Challenges and Opportunities of Social Media Data for Socio-Environmental Systems Research
Abstract
:1. Introduction
- How can feedback between social and environmental systems be meaningfully studied using social media data?
- How can using social media data reframe or compliment current SES research questions and methods?
- Are there best practices for collecting and validating social media data for use in SES research?
2. Social Media Data as Social and Environmental “Sensors”
3. Responses to the Environment: Perceptions, Attitudes, and Opinions
4. Effects of People’s Behaviors on the Environment
5. Challenges and Best Practices
5.1. Design Research Questions That Are Appropriate for the Available Data
5.2. Engage with Theory to Test Hypotheses and Interpret Data
5.3. Data Integration, Calibration, and Validation
6. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ellis, E.C.; Ramankutty, N. Putting People in the Map: Anthropogenic Biomes of the World. Front. Ecol. Environ. 2008, 6, 439–447. [Google Scholar] [CrossRef]
- Rindfuss, R.R.; Entwisle, B.; Walsh, S.J.; An, L.; Badenoch, N.; Brown, D.G.; Deadman, P.; Evans, T.; Fox, J.; Geoghegan, J.; et al. Land Use Change: Complexity and Comparisons. J. Land Use Sci. 2008, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rounsevell, M.; Arneth, A.; Alexander, P.; Brown, D.G.; de Noblet-Ducoudré, N.; Ellis, E.; Finnigan, J.; Galvin, K.; Grigg, N.; Harman, I.; et al. Towards Decision-based Global Land Use Models for Improved Understanding of the Earth System. Earth Syst. Dyn. 2014, 5, 117–137. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of Coupled Human and Natural Systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrom, E.; Cox, M. Moving Beyond Panaceas: A Multi-Tiered Diagnostic Approach for Social-Ecological Analysis. Environ. Conserv. 2010, 37, 451–463. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; DeFries, R.S.; Díaz, S.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; Perrings, C.; et al. Science for Managing Ecosystem Services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Adger, W.N.; Hughes, T.P.; Folke, C.; Carpenter, S.R.; Rockström, J. Social-ecological Resilience to Coastal Disasters. Science 2005, 309, 1036–1039. [Google Scholar] [CrossRef]
- Rindfuss, R.R.; Walsh, S.J.; Turner, B.L.; Fox, J.; Mishra, V. Developing a Science of Land Change: Challenges and Methodological Issues. Proc. Natl. Acad. Sci. USA 2004, 101, 13976–13981. [Google Scholar] [CrossRef]
- McNamara, D.E.; Werner, B.T. Coupled Barrier Island–resort Model: 1. Emergent Instabilities Induced By Strong Human-Landscape Interactions. J. Geophys. Res. Earth Surf. 2008, 113, F01016. [Google Scholar] [CrossRef]
- National Audubon Society. Christmas Bird Count; National Audubon Society: New York, NY, USA; Available online: https://www.audubon.org/conservation/science/christmas-bird-count (accessed on 24 December 2018).
- Goodchild, M.F. Citizens as Sensors: The World of Volunteered Geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef]
- Dickinson, J.L.; Shirk, J.; Bonter, D.; Bonney, R.; Crain, R.L.; Martin, J.; Phillips, T.; Purcell, K. The Current State of Citizen Science as a Tool for Ecological Research and Public Engagement. Front. Ecol. Environ. 2012, 10, 291–297. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Perger, C.; McCallum, I.; Schill, C.; Schepaschenko, D.; Duerauer, M.; Karner, M.; Dresel, C.; Laso-Bayas, J.C.; et al. A Global Dataset of Crowdsourced Land Cover and Land Use Reference Data. Sci. Data 2017, 4, 170075. [Google Scholar] [CrossRef] [PubMed]
- Fritz, S.; See, L.; McCallum, I.; You, L.; Bun, A.; Moltchanova, E.; Duerauer, M.; Albrecht, F.; Schill, C.; Perger, C.; et al. Mapping Global Cropland and Field Size. Glob. Chang. Biol. 2015, 21, 1980–1992. [Google Scholar] [CrossRef] [PubMed]
- D’Andrimont, R.; Yordanov, M.; Lemoine, G.; Yoong, J.; Nikel, K.; van der Velde, M. Crowdsourced Street-Level Imagery as a Potential Source of In-Situ Data for Crop Monitoring. Land 2018, 7, 127. [Google Scholar] [CrossRef]
- Cooper, C.B.; Dickinson, J.; Phillips, T.; Bonney, R. Citizen Science as a Tool for Conservation in Residential Ecosystems. Ecol. Soc. 2007, 12, 1–11. [Google Scholar] [CrossRef]
- Shaban, H. Twitter Reveals its Daily Active User Numbers for the First Time. Available online: https://www.washingtonpost.com/technology/2019/02/07/twitter-reveals-its-daily-active-user-numbers-first-time/?noredirect=on&utm_term=.625a75b1b8fb (accessed on 21 May 2019).
- Clarke, T. 22+ Instagram Stats That Marketers Can’t Ignore This Year. Available online: https://blog.hootsuite.com/instagram-statistics/ (accessed on 21 May 2019).
- Jeffries, A. The Man Behind Flickr on Making the Service ‘Awesome Again’. Available online: https://www.theverge.com/2013/3/20/4121574/flickr-chief-markus-spiering-talks-photos-and-marissa-mayer (accessed on 21 May 2019).
- Croitoru, A.; Wayant, N.; Crooks, A.T.; Radzikowski, J.; Stefanidis, A. Linking Cyber and Physical Spaces Through Community Detection And Clustering in Social Media Feeds. Comput. Environ. Urban Syst. 2015, 53, 47–64. [Google Scholar] [CrossRef]
- Friedland, G.; Sommer, R. Cybercasing the Joint: On the Privacy Implications of Geotagging. In Proceedings of the Fifth USENIX Workshop on Hot Topics in Security (HotSec 10), Washington, DC, USA, 10 August 2010. [Google Scholar]
- Stefanidis, T.; Crooks, A.T.; Radzikowski, J. Harvesting Ambient Geospatial Information from Social Media Feeds. GeoJournal 2013, 78, 319–338. [Google Scholar] [CrossRef]
- Crain, R.; Cooper, C.; Dickinson, J.L. Citizen Science: A Tool for Integrating Studies of Human and Natural Systems. Annu. Rev. Environ. Resour. 2014, 39, 641–665. [Google Scholar] [CrossRef]
- Keeler, B.L.; Wood, S.A.; Polasky, S.; Kling, C.; Filstrup, C.T.; Downing, J.A. Recreational Demand for Clean Water: Evidence From Geotagged Photographs by Visitors to Lakes. Front. Ecol. Environ. 2015, 13, 76–81. [Google Scholar] [CrossRef]
- Murphy, J.J.; Allen, P.G.; Stevens, T.H.; Weatherhead, D. A Meta-analysis of Hypothetical Bias in Stated Preference Valuation. Environ. Resour. Econ. 2005, 30, 313–325. [Google Scholar] [CrossRef] [Green Version]
- Toivonen, T.; Heikinheimo, V.; Fink, C.; Hausmann, A.; Hiippala, T.; Järv, O.; Tenkanen, H.; Di Minin, E. Social Media Data for Conservation Science: A Methodological Overview. Biol. Conserv. 2019, 233, 298–315. [Google Scholar] [CrossRef]
- Di Minin, E.; Tenkanen, H.; Toivonen, T. Prospects and Challenges for Social Media Data in Conservation Science. Front. Environ. Sci. 2015, 3, 63. [Google Scholar] [CrossRef]
- Ilieva, R.T.; McPhearson, T. Social-media Data for Urban Sustainability. Nat. Sustain. 2018, 1, 553–565. [Google Scholar] [CrossRef]
- Kirilenko, A.P.; Molodtsova, T.; Stepchenkova, S.O. People as Sensors: Mass Media and Local Temperature Influence Climate Change Discussion on Twitter. Glob. Environ. Chang. 2015, 30, 92–100. [Google Scholar] [CrossRef]
- Croitoru, A.; Crooks, A.T.; Radzikowski, J.; Stefanidis, A.; Vatsavai, R.R.; Wayant, N. Geoinformatics and Social Media: A New Big Data Challenge. In Big Data Techniques and Technologies in Geoinformatics; Karimi, H.A., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 207–232. [Google Scholar]
- Crooks, A.T.; Croitoru, A.; Stefanidis, A.; Radzikowski, J. #Earthquake: Twitter as a Distributed Sensor System. Trans. GIS 2013, 17, 124–147. [Google Scholar]
- Panteras, G.; Lu, X.; Croitoru, A.; Crooks, A.T.; Stefanidis, A. Accuracy Of User-Contributed Image Tagging In Flickr: A Natural Disaster Case Study. In Proceedings of the 7th International Conference on Social Media and Society, London, UK, 11–13 July 2016. [Google Scholar]
- Stefanidis, A.; Vraga, E.; Lamprianidis, G.; Radzikowski, J.; Delamater, P.L.; Jacobsen, K.H.; Pfoser, D.; Croitoru, A.; Crooks, A.T. Zika in Twitter: Temporal Variations of Locations, Actors, and Concepts. JMIR Public Health Surveill. 2017, 3, e22. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, L. Planning and Social Media: A Case Study of Public Transit and Stigma on Twitter. J. Am. Plan. Assoc. 2014, 80, 218–238. [Google Scholar] [CrossRef]
- Roberts, H.; Sadler, J.; Chapman, L. The Value of Twitter Data for Determining the Emotional Responses of People to Urban Green Spaces: A Case Study and Critical Evaluation. Urban Stud. 2018, 56, 818–835. [Google Scholar] [CrossRef]
- Wang, Q.; Phillips, N.E.; Small, M.L.; Sampson, R.J. Urban Mobility and Neighborhood Isolation in America’s 50 Largest Cities. Proc. Natl. Acad. Sci. USA 2018, 115, 7735–7740. [Google Scholar] [CrossRef]
- Jenkins, A.; Croitoru, A.; Crooks, A.T.; Stefanidis, A. Crowdsourcing A Collective Sense of Place. PLoS ONE 2016, 11, e0152932. [Google Scholar] [CrossRef]
- Panteras, G.; Wise, S.; Lu, X.; Croitoru, A.; Crooks, A.T.; Stefanidis, A. Triangulating Social Multimedia Content for Event Localization using Flickr and Twitter. Trans. GIS 2015, 19, 694–715. [Google Scholar] [CrossRef]
- Daume, S. Mining Twitter to Monitor Invasive Alien Species—An Analytical Framework and Sample Information Topologies. Ecol. Inform. 2016, 31, 70–82. [Google Scholar] [CrossRef]
- Cha, Y.; Stow, C.A. Mining Web-based Data to Assess Public Response to Environmental Events. Environ. Pollut. 2015, 198, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Oteros-Rozas, E.; Martín-López, B.; Fagerholm, N.; Bieling, C.; Plieninger, T. Using Social Media Photos to Explore the Relation Between Cultural Ecosystem Services and Landscape Features Across Five European Sites. Ecol. Indic. 2018, 94, 74–86. [Google Scholar] [CrossRef]
- Hausmann, A.; Toivonen, T.; Heikinheimo, V.; Tenkanen, H.; Slotow, R.; Di Minin, E. Social Media Reveal that Charismatic Species are Not the Main Attractor of Ecotourists to sub-Saharan Protected Areas. Sci. Rep. 2017, 7, 763. [Google Scholar] [CrossRef] [PubMed]
- Shook, E.; Turner, V.K. The Socio-environmental Data Explorer (SEDE): A Social Media–enhanced Decision Support System to Explore Risk Perception to Hazard Events. Cartogr. Geogr. Inf. Sci. 2016, 43, 427–441. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, X.; Tsou, M.H. Spatial, Temporal, and Content Analysis of Twitter for Wildfire Hazards. Nat. Hazards 2016, 83, 523–540. [Google Scholar] [CrossRef]
- Eid, E.; Handal, R. Illegal Hunting in Jordan: Using Social Media to Assess Impacts on Wildlife. Oryx 2018, 52, 730–735. [Google Scholar] [CrossRef]
- Jurdak, R.; Zhao, K.; Liu, J.; AbouJaoude, M.; Cameron, M.; Newth, D. Understanding Human Mobility from Twitter. PLoS ONE 2015, 10, e0131469. [Google Scholar] [CrossRef]
- Girardin, F.; Vaccari, A.; Gerber, A.; Biderman, A.; Ratti, C. Quantifying Urban Attractiveness from the Distribution and Density of Digital Footprints. Int. J. Spat. Data Infrastruct. Res. 2009, 4, 175–200. [Google Scholar]
- Krumm, J.; Kun, A.L.; Varsanyi, P. TweetCount: Urban Insights by Counting Tweets. In Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers, Maui, HI, USA, 11–15 September 2017; pp. 403–411. [Google Scholar]
- Crooks, A.T.; Pfoser, D.; Jenkins, A.; Croitoru, A.; Stefanidis, A.; Smith, D.A.; Karagiorgou, S.; Efentakis, A.; Lamprianidis, G. Crowdsourcing Urban Form and Function. Int. J. Geogr. Inf. Sci. 2015, 29, 720–741. [Google Scholar] [CrossRef]
- Crooks, A.T.; Croitoru, A.; Jenkins, A.; Mahabir, R.; Agouris, P.; Stefanidis, A. User-Generated Big Data and Urban Morphology. Built Environ. 2016, 42, 396–414. [Google Scholar] [CrossRef]
- Connors, J.P.; Lei, S.; Kelly, M. Citizen Science in the Age of Neogeography: Utilizing Volunteered Geographic Information for Environmental Monitoring. Ann. Assoc. Am. Geogr. 2011, 102, 1267–1289. [Google Scholar] [CrossRef]
- Preis, T.; Moat, H.S.; Bishop, S.R.; Treleaven, P.; Stanley, H.E. Quantifying the Digital Traces of Hurricane Sandy on Flickr. Sci. Rep. 2013, 3, 3141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Wang, C.; Emrich, C.T.; Guo, D. A Novel Approach to Leveraging Social Media for Rapid Flood Mapping: A Case Study of the 2015 South Carolina Floods. Cartogr. Geogr. Inf. Sci. 2018, 45, 97–110. [Google Scholar] [CrossRef]
- Fohringer, J.; Dransch, D.; Kreibich, H.; Schröter, K. Social Media as an Information Source for Rapid Flood Inundation Mapping. Nat. Hazards Earth Syst. Sci. 2015, 15, 2725–2738. [Google Scholar] [CrossRef]
- Earle, P.; Bowden, D.C.; Guy, M. Twitter Earthquake Detection: Earthquake Monitoring in a Social World. Ann. Geophys. 2011, 54. [Google Scholar] [CrossRef]
- Schmidt, C.W. Trending Now: Using Social Media to Predict and Track Disease Outbreaks. Environ. Health Perspect. 2012, 120, a30–a33. [Google Scholar] [CrossRef]
- Sachdeva, S.; McCaffrey, S.; Locke, D. Social Media Approaches to Modeling Wildfire Smoke Dispersion: Spatiotemporal and Social Scientific Investigations. Inf. Commun. Soc. 2017, 20, 1146–1161. [Google Scholar] [CrossRef]
- Proulx, R.; Massicotte, P.; Pepino, M. Googling Trends in Conservation Biology. Conserv. Biol. 2014, 28, 44–51. [Google Scholar] [CrossRef]
- Silva, S.J.; Barbieri, L.K.; Thomer, A.K. Observing Vegetation Phenology through Social Media. PLoS ONE 2018, 13, e0197325. [Google Scholar] [CrossRef] [PubMed]
- Daume, S.; Galaz, V. “Anyone Know What Species This Is?”–Twitter Conversations as Embryonic Citizen Science Communities. PLoS ONE 2016, 11, e0151387. [Google Scholar] [CrossRef] [PubMed]
- ElQadi, M.M.; Dorin, A.; Dyer, A.; Burd, M.; Bukovac, Z.; Shrestha, M. Mapping Species Distributions with Social Media Geo-tagged Images: Case Studies of Bees and Flowering Plants in Australia. Ecol. Inform. 2017, 39, 23–31. [Google Scholar] [CrossRef]
- Stafford, R.; Hart, A.G.; Collins, L.; Kirkhope, C.L.; Williams, R.L.; Rees, S.G.; Lloyd, J.R.; Goodenough, A.E. Eu-Social Science: The Role of Internet Social Networks in the Collection of Bee Biodiversity Data. PLoS ONE 2010, 5, e14381. [Google Scholar] [CrossRef] [PubMed]
- Odom, K.J.; Benedict, L. A Call to Document Female Bird Songs: Applications for Diverse Fields. Auk 2018, 135, 314–325. [Google Scholar] [CrossRef]
- Takahashi, B.; Tandoc, E.C., Jr.; Carmichael, C. Communicating on Twitter During a Disaster: An Analysis of Tweets During Typhoon Haiyan in the Philippines. Comput. Hum. Behav. 2015, 50, 392–398. [Google Scholar] [CrossRef]
- Guan, X.; Chen, C. Using Social Media Data to Understand and Assess Disaster. Nat. Hazards 2014, 74, 837–850. [Google Scholar] [CrossRef]
- Kryvasheyeu, Y.; Chen, H.; Obradovich, N.; Moro, E.; Van Hentenryck, P.; Fowler, J.; Cebrian, M. Rapid Assessment of Disaster Damage using Social Media Activity. Sci. Adv. 2016, 2, e1500779. [Google Scholar] [CrossRef]
- Sutton, J.; Spiro, E.; Butts, C.; Fitzhugh, S.; Johnson, B.; Greczek, M. Tweeting the Spill: Online Informal Communications, Social Networks, and Conversational Microstructures during the Deepwater Horizon Oilspill. Int. J. Inf. Syst. Crisis Response Manag. 2013, 5, 58–76. [Google Scholar] [CrossRef]
- Blanford, J.I.; Huang, Z.; Savelyev, A.; MacEachren, A.M. Geo-located Tweets. Enhancing Mobility Maps and Capturing Cross-border Movement. PLoS ONE 2015, 10, e0129202. [Google Scholar] [CrossRef]
- Hawelka, B.; Sitko, I.; Beinat, E.; Sobolevsky, S.; Kazakopoulos, P.; Ratti, C. Geo-located Twitter as Proxy for Global Mobility Patterns. Cartogr. Geogr. Inf. Sci. 2014, 41, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Chapman, L.; Resch, B.; Sadler, J.; Zimmer, S.; Roberts, H.; Petutschnig, A. Investigating the Emotional Responses of Individuals to Urban Green Space Using Twitter Data: A Critical Comparison of Three Different Methods of Sentiment Analysis. Urban Plan. 2018, 3, 21–33. [Google Scholar]
- Wood, S.A.; Guerry, A.D.; Silver, J.M.; Lacayo, M. Using Social Media to Quantify Nature-based Tourism and Recreation. Sci. Rep. 2013, 3, 2976. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.M.; Wood, S.A.; Roh, Y.H.; Kim, C.K. The Geographic Spread and Preferences of Tourists Revealed by User-Generated Information on Jeju Island, South Korea. Land 2019, 8, 73. [Google Scholar] [CrossRef]
- Hamstead, Z.A.; Fisher, D.; Ilieva, R.T.; Wood, S.A.; McPhearson, T.; Kremer, P. Geolocated Social Media as a Rapid Indicator of Park Visitation and Equitable Park Access. Comput. Environ. Urban Syst. 2018, 72, 38–50. [Google Scholar] [CrossRef]
- Casalegno, S.; Inger, R.; DeSilvey, C.; Gaston, K.J. Spatial Covariance between Aesthetic Value & Other Ecosystem Services. PLoS ONE 2013, 8, e68437. [Google Scholar]
- Van Zanten, B.T.; Van Berkel, D.B.; Meentemeyer, R.K.; Smith, J.W.; Tieskens, K.F.; Verburg, P.H. Continental-scale Quantification of Landscape Values using Social Media Data. Proc. Natl. Acad. Sci. USA 2016, 113, 12974–12979. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. A Rapid Indicator of Cultural Ecosystem Service Usage at a Fine Spatial Scale: Content Analysis of Social Media Photographs. Ecol. Indic. 2015, 53, 187–195. [Google Scholar] [CrossRef]
- Pastur, G.M.; Peri, P.L.; Lencinas, M.V.; García-Llorente, M.; Martín-López, B. Spatial Patterns of Cultural Ecosystem Services Provision in Southern Patagonia. Landsc. Ecol. 2016, 31, 383–399. [Google Scholar] [CrossRef]
- Dunkel, A. Visualizing the Perceived Environment using Crowdsourced Photo Geodata. Landsc. Urban Plan. 2015, 142, 173–186. [Google Scholar] [CrossRef]
- Barry, S.J. Using Social Media to Discover Public Values, Interests, and Perceptions about Cattle Grazing on Park Lands. Environ. Manag. 2014, 53, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Sonter, L.J.; Watson, K.B.; Wood, S.A.; Ricketts, T.H. Spatial and Temporal Dynamics and Value of Nature-based Recreation, Estimated via Social Media. PLoS ONE 2016, 11, e0162372. [Google Scholar] [CrossRef] [PubMed]
- Malcevschi, S.; Marchini, A.; Savini, D.; Facchinetti, T. Opportunities for Web-based Indicators in Environmental Sciences. PLoS ONE 2012, 7, e42128. [Google Scholar] [CrossRef] [PubMed]
- Funk, S.M.; Rusowsky, D. The Importance of Cultural Knowledge and Scale for Analysing Internet Search Data as a Proxy for Public Interest Toward the Environment. Biodivers. Conserv. 2014, 23, 3101–3112. [Google Scholar] [CrossRef]
- Auer, M.R.; Zhang, Y.; Lee, P. The Potential of Microblogs for the Study of Public Perceptions of Climate Change. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 291–296. [Google Scholar] [CrossRef]
- Cody, E.M.; Reagan, A.J.; Mitchell, L.; Dodds, P.S.; Danforth, C.M. Climate Change Sentiment on Twitter: An Unsolicited Public Opinion Poll. PLoS ONE 2015, 10, e0136092. [Google Scholar] [CrossRef] [PubMed]
- Daume, S.; Albert, M.; von Gadow, K. Forest Monitoring and Social Media–Complementary Data Sources for Ecosystem Surveillance? For. Ecol. Manag. 2014, 316, 9–20. [Google Scholar] [CrossRef]
- Williams, R.L.; Stafford, R.; Goodenough, A.E. Biodiversity in Urban Gardens: Assessing the Accuracy of Citizen Science Data on Garden Hedgehogs. Urban Ecosyst. 2015, 18, 819–833. [Google Scholar] [CrossRef]
- Roberge, J.M. Using Data from Online Social Networks in Conservation Science: Which Species Engage People the Most on Twitter? Biodivers. Conserv. 2014, 23, 715–726. [Google Scholar] [CrossRef]
- Drum, R.G.; Ribic, C.A.; Koch, K.; Lonsdorf, E.; Grant, E.; Ahlering, M.; Barnhill, L.; Dailey, T.; Lor, S.; Mueller, C.; et al. Strategic Grassland Bird Conservation throughout the Annual Cycle: Linking Policy Alternatives, Landowner Decisions, and Biological Population Outcomes. PLoS ONE 2015, 10, e0142525. [Google Scholar] [CrossRef]
- Ghermandi, A. Analysis of Intensity and Spatial Patterns of Public Use in Natural Treatment Systems using Geotagged Photos from Social Media. Water Res. 2016, 105, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, A.; Toivonen, T.; Slotow, R.; Tenkanen, H.; Moilanen, A.; Heikinheimo, V.; Di Minin, E. Social Media Data Can Be Used to Understand Tourists’ Preferences for Nature-Based Experiences in Protected Areas. Conserv. Lett. 2018, 11, e12343. [Google Scholar] [CrossRef]
- Levin, N.; Lechner, A.M.; Brown, G. An Evaluation of Crowdsourced Information for Assessing the Visitation and Perceived Importance of Protected Areas. Appl. Geogr. 2017, 79, 115–126. [Google Scholar] [CrossRef]
- Levin, N.; Kark, S.; Crandall, D. Where Have All the People Gone? Enhancing Global Conservation using Night Lights and Social Media. Ecol. Appl. 2015, 25, 2153–2167. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qin, Q.; Han, J.; Tang, L.A.; Lei, K.H. Mining Trajectory Data and Geotagged Data in Social Media for Road Map Inference. Trans. GIS 2015, 19, 1–18. [Google Scholar] [CrossRef]
- Meekan, M.G.; Duarte, C.M.; Fernández-Gracia, J.; Thums, M.; Sequeira, A.M.; Harcourt, R.; Eguíluz, V.M. The Ecology of Human Mobility. Trends Ecol. Evol. 2017, 32, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Seppelt, R.; Lautenbach, S.; Volk, M. Identifying trade-offs Between Ecosystem Services, Land Use, and Biodiversity: A Plea for Combining Scenario Analysis and Optimization on Different Spatial Scales. Curr. Opin. Environ. Sustain. 2013, 5, 458–463. [Google Scholar] [CrossRef]
- Ruths, D.; Pfeffer, J. Social Media for Large Studies of Behavior. Science 2014, 346, 1063–1064. [Google Scholar] [CrossRef]
- Pew Research Center. Social Media Update; Pew Research Center: Washington, DC, USA, 2014; Available online: http://www.pewinternet.org/2015/01/09/social-media-update-2014/ (accessed on 15 October 2018).
- Zimmer, M. “But the Data is Already Public”: On the Ethics of Research in Facebook. Ethics Inf. Technol. 2010, 12, 313–325. [Google Scholar] [CrossRef]
- Hargittai, E. Is Bigger Always Better? Potential Biases of Big Data Derived from Social Network Sites. Ann. Am. Acad. Political Soc. Sci. 2015, 659, 63–76. [Google Scholar] [CrossRef]
- Schwartz, H.A.; Eichstaedt, J.C.; Kern, M.L.; Dziurzynski, L.; Ramones, S.M.; Agrawal, M.; Shah, A.; Kosinski, M.; Stillwell, D.; Seligman, M.E.; et al. Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach. PLoS ONE 2013, 8, e73791. [Google Scholar] [CrossRef] [PubMed]
- Brenner, J.; Smith, A. 72% of Online Adults are Social Networking Site Users; Pew Research Center Internet & American Life Project: Washington, DC, USA, 2013. [Google Scholar]
- Dance, G.J.X.; LaForgia, M.; Confessore, N. As Facebook Raised a Privacy Wall, It Carved an Opening for Tech Giants. The New York Times, 18 December 2018. [Google Scholar]
- Gehrt, S.D.; Brown, J.L.; Anchor, C. Is the urban coyote a misanthropic synanthrope? The case from Chicago. Cities Environ. 2011, 4, 3. [Google Scholar] [CrossRef]
- Anderson, C. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Available online: http://archive.wired.com/science/discoveries/magazine/16-07/pb_theory (accessed on 2 July 2019).
- Miller, H.J.; Goodchild, M.F. Data-driven Geography. GeoJournal 2015, 80, 449–461. [Google Scholar] [CrossRef]
- Barnes, T.J. Big Data, Little History. Dialogues Hum. Geogr. 2013, 3, 297–302. [Google Scholar] [CrossRef]
- Barberá, P.; Jost, J.T.; Nagler, J.; Tucker, J.A.; Bonneau, R. Tweeting From Left to Right: Is Online Political Communication More than an Echo Chamber? Psychol. Sci. 2015, 26, 1531–1542. [Google Scholar] [CrossRef]
- Filatova, T.; Verburg, P.H.; Parker, D.C.; Stannard, C.A. Spatial Agent-based Models for Socio-ecological Systems: Challenges and Prospects. Environ. Model. Softw. 2013, 45, 1–7. [Google Scholar] [CrossRef]
- Kasperson, R.E.; Renn, O.; Slovic, P.; Brown, H.S.; Emel, J.; Goble, R.; Kasperson, J.X.; Ratick, S. The Social Amplification of Risk: A Conceptual Framework. Risk Anal. 1988, 8, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Bordalo, P.; Gennaioli, N.; Shleifer, A. Salience Theory of Choice Under Risk. Q. J. Econ. 2012, 127, 1243–1285. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, S.; Hale, L.A.; D’Esposito, M.; Knight, R.T. Rapid Prefrontal-Hippocampal Habituation to Novel Events. J. Neurosci. 2004, 24, 5356–5363. [Google Scholar] [CrossRef] [Green Version]
- Kahneman, D.; Tversky, A. Prospect Theory: An Analysis of Decision under Risk. Econometrica 1979, 47, 263–292. [Google Scholar] [CrossRef]
- Sessions, C.; Wood, S.A.; Rabotyagov, S.; Fisher, D.M. Measuring Recreational Visitation at US National Parks with Crowd-sourced Photographs. J. Environ. Manag. 2016, 183, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Ivanova, A.; Schäfer, M.S. Media Attention for Climate Change around the World: A Comparative Analysis of Newspaper Coverage in 27 Countries. Glob. Environ. Chang. 2013, 23, 1233–1248. [Google Scholar] [CrossRef]
- Tenkanen, H.; Di Minin, E.; Heikinheimo, V.; Hausmann, A.; Herbst, M.; Kajala, L.; Toivonen, T. Instagram, Flickr, or Twitter: Assessing the Usability of Social Media Data for Visitor Monitoring in Protected Areas. Sci. Rep. 2017, 7, 17615. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Seo, B.; Koellner, T.; Lautenbach, S. Mapping Cultural Ecosystem Services 2.0—Potential and Shortcomings from Unlabeled Crowd Sourced Images. Ecol. Indic. 2019, 96, 505–515. [Google Scholar] [CrossRef]
- Gaspar, R.; Pedro, C.; Panagiotopoulos, P.; Seibt, B. Beyond Positive or Negative: Qualitative Sentiment Analysis of Social Media Reactions to Unexpected Stressful Events. Comput. Hum. Behav. 2016, 56, 179–191. [Google Scholar] [CrossRef]
- Crooks, A.T.; Wise, S. GIS and Agent-Based models for Humanitarian Assistance. Comput. Environ. Urban Syst. 2013, 41, 100–111. [Google Scholar] [CrossRef]
- Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y. Smart Cities of the Future. Eur. Phys. J. Spec. Top. 2012, 214, 481–518. [Google Scholar] [CrossRef]
Study Reference | Topic | SES Category | Platform | Types of Data Used | Temporal Extent of Study | Spatial Extent of Study |
---|---|---|---|---|---|---|
[36] | Urban mobility and neighborhood isolation | Social | Locations | Years | National | |
[37] | Sense of place | Social | Twitter and Wikipedia | Text and locations | Month | Regional |
[38] | Vegetation phenology | Environmental | Photos and locations | Years | National | |
[38] | Estimating the extent of a wildfire | Environmental; Environmental → Social | Twitter & Flickr | Locations | Month | Local |
[39] | Invasive species monitoring | Environmental; Environmental → Social | Text, locations, and media | Years | Global | |
[24] | Recreational and water quality | Environmental → Social | Flickr | Locations | Years | Regional |
[40] | Perceptions of drinking water supply shutdown | Environmental → Social | Twitter; Google trends | Text | Week; Years | National |
[41] | Ecosystem services | Environmental → Social | Flickr and Panaramio | Photos and locations | Months | Continental |
[42] | Preferences for wildlife sightings | Environmental → Social | Instagram and Flickr | Photos | Year | Local |
[43] | Risk perception of winter storm | Environmental → Social | Text and locations | Month | Regional | |
[44] | Response to wildfire | Environmental → Social | Text, locations, time, and networks | Days | Regional | |
[45] | Illegal hunting activities | Social → Environmental | Photos | Year | National |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez, B.E.; Magliocca, N.R.; Crooks, A.T. Challenges and Opportunities of Social Media Data for Socio-Environmental Systems Research. Land 2019, 8, 107. https://doi.org/10.3390/land8070107
Lopez BE, Magliocca NR, Crooks AT. Challenges and Opportunities of Social Media Data for Socio-Environmental Systems Research. Land. 2019; 8(7):107. https://doi.org/10.3390/land8070107
Chicago/Turabian StyleLopez, Bianca E., Nicholas R. Magliocca, and Andrew T. Crooks. 2019. "Challenges and Opportunities of Social Media Data for Socio-Environmental Systems Research" Land 8, no. 7: 107. https://doi.org/10.3390/land8070107
APA StyleLopez, B. E., Magliocca, N. R., & Crooks, A. T. (2019). Challenges and Opportunities of Social Media Data for Socio-Environmental Systems Research. Land, 8(7), 107. https://doi.org/10.3390/land8070107