Characteristics and Processing
2.3. Binary Logistic Regression (Field Scale)
2.4. Cluster Analysis (Regional Scale)
3. Results
3.1. Site Dependency at Field Scale
3.2. Statistical Clustering and Spatial Projection
4. Discussion
4.1. General Discussion
4.2. Reflections on the Methods Used
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Zanten, B.T.; Verburg, P.H.; Espinosa, M.; Gomez-y-Paloma, S.; Galimberti, G.; Kantelhardt, J.; Kapfer, M.; Lefebvre, M.; Manrique, R.; Piorr, A.; et al. European agricultural landscapes, common agricultural policy and ecosystem services: A review. Agron. Sustain. Dev. 2014, 34, 309–325. [Google Scholar] [CrossRef]
- Dury, J.; Garcia, F.; Reynaud, A.; Bergez, J.-E. Cropping-plan decision-making on irrigated crop farms: A spatio-temporal analysis. Eur. J. Agron. 2013, 50, 1–10. [Google Scholar] [CrossRef]
- Aouadi, N.; Aubertot, J.N.; Caneill, J.; Munier-Jolain, N. Analyzing the impact of the farming context and environmental factors on cropping systems: A regional case study in Burgundy. Eur. J. Agron. 2015, 66, 21–29. [Google Scholar] [CrossRef]
- Troost, C.; Walter, T.; Berger, T. Climate, energy and environmental policies in agriculture: Simulating likely farmer responses in Southwest Germany. Land Use Policy 2015, 46, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Bakker, M.M.; Hatna, E.; Kuhlman, T.; Mücher, C.A. Changing environmental characteristics of European cropland. Agric. Syst. 2011, 104, 522–532. [Google Scholar] [CrossRef]
- Steinmann, H.-H.; Dobers, S. Spatio-temporal analysis of crop rotations and crop sequence patterns in Northern Germany: Potential implications on plant health and crop protection. J. Plant Dis. Prot. 2013, 120, 85–94. [Google Scholar] [CrossRef]
- Antrop, M. Why landscapes of the past are important for the future. Landsc. Urban Plan. 2005, 70, 21–34. [Google Scholar] [CrossRef]
- Bakker, M.M.; Sonneveld, M.P.W.; Brookhuis, B.; Kuhlman, T. Trends in soil–land-use relationships in the Netherlands between 1900 and 1990. Agric. Ecosyst. Environ. 2013, 181, 134–143. [Google Scholar] [CrossRef]
- Viaggi, D.; Gomez, Y.; Paloma, S.; Mishra, A.; Raggi, M. The role of the EU Common Agricultural Policy: Assessing multiple effects in alternative policy scenarios. Land Use Policy 2013, 31, 99–101. [Google Scholar] [CrossRef]
- EEG—Erneuerbare-Energien-Gesetz (Renewable Energies Act) of 21 July 2004 (Federal Law Gazette I p. 1918), last amended by Art. 1 Act of 7 November 2006 (Federal Law Gazette I p. 2550). Available online: https://www.gesetze-im-internet.de/eeg_2014/_14.html (accessed on 10 March 2019).
- The Organisation for Economic Co-operation and Development (OECD). Analysis of the 2003 CAP Reform; OECD: Paris, France, 2004; Available online: https://www.oecd.org/tad/32039793.pdf (accessed on 20 March 2019).
- Tzanopoulos, J.; Jones, P.J.; Mortimer, S.R. The implications of the 2003 Common Agricultural Policy reforms for land.use and landscape quality in England. Landsc. Urban Plan. 2012, 108, 39–48. [Google Scholar] [CrossRef]
- Trubins, R. Land-use change in southern Sweden: Before and after decoupling. Land Use Policy 2013, 33, 161–169. [Google Scholar] [CrossRef]
- European Parliament and Council. Regulation (EU) No 1307/2013 Establishing Rules for Direct Payments to Farmers under Support Schemes within the Framework of the Common Agricultural Policy and Repealing Council Regulation (EC) No 637/2008 and Council Regulation (EC) No 73/2009. Official Journal of the European Union (L 347/608-669). Available online: http://data.europa.eu/eli/reg/2013/1307/oj (accessed on 16 March 2014).
- Stein, S.; Steinmann, H.-H. Identifying crop rotation practice by the typification of crop sequence patterns for arable farming systems—A case study from Central Europe. Eur. J. Agron. 2018, 92, 30–40. [Google Scholar] [CrossRef]
- Niedersächsisches Ministerium für Ernährung, Landwirtschaft und Verbraucherschutz (NMELV). Ergänzungen zur Broschüre: Die Niedersächsische Landwirtschaft in Zahlen 2011 (Stand: November 2013); NMELV: Hannover, Germany, 2013; Available online: http://www.ml.niedersachsen.de/download/83668/Die_niedersaechsische_Landwirtschaft_in_Zahlen_2011_-_Ergaenzung_11-2013.pdf (accessed on 4 May 2016).
- Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten-und Naturschutz (NLWKN). Naturräumliche Regionen in Niedersachsen; NLWKN: Norden, Germany, 2010; Available online: https://www.nlwkn.niedersachsen.de/naturschutz/biotopschutz/naturraeumliche_regionen/naturraeumliche-regionen-niedersachsens-93476.html (accessed on 23 April 2014).
- European Parliament and Council. Regulation (EC) No 1782/2003 Establishing Common Rules for Direct Support Schemes under the Common Agricultural Policy and Establishing Certain Support Schemes for Farmers. Official Journal of the European Union (L 270/1-69). Available online: http://data.europa.eu/eli/reg/2003/1782/oj (accessed on 23 March 2014).
- SLA (Niedersächsisches Servicezentrum für Landentwicklung und Agrarförderung). Digitale Feldblockkarte Niedersachsens (DFN); SLA: Hannover, Germany, 2011. [Google Scholar]
- Niedersächsisches Ministerium für Ernährung, Landwirtschaft, Verbraucherschutz und Landesentwicklung. Die niedersächsische Landwirtschaft in Zahlen; NMELV: Hannover, Germany, 2011; Available online: https://www.ml.niedersachsen.de/startseite/aktuelles_veranstaltungen/veroeffentlichungen/die-niedersaechsische-landwirtschaft-in-zahlen-121348.html (accessed on 5 June 2017).
- LBEG (Landesamt für Bergbau, Energie und Geologie). Bodenübersichtskarte 1:50 000 (BÜK 50) von Niedersachsen, Standortbezogenes Natürliches Ackerbauliches Ertragspotenzial; LBEG: Hannover, Germany, 1996; Available online: https://www.lbeg.niedersachsen.de/karten_daten_publikationen/karten_daten/boden/bodenkarten/bodenkundliche_uebersichtskarte_150000/bodenuebersichtskarte-im-mastab-1--50-000-buek50-654.html (accessed on 12 March 2013).
- ESDAC (European Soil Data Centre). The European Soil Database v2 Raster Library 1kmx1km; European Commission and the European Soil Bureau Network: Ispra, Italy, 2004; Available online: https://esdac.jrc.ec.eu/content/european-soil-database-v2-raster-library-1kmx1km (accessed on 3 May 2014).
- DWD (Deutscher Wetterdienst). Multi-Annual Precipitation Sum (1981–2010); DWD: Offenbach, Germany, 2014; Available online: https://cdc.dwd.de/portal/ (accessed on 6 March 2014).
- Julius Kühn-Institut (JKI). Verzeichnis der Regionalen Kleinstrukturen des Landes Niedersachsen auf Gemeindebasis; JKI: Kleinmachnow, Germany, 2004; Available online: https://www.julius-kuehn.de/media/Institute/SF/RaeumlAnalyseModellierung/PDF/Niedersachsen.pdf (accessed on 14 June 2014).
- LSKN (Landesbetrieb für Statistik und Kommunikationstechnologie Niedersachsen). Statistische Berichte Niedersachsen, Landwirtschaftszählung 2010, Brochure 1/A (Landuse) and 4 (Livestock); LSKN: Hannover, Germany, 2012; Available online: https://www.statistik.niedersachsen.de/download/75470 (accessed on 12 May 2014).
- Gutsche, V.; Enzian, S. Quantifizierung der Ausstattung einer Landschaft mit naturbetonten terrestrischen Biotopen auf der Basis digitaler topographischer Daten. Nachrichtenbl. Deut. Pflanzenschutzd. 2002, 54, 92–101. [Google Scholar]
- Richter, U.; Eckelmann, W. Das Ertragspotential ackerbaulich genutzter Standorte in Niedersachsen—Beispiel einer Auswertungsmethode im Niedersächsischen Bodeninformationssystem NIBIS. Geol. Jb. 1993, F27, 197–205. [Google Scholar]
- ESRI. ArcGIS 9.2 Desktop Help: Geometrical Interval 2007. Available online: http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?topicname=geometrical_interval (accessed on 22 March 2015).
- Tarpey, T. Generalized Linear Models 2012. (last update at: 29 May 2012). Available online: http://www.wright.edu/~thaddeus.tarpey/ES714glm.pdf (accessed on 10 June 2015).
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Menard, S. Applied Logistic Regression Analysis, 2nd ed.; Sage University Paper: Indore, India, 1995. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org (accessed on 11 February 2015).
- Fahrmeir, L.; Kneib, T.; Lang, S.; Marx, B. Regression: Models, Methods and Applications; Springer: Berlin, Germany, 2013. [Google Scholar]
- Kleinn, C.; Jovel, J.; Hilje, L. A model for assessing the effect of distance on disease spread in crop fields. Crop Prot. 1999, 18, 609–617. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed.; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. Ser. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Hartigan, J.A. Clustering Algorithms; Wiley Series in Probability and Mathematical Statistics; John Wiley & Sons: Hoboken, NJ, USA, 1975. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedmann, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd ed.; Springer: Berlin, Germany, 2001. [Google Scholar]
- R Documentation. K-Means Clustering; Package ‘Stats’ Version 3.3.0; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html (accessed on 12 February 2015).
- Schmidt, K.; Behrens, T.; Friedrich, K.; Scholten, T. A method to generate soilscapes from soil maps. J. Plant Nutr. Soil Sci. 2010, 173, 163–172. [Google Scholar] [CrossRef]
- Caravalho, M.J.; Melo-Goncalves, P.; Teixeira, J.C.; Rocha, A. Regionalization of Europe based on a K-Means Cluster Analysis of the climate change of temperatures and precipitation. Phys. Chem. Earth Parts A/B/C 2016, 94, 22–28. [Google Scholar] [CrossRef]
- Javadi, S.; Hashemy, S.M.; Mohammadi, K.; Howard, K.W.F.; Neshat, A. Classification of aquifer vulnerability using K-means cluster analysis. J. Hydrol. 2017, 549, 27–37. [Google Scholar] [CrossRef]
- Morissette, L.; Chartier, S. The k-means clustering technique: General considerations and implementation in Mathematica. Quant. Methods Psychol. 2013, 9, 15–24. [Google Scholar] [CrossRef]
- Smith, R.G.; Gross, K.L.; Robertson, G.P. Effects of Cropping Diversity on Agroecosystem Function: Crop Yield Response. Ecosystems 2008, 11, 355–366. [Google Scholar] [CrossRef]
- Storkey, J.; Bruce, T.J.A.; McMillan, V.E.; Neve, P. Chapter 12—The future of sustainable crop protection relies on increased diversity of cropping systems and landscapes. In Agroecosystem Diversity; Academic Press: Cambridge, MA, USA, 2019; pp. 199–209. [Google Scholar]
- Zimmermann, A.; Britz, W. European farm’s participation in agri-environmental measures. Land Use Policy 2016, 50, 214–218. [Google Scholar] [CrossRef]
- Cortignani, R.; Dono, G. CAP’s environmental policy and land use in arable farms: An impacts assessment of greening practices changes in Taly. Sci. Total Environ. 2019, 647, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, D.; Aletti, G.; Ferrandi, G.; Micheletti, A.; Cavicchioli, D. Farmland use transition after the CAP greening: A preliminary analysis using Markov chains approach. Land Use Policy 2018, 79, 789–800. [Google Scholar] [CrossRef]
- Albert, C.; Hermes, J.; Neuendorf, F.; von Haaren, C.; Rode, M. Assessing and Governing Ecosystem Services Trade-Offs in Agrarian Landscapes: The Case of Biogas. Land 2016, 5, 1. [Google Scholar] [CrossRef]
- Leteinturier, B.; Herman, J.L.; de Longueville, F.; Quintin, L.; Oger, R. Adaptation of a crop sequence indicator based on a land parcel management system. Agric. Ecosyst. Environ. 2006, 112, 324–334. [Google Scholar] [CrossRef]
- Schönhart, M.; Schmid, E.; Schneider, U.A. CropRota—A crop rotation model to support integrated land use assessments. Eur. J. Agron. 2011, 34, 263–277. [Google Scholar] [CrossRef]
- Nendel, C.; Wieland, R.; Mirschel, W.; Specka, X.; Guddat, C.; Kersebaum, K.C. Simulating regional winter wheat yields using input data of different spatial resolution. Field Crops Res. 2013, 145, 67–77. [Google Scholar] [CrossRef]
- Van Wart, J.; Kersebaum, K.C.; Peng, S.; Milner, M.; Cassman, K.G. A protocol for estimating crop yield potential at regional to national scales. Field Crops Res. 2013, 143, 34–43. [Google Scholar] [CrossRef]
- Mitter, H.; Heumesser, C.; Schmid, E. Spatial modeling of robust crop production portfolios to assess agricultural vulnerability and adaptation to climate change. Land Use Policy 2015, 46, 75–90. [Google Scholar] [CrossRef]
- Xiao, Y.; Mignolet, C.; Mari, J.-F.; Benoît, M. Modeling the spatial distribution of crop sequences at a large regional scale using land-cover survey data: A case from France. Comput. Electron. Agric. 2014, 102, 51–63. [Google Scholar] [CrossRef]
- Tychon, B.; Buffet, D.; Dehem, D.; Eerens, H.; Oger, R. The Belgium crop growth monitoring system. In Proceedings of the 2nd International Symposium: Modelling Cropping Systems, Florence, Italy, 16–18 July 2001. [Google Scholar]
- Kandziora, M.; Burkhard, B.; Müller, F. Mapping provisioning ecosystem services at the local scale using data of varying spatial and temporal resolution. Ecosyst. Ser. 2013, 4, 47–59. [Google Scholar] [CrossRef]
- Andersson, G.K.S.; Ekroos, J.; Stjernman, M.; Rundlöf, M.; Smith, H.G. Effects of farming intensity, crop rotation and landscape heterogeneity on field bean pollination. Agric. Ecosyst. Environ. 2014, 184, 145–148. [Google Scholar] [CrossRef]
- Levavasseur, F.; Martin, P.; Bouty, C.; Barbottin, A.; Bretagnolle, V.; Thérond, O.; Scheurer, O. RPG Explorer: A new toll to ease the analysis of agricultural landscape dynamics with the Land Parcel Identification System. Comput. Electron. Agric. 2016, 127, 541–552. [Google Scholar] [CrossRef]
- Huber, R.; Bakker, M.; Balmann, A.; Berger, T.; Bithell, M.; Brown, C.; Gret-Regamey, A.; Xiong, H.; Le, Q.B.; Mack, G.; et al. Representation of decision-making in European agricultural agent-based models. Agric. Syst. 2018, 167, 143–160. [Google Scholar] [CrossRef]
- Peltonen-Sainio, P.; Jauhiainen, L.; Sorvali, J.; Laurila, H.; Rajala, A. Field characteristics driving fram-scale decision-making on land allocation to primary crops in high latitude conditions. Land Use Policy 2018, 71, 49–59. [Google Scholar] [CrossRef]
Predictor Variable | Classes | Unit | Source |
---|---|---|---|
Arable farming potential | 1–7 Classes: ‘extremely low’ to ‘extremely high’ | [22] | |
1:50,000 | |||
Soil texture (dominant surface textural class of the soil) | 1 Peat soil | [23] | |
2 Coarse (>65% sand) | 1:1,000,000 | ||
3 Medium (<65% sand) | |||
4 Medium fine (<15% sand) | |||
5 Fine (>35% clay) | |||
Slope (dominant slope class) | 1 Level (<8%) | [23] | |
2 Sloping (8–15%) | 1:1,000,000 | ||
3 Moderately steep (>15%) | |||
Multi-annual precipitation sum (1981–2010) | 1 560–676 | mm*y−1 | [24] |
2 677–746 | 0.96 × 0.96 km | ||
3 747–806 | |||
4 807–878 | |||
5 879–1202 | |||
Relative biotope density | 1 0.00–0.90 | Observed Density/Potential Density | [25] |
2 0.91–1.10 | LAU-2 | ||
3 1.11–2.00 | |||
4 2.01–18.76 | |||
Grassland proportion | 1 0.00–0.02 | ha/ha agric. area | Based on IACS-data 2011 |
2 0.03–0.06 | 1 × 1 km | ||
3 0.07–0.17 | |||
4 0.18–0.44 | |||
5 0.45–1.00 | |||
Cattle density | 1 0.00–0.10 | Livestock unit/ha (agricultural area) | [26] |
2 0.11–0.29 | LAU-2 | ||
3 0.30–0.65 | |||
4 0.66–1.32 | |||
5 1.33–2.93 | |||
Pig/poultry density | 1 0.00–0.02 | Livestock unit/ha (agricultural area) | [26] |
2 0.03–0.09 | LAU-2 | ||
3 0.10–0.30 | |||
4 0.31–0.99 | |||
5 1.00–3.21 | |||
Average farm size | 1 0–40 | ha (agricultural area) | [26] |
2 41–64 | LAU-2 | ||
3 65–104 | |||
4 105–172 | |||
5 172–311 |
A. F. Pot. 1 | Soil Texture | Slope | Precipit. | Biotope I 2 | Farm Size | CattleD 3 | PigPoulD 4 | GrassL 5 | |
---|---|---|---|---|---|---|---|---|---|
A. F. Pot. | 1 | ||||||||
Soil texture | 0.617 | 1 | |||||||
Slope | 0.145 | 0.267 | 1 | ||||||
Precipit. | −0.125 | −0.093 | 0.117 | 1 | |||||
Biotope I | −0.503 | −0.548 | −0.227 | 0.350 | 1 | ||||
Farm Size | 0.162 | 0.161 | 0.084 | −0.421 | −0.367 | 1 | |||
CattleD | −0.439 | −0.437 | −0.190 | 0.501 | 0.665 | −0.435 | 1 | ||
PigPoulD | −0.207 | −0.248 | −0.161 | 0.248 | 0.227 | −0.358 | 0.221 | 1 | |
GrassL | −0.242 | −0.144 | 0.006 | 0.235 | 0.332 | −0.154 | 0.388 | −0.132 | 1 |
Variables | SBeet | WO Rape | Triticale | Potato | Rye | WBarley | WWheat | SCereal | Forage | Maize |
---|---|---|---|---|---|---|---|---|---|---|
Arab. Farm. Pot. | ||||||||||
Extremely Low | ref. | ref. | ref. | ref. | ref. | ref. | ref. | ref. | ref. | ref. |
Very Low | −0.082 | −0.142 | −0.141 | 0.419 | −0.359 | −0.143 | 0.140 | 0.112 | 0.086 | −0.097 |
Low | 0.330 | 0.040 | 0.081 | 0.613 | 0.430 | 0.364 | −0.116 | 0.133 | −0.311 | −0.187 |
Middle | 0.729 | 0.484 | −0.090 | 0.489 | 0.172 | 0.665 | 0.468 | 0.112 | −0.564 | −0.408 |
High | 0.611 | 0.480 | −0.508 | −0.285 | −0.530 | 0.547 | 0.831 | 0.283 | −0.397 | −0.726 |
Very High | 1.025 | 0.440 | −0.638 | −0.014 | −0.831 | 0.585 | 0.775 | −0.122 | −0.676 | −0.693 |
Extremely High | 1.136 | −0.457 | −1.198 | −0.388 | −1.796 | 0.354 | 0.763 | −0.443 | −1.000 | −0.710 |
Soil Texture | ||||||||||
Peat soil | ref. | ref. | ref. | ref. | ref. | ref. | ref. | ref. | ref. | ref. |
Coarse | 0.727 | 0.445 | 0.137 | −0.106 | 0.498 | 0.493 | 0.120 | 0.007 | −0.015 | −0.203 |
Medium | 0.285 | 0.960 | −0.075 | −0.659 | −0.160 | 0.511 | 1.077 | 0.026 | 0.023 | −0.348 |
Medium Fine | 0.480 | 1.043 | −0.600 | −1.312 | −1.019 | 0.651 | 1.186 | −0.837 | −0.181 | −0.549 |
Fine | 0.225 | 0.861 | −0.117 | −2.576 | −0.093 | 0.454 | 1.170 | −0.111 | −0.158 | −0.114 |
Slope | −0.040 | 0.230 | −0.146 | −0.513 | −0.269 | 0.254 | 0.159 | −0.330 | 0.130 | −0.493 |
Precipitation | −0.198 | 0.019 | −0.213 | −0.113 | −0.285 | 0.018 | 0.021 | 0.092 | 0.078 | 0.093 |
Biotope Index | −0.278 | −0.165 | 0.036 | −0.003 | 0.205 | −0.047 | −0.240 | −0.067 | −0.037 | 0.173 |
Farm size | 0.067 | −0.026 | −0.213 | 0.094 | 0.141 | −0.304 | −0.055 | −0.060 | −0.031 | 0.043 |
Cattle Density | −0.498 | −0.323 | −0.201 | −0.145 | 0.391 | −0.176 | −0.034 | −0.145 | 0.091 | −0.176 |
Pig/Poultry Density | −0.215 | 0.125 | −0.033 | −0.209 | 0.141 | 0.167 | 0.202 | −0.209 | −0.008 | 0.167 |
Grassland/a. area | −0.192 | −0.230 | 0.056 | 0.084 | 0.058 | −0.008 | 0.002 | 0.084 | 0.221 | −0.008 |
S1 | S2 | S3 | S4 | S5 | Mean | SD | Unit | |
---|---|---|---|---|---|---|---|---|
A. F. Pot. | −0.520 | −0.290 | −0.254 | 0.530 | 1.648 | 3.63 | 1.14 | middle |
Soil texture | −0.545 | −0.390 | −0.453 | 1.017 | 1.298 | 2.52 | 0.94 | medium |
Slope | −0.278 | −0.279 | −0.269 | 3.415 | −0.279 | 1.09 | 0.39 | (<8%) |
Precipit. | 0.422 | −0.638 | 0.276 | 0.414 | −0.246 | 774.42 | 75.96 | mm |
Biotope I | 1.030 | −0.363 | −0.159 | −0.607 | −0.703 | 1.68 | 1.19 | oD/pD |
Farm Size | −0.415 | 0.321 | −0.612 | 0.205 | 0.318 | 69.59 | 29.77 | ha |
CattleD | 1.362 | −0.511 | 0.122 | −0.680 | −0.665 | 0.64 | 0.53 | LU/ha Agric. A. |
PigPoulD | −0.285 | −0.244 | 1.861 | −0.423 | −0.306 | 0.38 | 0.54 | LU/ha Agric. A. |
GrassL | 0.408 | −0.356 | −0.564 | −0.314 | −0.504 | 0.21 | 0.22 | ha/ha Agric. A. |
C1 | C2 | C3 | C4 | C5 | Mean | SD | Unit | |
---|---|---|---|---|---|---|---|---|
SBeet | 0.002 | 0.052 | 0.013 | 0.098 | 0.090 | 0.05 | 0.11 | ha/ha Arab. A. |
Potato | 0.015 | 0.184 | 0.060 | 0.026 | 0.015 | 0.06 | 0.13 | ha/ha Arab. A. |
WO Rape | 0.005 | 0.034 | 0.028 | 0.222 | 0.064 | 0.06 | 0.13 | ha/ha Arab. A. |
SCereal | 0.018 | 0.094 | 0.040 | 0.030 | 0.021 | 0.04 | 0.10 | ha/ha Arab. A. |
Maize | 0.816 | 0.120 | 0.463 | 0.092 | 0.070 | 0.34 | 0.31 | ha/ha Arab. A. |
Triticale | 0.018 | 0.066 | 0.062 | 0.032 | 0.008 | 0.04 | 0.09 | ha/ha Arab. A. |
Rye | 0.033 | 0.218 | 0.073 | 0.026 | 0.009 | 0.07 | 0.14 | ha/ha Arab. A. |
Forage | 0.042 | 0.062 | 0.090 | 0.034 | 0.024 | 0.05 | 0.11 | ha/ha Arab. A. |
WWheat | 0.021 | 0.044 | 0.074 | 0.228 | 0.621 | 0.21 | 0.25 | ha/ha Arab. A. |
WBarley | 0.020 | 0.055 | 0.072 | 0.177 | 0.054 | 0.07 | 0.12 | ha/ha Arab. A. |
All others | 0.008 | 0.071 | 0.025 | 0.035 | 0.022 | 0.03 | 0.08 | ha/ha Arab. A. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stein, S.; Steinmann, H.-H.; Isselstein, J. Linking Arable Crop Occurrence with Site Conditions by the Use of Highly Resolved Spatial Data. Land 2019, 8, 65. https://doi.org/10.3390/land8040065
Stein S, Steinmann H-H, Isselstein J. Linking Arable Crop Occurrence with Site Conditions by the Use of Highly Resolved Spatial Data. Land. 2019; 8(4):65. https://doi.org/10.3390/land8040065
Chicago/Turabian StyleStein, Susanne, Horst-Henning Steinmann, and Johannes Isselstein. 2019. "Linking Arable Crop Occurrence with Site Conditions by the Use of Highly Resolved Spatial Data" Land 8, no. 4: 65. https://doi.org/10.3390/land8040065
APA StyleStein, S., Steinmann, H. -H., & Isselstein, J. (2019). Linking Arable Crop Occurrence with Site Conditions by the Use of Highly Resolved Spatial Data. Land, 8(4), 65. https://doi.org/10.3390/land8040065