Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physicochemical Properties and Crop Yield Under Rain-Fed Conditions of Northwest Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Soil Sampling
2.4. Crop Yield and Yield Components Sampling
2.5. Laboratory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physical Properties
3.2. Effects of Soil Bund and Stone-Faced Soil Bund on Soil Chemical Properties
3.3. Effects of Soil Bund and Stone-Faced Soil Bund on Slope Change
3.4. Effects of Soil Bund and Stone-Faced Soil Bund on Barley Grain Yield
4. Future Research Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muluneh, A.; Biazin, B.; Stroosnijder, L.; Bewket, W.; Keesstra, S. Impact of predicted changes in rainfall and atmospheric carbon dioxide on maize and wheat yields in the Central Rift Valley of Ethiopia. Reg. Environ. Chang. 2015, 15, 1105–1119. [Google Scholar] [CrossRef]
- Hurni, H. Assessing Sustainable Land Management. Agric. Ecosyst. Environ. 2000, 81, 83–92. [Google Scholar] [CrossRef]
- FAO. Status of the World’s Soil Resources; FAO: Rome, Italy, 2015. [Google Scholar]
- UNCCD. A Stronger UNCCD for a Land-Degradation Neutral World; Issue Brief; UNCCD: Bonn, Germany, 2013. [Google Scholar]
- Worku, H. Impact of Physical Soil and Water Conservation Structure on Selected Soil Physicochemical Properties in Gondar Zuriya Woreda. Resour. Environ. 2017, 7, 40–48. [Google Scholar] [CrossRef]
- Yihenew, G.; Fentanesh, A.; Solomon, A. The effects of land use types, management practices and slope classes on selected soil physico-chemical properties in Zikre watershed, North-Western Ethiopia. Environ. Syst. Res. 2015, 4, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Matous, P.; Todo, Y.; Mojo, D. Roles of extension and ethno-religious networks in acceptance of resource-conserving agriculture among Ethiopian farmers. Int. J. Sustain. 2013, 11, 301–316. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Tsunekawa, A.; Nyssen, J.; Poesen, J.; Tsubo, M.; Tsegaye, D.; Schutt, B.; Enyew, A.; Tegegne, F. Soil erosion and conservation in Ethiopia: A review. Prog. Phys. Geogr. 2015, 39, 750–774. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.; Keesstra, S.D.; Stroosnijder, L.; Baartman, J.E.M.; Maroulis, J. Soil conservation through sediment trapping: A review. Land Degrad. Dev. 2014, 26, 544–556. [Google Scholar] [CrossRef]
- Teshome, A.; de Graaff, J.; Kassie, M. Household-Level Determinants of Soil and Water Conservation Adoption Phases: Evidence from North-Western Ethiopian Highlands. Environ. Manag. 2016, 57, 620–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dejene, T. The Effectiveness of Stone Bund to Maintain Soil Physical and Chemical Properties: The Case of Weday Watershed, East Hararge, Ethiopia. Civil Environ. Res. 2017, 9, 9–16. [Google Scholar]
- Worku, H.; Awdenegest, M.; Fantaw, Y. The Effects of ‘Fanya juu’ Soil Conservation Structure on Selected Soil Physical and Chemical Properties: The Case of Goromti Watershed, Western Ethiopia. Resour. Environ. 2012, 4, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Haileslassie, A.; Priess, J.; Veldkamp, E.; Teketay, D.; Lesschen, J.P. Assessment of soil nutrient depletion and its spatial variability on smallholders’ mixed farming systems in Ethiopia using partial versus full nutrient balances. Agric. Ecosyst. Environ. 2005, 108, 1–16. [Google Scholar] [CrossRef]
- Erkossa, T.; Wudneh, A.; Desalegn, B.; Taye, G. Linking soil erosion to on-site financial cost: Lessons from watersheds in the Blue Nile basin. Solid Earth 2015, 6, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Assefa, E.; Bork, H.R. Farmers’ perception of land degradation and traditional knowledge in Southern Ethiopia-resilience & stability. Land Degrad. Dev. 2015, 27, 1552–1561. [Google Scholar] [CrossRef]
- Kidane, W. Identification and prioritization of sub watersheds for land and water management in Tekeze dam watershed, Northern Ethiopia. Int. Soil Water Conserv. Res. 2016, 4, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.; Keesstra, S.D.; Baartman, J.E.M.; Stroosnijder, L.; Maroulis, J. Reducing Sediment Connectivity Through Man-Made and Natural Sediment Sinks in the Minizr Catchment, Northwest Ethiopia. Land Degrad. Dev. 2016, 28, 708–717. [Google Scholar] [CrossRef]
- Adimassu, Z.; Mekonnen, K.; Yirga, C.; Kessler, A. Effect of soil bunds on runoff, soil and nutrient losses, and crop yield in the central highlands of Ethiopia. Land Degrad. Dev. 2014, 25, 554–564. [Google Scholar] [CrossRef]
- Ayele, G.; Gessesse, A.; Addisie, M.; Tilahun, S.; Tebebu, T.; Tenessa, D.; Langendoen, E.; Nicholson, S.T. A Biophysical and Economic Assessment of a Community-based Rehabilitated Gully in the Ethiopian Highlands. Land Degrad. Dev. 2016, 27, 270–280. [Google Scholar] [CrossRef]
- Nyssen, J.; Poesen, J.; Moeyersons, J.; Deckers, J.; Haile, M.; Lang, A. Human impact on the environment in the Ethiopian and Eritrean highlands—A state of the art. Earth Sci. Rev. 2004, 64, 273–320. [Google Scholar] [CrossRef]
- Amsalu, A.; Stroosnijder, L.; de Graaf, J. Long-term dynamics in land resource use and the driving forces in the Beressa watershed, highlands of Ethiopia. J. Environ. Manag. 2007, 83, 448–459. [Google Scholar] [CrossRef]
- Mekonnen, M.; Keesstra, S.D.; Ritsema, C.J.; Stroosnijder, L.; Baartman, J.E.M. Sediment trapping with indigenous grass species showing differences in plant traits in northwest Ethiopia. Catena 2016, 147, 755–763. [Google Scholar] [CrossRef]
- Mihrete, G. Effect of Soil Conservation Measures on Some Physico-Chemical Properties of Soil and Crop Yield in Simada District, South Gondar Zone, Ethiopia. Master’s Thesis, Haramaya University, Dire Dawa, Ethiopia, 2014. [Google Scholar]
- Abay, C.; Abdu, A.; Tefera, M. Effects of graded stone bunds on selected soil properties in the central highlands of Ethiopia. Int. J. Nat. Resour. Ecol. Manag. 2016, 1, 42–50. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Guaitoli, F.; Santoro, A.; Cerdà, A. Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. Solid Earth 2013, 4, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Joas, T. Effects of Soil and Water Conservation Techniques on Soil Productivity and Bean Grain Yield in Nyamasheke District, Rwanda; Land and Water Management in the School of Agriculture and Enterprise Development; Kenyatta University: Nairobi, Kenya, 2011. [Google Scholar]
- Wolka, K.; Moges, A.; Yimer, F. Effects of level soil bunds and stone bunds on soil properties and its implications for crop production: The case of Bokole watershed, Dawuro zone, Southern Ethiopia. Agric. Sci. 2011, 2, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Tadele, A.; Aemro, T.; Yihenew, G.; Birru, Y.; Bettina, W.; Hans, H. Soil Properties and Crop Yields along the Terraces and Toposequece of Anjeni Watershed, Central Highlands of Ethiopia. J. Agric. Sci. 2013, 5, 134–144. [Google Scholar] [CrossRef]
- Mulugeta, D.; Karl, S. Assessment of integrated soil and water conservation measures on key soil properties in South Gonder, northwestern highlands of Ethiopia. J. Soil Sci. Environ. Manag. 2010, 7, 164–176. [Google Scholar]
- Million, A. Characterization of Indigenous Stone bunding (Kab) and Its Effect on Crop Yield and Soil Productivity at Mesobit-Gedba, North Showa Zone of Amhara Region. Master’s Thesis, Alemaya University, Dire Dawa, Ethiopia, 2003. [Google Scholar]
- Ademe, Y.; Kebede, T.; Mulatu, A.; Shafi, T. Evaluation of the effectiveness of soil and water conservation practices on improving selected soil properties in Wonago district, Southern Ethiopia. J. Soil Sci. Environ. Manag. 2017, 8, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Yihenew, G.; Tadele, A.; Mitiku, H.; Yamoah, C. Lessons from upstream soil conservation measures to mitigate soil erosion and its impact on upstream and downstream users of the Nile River. Int. Water Manag. Inst. 2009, 170–183. [Google Scholar]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Bardgett, R.D. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.; Mol, G.; de Leeuw, J.; Okx, J.; de Cleen, M.; Visser, S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- BOA (Bureau of Agriculture). Agriculture for Renaissance; Green Development for Productivity Increment and Society Benefit; ANRS, BOA: Bahir Dar, Ethiopia, 2015; p. 55. [Google Scholar]
- MDAO (Mertulemariam District Agriculture Office). Annual Technical Report; MDAO: Mertulemariam, Ethiopia, 2017; p. 56. [Google Scholar]
- Food and Agriculture Organization. Guidelines for Soil Description, 4th ed.; FAO: Rome, Italy, 2006; pp. 1–97. ISBN 92-5-105521-1. [Google Scholar]
- Araya, A.; Stroosnijder, L.; Habtu, S.; Keesstra, S.D.; Berhe, M.; Hadgu, K.M. Risk assessment by sowing date for barley (Hordeum vulgare) in northern Ethiopia. Agric. For. Meteorol. 2012, 154, 30–37. [Google Scholar] [CrossRef]
- Mulugeta, A. Effect of Slope Gradient on Selected Soil Physicochemical Properties of Dawja Watershed. Am. J. Sci. Ind. Res. 2015, 6, 74–81. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improvement for making particle size analysis of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Sahlemedhin, S.; Taye, B. Procedure for Soil and Plant Analysis; National Soil Research Centre, Ethiopian Agricultural Research Organization: Addis Ababa, Ethiopia, 2000. [Google Scholar]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; International Soil Reference and Information Center (ISRIC): Wageningen, The Netherlands, 2002; p. 119. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Black, C.A. Methods of Soil Analysis; Part I; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soil by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954; Volume 939, pp. 1–19. [Google Scholar]
- Morgan, M.F. Chemical Soil Diagnosis by the Universal Soil Testing System; The Connecticut Agricultural Experiment Station: New Haven, CT, USA, 1941; No. 450. [Google Scholar]
- Chapman, H.D. Cation exchange capacity. In Methods of Soil Analysis; Black, C.A., Ensminger, L.E., Clark, F.E., Eds.; American Society Agronomy, Inc.: Madison, WI, USA, 1965; pp. 891–901. [Google Scholar]
- Sharma, P.P.; Gupta, S.C.; Foster, G.R. Rain drop-induced soil detachment and sediment transport from the inter-rill areas. Soil Sci. Soc. Am. J. 1995, 59, 727–734. [Google Scholar] [CrossRef]
- Achalu, C.; Heluf, G.; Kibebew, K.; Abi, T. Status of selected physicochemical properties of soils under different land use systems of Western Oromia, Ethiopia. J. Biodivers. Environ. Sci. 2012, 3, 57–71. [Google Scholar]
- Muluneh, A.; van Loon, E.; Bewket, W.; Keesstra, S.; Stroosnijder, L.; Burka, A. Effects of long-term deforestation and remnant forests on rainfall and temperature in the Central Rift Valley of Ethiopia. For. Ecosyst. 2017, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Landon, J. Booker Tropical Soil Manual: A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics; John Wiley and Sons Inc.: New York, NY, USA, 1991. [Google Scholar]
- Addisu, S.; Mekonnen, M. Check dams and storages beyond trapping sediment, carbon sequestration for climate change mitigation, Northwest Ethiopia. Geoenviron. Disasters 2019, 6, 1–8. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. Hydrological and erosional impact and farmer’s perception on catch crops and weeds in citrus organic farming in Canyoles river watershed, Eastern Spain. Agric. Ecosyst. Environ. 2018, 258, 49–58. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Novara, A.; Pulido, M.; Kapović-Solomun, M.; Keesstra, S.D. Policies can help to apply successful strategies to control soil and water losses. The case of chipped pruned branches (CPB) in Mediterranean citrus plantations. Land Use Policy 2018, 75, 734–745. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.D.; Temme, A.J.A.M.; Schoorl, J.M.; Visser, S.M. Evaluating the hydrological component of the new catchment-scale sediment delivery model LAPSUS-D. Geomorphology 2014, 212, 97–107. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Giménez-Morera, A.; Pulido, M.; Di Prima, S.; Cerdà, A. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena 2019, 174, 95–103. [Google Scholar] [CrossRef]
Soil Properties | Slope Class | SWCPs/Treatments | |||
---|---|---|---|---|---|
Control | SB | SFSB | Overall Mean | ||
Clay | Lower (<9%) | 38.67 ± 1.15 a | 45.33 ± 2.31 b | 45.33 ± 1.15 b | 43.11 ± 3.62 A |
Middle (10–14%) | 35.33 ± 4.62 a | 43.33 ± 1.15 b | 42.67 ± 3.05 b | 40.44 ± 4.70 A | |
Upper (>15%) | 30.00 ± 2.00 b | 36.00 ± 3.46 a | 36.00 ± 3.46 a | 34.00 ± 4.00 B | |
Overall | 34.66 ± 4.58 b | 41.56 ± 4.94 a | 41.33 ± 4.8 a | ||
LSD 0.05 | 2.7223 | ||||
Silt | Lower (<9%) | 40.67 ± 1.15 a | 37.33 ± 1.15 b | 36.67 ± 0.0 b | 38.22 ± 2.11 A |
Middle (10–14%) | 30.67 ± 3.05 d | 35.33 ± 1.15 b | 36.00 ± 2.00 b | 34.00 ± 3.16 B | |
Upper (>15%) | 24.00 ± 1.15 c | 28.67 ± 2.31d | 28.00 ± 1.1 d | 26.89 ± 2.67 C | |
Overall | 31.78 ± 7.51 b | 33.78 ± 4.17a | 33.56 ± 4.3 a | ||
LSD 0.05 | 1.7469 | ||||
Sand | Lower (<9%) | 20.67 ± 2.31 c | 17.33 ± 1.15 b | 18.00 ± 0.0 b | 18.67 ± 2.00 C |
Middle (10–14%) | 34.00 ± 2.00 b | 21.33 ± 1.15 a | 21.33 ± 2.3 a | 25.56 ± 6.54 B | |
Upper (>15%) | 46.00 ± 0.00 a | 35.33 ± 1.15 c | 36.00 ± 3.4 c | 39.11 ± 5.49 A | |
Overall | 33.56 ± 11.08 a | 24.66 ± 8.25 b | 25.11 ± 8.5 b | ||
LSD 0.05 | 1.8282 | ||||
BD (gm cm−3) | Lower (<9%) | 0.98 ± 0.02 b | 0.78 ± 0.11 c | 0.83 ± 0.02 c | 0.86 ± 0.11 B |
Middle (10–14%) | 1.08 ± 0.09 a | 0.94 ± 0.09 b | 0.97 ± 0.07 b | 0.99 ± 0.09 A | |
Upper (>15%) | 1.13 ± 0.11 a | 0.98 ± 0.07 b | 1.01 ± 0.03 b | 1.04 ± 0.07 A | |
Overall | 1.06 ± 0.06 a | 0.90 ± 0.12 b | 0.94 ± 0.09 b | ||
LSD 0.05 | 0.0621 | ||||
Porosity (%) | Lower (<9%) | 62.87 ± 0.59 a | 70.39 ± 4.46 b | 68.81 ± 1.13 b | 67.36 ± 4.14 A |
Middle (10–14%) | 59.17 ± 0.36 b | 64.54 ± 3.47 a | 63.24 ± 2.71 a | 62.32 ± 3.28 B | |
Upper (>15%) | 57.45 ± 0.43 b | 62.99 ± 2.74 a | 61.85 ± 1.24 a | 60.76 ± 3.00 B | |
Overall | 59.83 ± 2.43 b | 65.97 ± 4.61 a | 64.63 ± 3.57 a | ||
LSD 0.05 | 2.3431 |
Soil Properties | Slope Class | SWCPs/Treatments | |||
---|---|---|---|---|---|
Control | SB | SFSB | Overall | ||
PH | Lower (<9%) | 6.35 ± 0.07 b | 6.77 ± 0.36 a | 6.81 ± 0.12 a | 6.65 ± 0.29 A |
Middle (10–14%) | 6.06 ± 0.09 a | 6.41 ± 0.32 b | 6.27 ± 0.75 b | 6.25 ± 0.23 B | |
Upper (>15%) | 5.30 ± 0.10 c | 6.35 ± 0.11 b | 6.36 ± 0.06 b | 6.01 ± 0.54 C | |
Overall | 5.90 ± 0.48 b | 6.51 ± 0.32 a | 6.48 ± 0.26 a | ||
LSD 0.05 | 0.1769 | ||||
CEC (cmolkg−1) | Lower <9% | 28.24 ± 4.69 b | 40.69 ± 8.94 a | 40.60 ± 3.07 a | 36.51 ± 8.14 A |
Middle (10–14%) | 21.47 ± 3.92 d | 28.40 ± 4.95 b | 38.53 ± 1.39 a | 29.47 ± 8.10 B | |
Upper (>15%) | 18.88 ± 2.00 c | 21.10 ± 1.27 c | 30.40 ± 0.87 b | 23.46 ± 5.44 C | |
Overall | 22.86 ± 5.28 c | 30.06 ± 10.00 b | 36.51 ± 4.98 a | ||
LSD 0.05 | 4.1688 | ||||
OC (%) | Lower (<9%) | 1.81 ± 0.30 c | 2.21 ± 0.31 b | 2.79 ± 0.07 a | 2.27 ± 0.48 A |
Middle (10–14%) | 1.58 ± 0.19 d | 1.82 ± 0.21 d | 2.42 ± 0.31 b | 1.94 ± 0.43 B | |
Upper (>15%) | 0.92 ± 0.16 b | 1.25 ± 0.15 c | 1.39 ± 0.06 c | 1.18 ± 0.24 C | |
Overall | 1.44 ± 0.45 c | 1.76 ± 0.47 b | 2.20 ± 0.65 a | ||
LSD 0.05 | 0.2157 |
Soil Properties | Slope Class | SWCPs/Treatments | |||
---|---|---|---|---|---|
Control | SB | SFSB | Overall | ||
TN (%) | Lower (<9%) | 0.26 ± 0.06 c | 0.42 ± 0.03 a | 0.43 ± 0.03 a | 0.37 ± 0.10 A |
Middle (10–14%) | 0.17 ± 0.01 a | 0.30 ± 0.00 b | 0.32 ± 0.0 b | 0.26 ± 0.07 B | |
Upper (>15%) | 0.14 ± 0.01 b | 0.21 ± 0.02 c | 0.29 ± 0.00 d | 0.22 ± 0.01 C | |
Overall | 0.19 ± 0.06 c | 0.31 ± 0.09 b | 0.35 ± 0.07 a | ||
LSD 0.05 | 0.0279 | ||||
AV-p (mg kg−1) | Lower (<9%) | 11.12 ± 2.90 a | 19.60 ± 0.74 b | 17.56 ± 1.40 b | 16.09 ± 3.94 A |
Middle (10–14%) | 7.17 ± 0.30 b | 10.96 ± 1.09 a | 14.66 ± 3.64 d | 10.93 ± 3.76 B | |
Upper (>15%) | 5.54 ± 1.45 c | 6.62 ± 0.45 c | 6.64 ± 0.13 c | 6.27 ± 0.94 C | |
Overall | 7.94 ± 2.63 b | 12.4 ± 5.76 a | 12.95 ± 5.27 a | ||
LSD 0.05 | 1.4833 | ||||
AV-K (mg kg−1) | Lower (<9%) | 130.35 ± 8.11 b | 177.32 ± 9.72 c | 188.40 ± 10.64 a | 165.36 ± 27.94 A |
Middle (10–15%) | 94.03 ± 8.57 a | 137.74 ± 17.17 b | 132.57 ± 11.5 b | 121.45 ± 23.52 B | |
Upper (>15%) | 83.94 ± 10.67 a | 99.89 ± 4.74 d | 110.48 ± 6.22 c | 98.10 ± 13.32 C | |
Overall | 102.77 ± 22.58 b | 138.32 ± 35.04 a | 143.82 ± 35.77 a | ||
LSD 0.05 | 10.17 |
Treatment | Average Inter-Terrace Slope (%) | Bund Height (cm) |
---|---|---|
Soil bund | 7.16 b | 80.00 a |
Stone-faced soil bund | 8.00 b | 67.00 b |
Control (non-treated land) | 19.50 a | 00.00 c |
LSD | 11.64 | 9.08 |
CV | 49.67 | 9.28 |
Yield & Yield Components | Slope Class | SWCPs/Treatments | |||
---|---|---|---|---|---|
Control | SB | SFSB | Overall | ||
Plant height (cm) | Lower (<9%) | 58.88 ± 5.85 a | 70.56 ± 5.36 a | 70.56 ± 6.74 a | 66.67 ± 7.82 A |
Middle (10–14%) | 48.89 ± 1.9 b | 65.00 ± 1.67 b | 65.89 ± 4.17 a | 59.93 ± 8.64 B | |
Upper (>15%) | 52.78 ± 4.20b | 57.89 ± 3.42 c | 55.55 ± 6.94 b | 55.41 ± 4.93 B | |
Overall | 53.52 ± 5.74 b | 64.48 ± 6.41 a | 64 ± 8.48 a | ||
LSD 0.05 | 4.7808 | ||||
Grain yield (q ha−1) | Lower (<9%) | 16.38 ± 2.0 c | 24.44 ± 4.19 d | 25.55 ± 0.96 d | 22.13 ± 4.9 A |
Middle (10–14%) | 16.11 ± 0.96c | 23.88 ± 2.54 d | 22.22 ± 2.54 b | 20.74 ± 4.00 A | |
Upper (>15%) | 12.77 ± 2.54 a | 18.33 ± 1.66 b | 20.00 ± 1.66 b | 17.04 ± 3.7B | |
Overall | 15.10 ± 2.44 b | 22.22 ± 3.90 a | 22.59 ± 2.90 a | ||
LSD 0.05 | 2.3072 | ||||
Straw yield (q ha−1) | Lower (<9%) | 42.5 ± 2.5 a | 63.33 ± 7.4 c | 68.33 ± 5.2 b | 58.06 ± 12.79 A |
Middle (10–14%) | 35 ± 5.00 b | 47.50 ± 2.5 a | 45.83 ± 1.44 a | 42.78 ± 6.55 B | |
Upper (>15%) | 35 ± 5.00 b | 43.33 ± 2.89 a | 45.00 ± 5.00 a | 41.11 ± 6.01 B | |
Overall | 37.50 ± 5.3 b | 51.39 ± 10.08 a | 53.06 ± 12.04 a | ||
LSD 0.05 | 4.47 |
BD | Porosity | Ph | OC | OM | N | |
---|---|---|---|---|---|---|
BD | 1 ** | |||||
Porosity | −1 ** | 1 ** | ||||
Ph | −0.77 ** | 0.77 ** | 1 ** | |||
OC | −0.69 ** | 0.69 ** | 0.66 | 1 ** | ||
OM | −0.69 ** | 0.69 ** | 0.66 ** | 1 ** | 1 ** | |
N | −0.79 ** | 0.79 ** | 0.80 ** | 0.80 ** | 0.80 ** | 1 ** |
P | −0.78 ** | 0.78 ** | 0.65 ** | 0.85 ** | 0.85 ** | 0.85 |
CEC | −0.75 ** | 0.75 ** | 0.62 ** | 0.80 ** | 0.80 ** | 0.80 ** |
K | −0.77 ** | 0.77 ** | 0.73 ** | 0.81 ** | 0.81 ** | 0.90 ** |
Clay | −0.76 ** | 0.76 ** | 0.72 ** | 0.80 ** | 0.80 ** | 0.80 ** |
Silt | −0.55 ** | 0.55 ** | 0.65 ** | 0.71 ** | 0.71 ** | 0.62 ** |
Sand | 0.73 ** | −0.73 ** | −0.76 ** | −0.84 ** | −0.84 ** | −0.78 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guadie, M.; Molla, E.; Mekonnen, M.; Cerdà, A. Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physicochemical Properties and Crop Yield Under Rain-Fed Conditions of Northwest Ethiopia. Land 2020, 9, 13. https://doi.org/10.3390/land9010013
Guadie M, Molla E, Mekonnen M, Cerdà A. Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physicochemical Properties and Crop Yield Under Rain-Fed Conditions of Northwest Ethiopia. Land. 2020; 9(1):13. https://doi.org/10.3390/land9010013
Chicago/Turabian StyleGuadie, Mulat, Eyayu Molla, Mulatie Mekonnen, and Artemi Cerdà. 2020. "Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physicochemical Properties and Crop Yield Under Rain-Fed Conditions of Northwest Ethiopia" Land 9, no. 1: 13. https://doi.org/10.3390/land9010013
APA StyleGuadie, M., Molla, E., Mekonnen, M., & Cerdà, A. (2020). Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physicochemical Properties and Crop Yield Under Rain-Fed Conditions of Northwest Ethiopia. Land, 9(1), 13. https://doi.org/10.3390/land9010013