A Bibliometric Analysis on Land Degradation: Current Status, Development, and Future Directions
Abstract
:1. Introduction
2. Data Sources and Research Methods
2.1. Data Sources
2.2. Research Method
3. Results Analysis
3.1. Distribution of Annual Documents
3.2. Analysis of Cited Papers in Land Degradation Research
3.2.1. Analysis of the Annual Development Trend of Citations
3.2.2. Historical Analysis of Citied Papers of Land-Degradation Research
3.3. Analysis of Main Researcher
3.4. Analysis of Distribution Characteristics of Major Research Countries/Regions
3.5. Analysis of Keywords
3.5.1. Analysis of High-Frequency Keywords
3.5.2. Cluster Analysis and Multiple Correspondence Analysis of High-Frequency Keywords
3.6. Evolution Analysis of Themes in the Field of Land Degradation
4. Discussion and Conclusions
4.1. Discussion
4.2. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Country | Articles | Freq | Total Citations | Average Article Citation |
---|---|---|---|---|
CHINA | 239 | 0.15301 | 3074 | 12.86 |
USA | 202 | 0.12932 | 6908 | 34.20 |
UNITED KINGDOM | 115 | 0.07362 | 2938 | 25.55 |
GERMANY | 86 | 0.05506 | 1357 | 15.78 |
AUSTRALIA | 57 | 0.03649 | 1327 | 23.28 |
ITALY | 57 | 0.03649 | 1099 | 19.28 |
SOUTH AFRICA | 53 | 0.03393 | 1173 | 22.13 |
SPAIN | 49 | 0.03137 | 1270 | 25.92 |
INDIA | 46 | 0.02945 | 220 | 4.78 |
JAPAN | 40 | 0.02561 | 625 | 15.62 |
CANADA | 37 | 0.02369 | 1287 | 34.78 |
NETHERLANDS | 34 | 0.02177 | 590 | 17.35 |
FRANCE | 30 | 0.01921 | 690 | 23.00 |
BRAZIL | 27 | 0.01729 | 441 | 16.33 |
TURKEY | 24 | 0.01536 | 208 | 8.67 |
ARGENTINA | 20 | 0.0128 | 205 | 10.25 |
IRAN | 20 | 0.0128 | 190 | 9.50 |
NEW ZEALAND | 20 | 0.0128 | 580 | 29.00 |
POLAND | 20 | 0.0128 | 168 | 8.40 |
THAILAND | 20 | 0.0128 | 209 | 10.45 |
Terms | Frequency | Terms | Frequency |
---|---|---|---|
land degradation | 241 | agriculture | 15 |
degradation | 102 | constructed wetland | 15 |
desertification | 77 | land degradation neutrality | 15 |
remote sensing | 65 | wetland | 15 |
soil erosion | 52 | biodiversity | 14 |
soil degradation | 43 | drylands | 14 |
gis | 38 | grazing | 14 |
erosion | 34 | indicators | 14 |
grassland degradation | 31 | landsat | 14 |
land use | 31 | overgrazing | 14 |
climate change | 29 | rangeland degradation | 14 |
ndvi | 29 | pastoralism | 13 |
deforestation | 27 | restoration | 13 |
land use change | 27 | soil organic carbon | 13 |
soil | 22 | environment | 12 |
wetlands | 22 | forest degradation | 12 |
sustainable land management | 21 | monitoring | 12 |
italy | 20 | unccd | 12 |
biodegradation | 17 | wind erosion | 12 |
china | 16 | ecosystem services | 11 |
Appendix B
References
- Sun, T.; Feng, Z.; Yang, Y.; Lin, Y.; Wu, Y. Research on land resource carrying capacity: Progress and prospects. J. Res. Ecol. 2018, 9, 331–340. [Google Scholar]
- Hammad, A.; Tumeizi, A. Land degradation: Socioeconomic and environmental causes and consequences in the eastern Mediterranean. Land Degrad. Dev. 2012, 23, 216–226. [Google Scholar] [CrossRef]
- Batunacun; Wieland, R.; Lakes, T.; Yunfeng, H.; Nendel, C. Identifying drivers of land degradation in Xilingol, China, between 1975 and 2015. Land Use Pol. 2019, 83, 543–559. [Google Scholar] [CrossRef]
- Reed, M.S.; Buenemann, M.; Atlhopheng, J.; Akhtar-Schuster, M.; Bachmann, F.; Bastin, G.; Bigas, H.; Chanda, R.; Dougill, A.J.; Essahli, W.; et al. Cross-scale monitoring and assessment of land degradation and sustainable land management: A methodological framework for knowledge management. Land Degrad. Dev. 2011, 22, 261–271. [Google Scholar] [CrossRef]
- Salih, A.; Ganawa, E.; Elmahl, A. Spectral mixture analysis (SMA) and change vector analysis (CVA) methods for monitoring and mapping land degradation/desertification in arid and semiarid areas (Sudan), using Landsat imagery. Egypt. J. Remote Sens. Space Sci. 2017, 20, S21–S29. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Deng, X. Rocky land desertification and its driving forces in the karst areas of rural Guangxi, Southwest China. J. Mt. Sci. 2008, 5, 350–357. [Google Scholar] [CrossRef]
- Winslow, M.; Akhtar-Schuster, M.; Martius, C.; Stringer, L.; Thomas, R.; Vogt, J. Special Issue on Understanding Dryland Degradation Trends. Land Degrad. Dev. 2011, 22, 145–312. [Google Scholar] [CrossRef] [Green Version]
- Warrena, A. Land degradation is contextual. Land Degrad. Dev. 2002, 13, 449–459. [Google Scholar] [CrossRef]
- Yue, Y.; Li, M.; Zhu, A.; Ye, X.; Mao, R.; Wan, J.; Dong, J. Land Degradation Monitoring in the Ordos Plateau of China Using an Expert Knowledge and BP-ANN-Based Approach. Sustainability 2016, 8, 1174. [Google Scholar] [CrossRef] [Green Version]
- Kust, G.; Andreeva, O.; Lobkovskiy, V.; Telnova, N. Uncertainties and policy challenges in implementing Land Degradation Neutrality in Russia. Environ. Sci. Policy 2018, 89, 348–356. [Google Scholar] [CrossRef]
- Abdel-Kader, F. Assessment and monitoring of land degradation in the northwest coast region, Egypt using Earth observations data. Egypt. J. Remote Sens. Space Sci. 2018. [Google Scholar] [CrossRef]
- Grinblat, Y.; Kidron, G.; Karnieli, A.; Benenson, I. Simulating land-use degradation in West Africa with the ALADYN model. J. Arid. Environ. 2015, 112, 52–63. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Fresco, L.O. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; Molenaar, C.; De Cleen, M.; Visser, S. Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Hazbavi, Z.; Sadeghi, S.H.R.; Gholamalifard, M. Dynamic analysis of soil erosion-based watershed health. Geogr. Environ. Sustain. 2019, 3, 43–59. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo-Comino, J.; Senciales, J.M.; Cerdà, A.; Brevik, E.C. The multidisciplinary origin of soil geography: A review. Earth-Sci. Rev. 2018, 177, 114–123. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Barrena-González, J.; Pulido-Fernández, M.; Cerdá, A. Estimating Non-Sustainable Soil Erosion Rates in the Tierra de Barros Vineyards (Extremadura, Spain) Using an ISUM Update. Appl. Sci. 2019, 9, 3317. [Google Scholar] [CrossRef] [Green Version]
- Bayat, F.; Monfared, A.B.; Jahansooz, M.R.; Esparza, E.T.; Keshavarzi, A.; Morera, A.G.; Cerdà, A. Analyzing long-term soil erosion in a ridge-shaped persimmon plantation in eastern Spain by means of ISUM measurements. Catena 2019, 183, 104176. [Google Scholar] [CrossRef]
- Lal, R. Tillage effects on soil degradation, soil resilience, soil quality, and sustainability. Soil Tillage Res. 1993, 27, 1–8. [Google Scholar] [CrossRef]
- Thomaz, E.; Luiz, J. Soil loss, soil degradation and rehabilitation in a degraded land area in Guarapuava (Brazil). Land Degrad. Dev. 2010, 23, 72–81. [Google Scholar] [CrossRef]
- Grum, B.; Assefa, D.; Hessel, R.; Woldearegay, K.; Kessler, A.; Ritsema, C.; Geissen, V. Effect of In Situ Water Harvesting Techniques on Soil and Nutrient Losses in Semi-Arid Northern Ethiopia. Land Degrad. Dev. 2016, 28, 1016–1027. [Google Scholar] [CrossRef] [Green Version]
- Mamy, L.; Vrignaud, P.; Cheviron, N.; Perreau, F.; Belkacem, M.; Brault, A. No evidence for effect of soil compaction on the degradation and impact of isoproturon. Environ. Chem. Lett. 2010, 9, 145–150. [Google Scholar] [CrossRef]
- Khaledian, Y.; Kiani, F.; Ebrahimi, S.; Brevik, E.; Aitkenhead-Peterson, J. Assessment and Monitoring of Soil Degradation during Land Use Change Using Multivariate Analysis. Land Degrad. Dev. 2016, 28, 128–141. [Google Scholar] [CrossRef]
- Young, A.; Saunders, I. Rates of surface processes and denudation. In Hillslope Processes; Abrahams, A.D., Ed.; United Kingdom: The Bin-ghamton Symposia in Geomorphology, International Series; John Wiley & Sons: Hoboken, NJ, USA, 1986; Volume 16, pp. 3–27. [Google Scholar]
- Koch, A.; McBratney, A.; Adams, M.; Field, D.; Hill, R.; Crawford, J. Soil Security: Solving the Global Soil Crisis. Glob. Policy 2013, 4, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Weinzierl, T.; Wehberg, J.; Böhner, J.; Conrad, O. Spatial Assessment of Land Degradation Risk for the Okavango River Catchment, Southern Africa. Land Degrad. Dev. 2015, 27, 281–294. [Google Scholar] [CrossRef]
- Hazbavi, Z.; Davudirad, A.A.; Alaei, N. Overview on Land Degradation in The Industrial Shazand Watershed; LAP LAMBERT Academic Publishing: Saarbrücken, Germany, 2019. [Google Scholar]
- Velmourougane, K.; Blaise, D. Soil Health, Crop Productivity and Sustainability Challenges. Sustain. Chall. Agrofood Sector 2017, 21, 509–531. [Google Scholar]
- Ajayi, A. Land degradation and the sustainability of agricultural production in Nigeria: A review. J. Soil Sci. Environ. Manag. 2015, 6, 234–240. [Google Scholar]
- Hoffman, M.; Todd, S. A National Review of Land Degradation in South Africa: The Influence of Biophysical and Socio-economic Factors. J. South. Afr. Stud. 2000, 26, 743–758. [Google Scholar] [CrossRef]
- Bornmann, L.; Marx, W. Critical rationalism and the search for standard (field-normalized) indicators in bibliometrics. J. Informetr. 2018, 12, 598–604. [Google Scholar] [CrossRef] [Green Version]
- Torres, L.; Abraham, E.; Rubio, C.; Barbero-Sierra, C.; Ruiz-Pérez, M. Desertification Research in Argentina. Land Degrad. Dev. 2015, 26, 433–440. [Google Scholar] [CrossRef]
- Escadafal, R.; Barbero-Sierra, C.; Exbrayat, W.; Marques, M.; Akhtar-Schuster, M.; El Haddadi, A.; Ruiz, M. First Appraisal of the Current Structure of Research on Land and Soil Degradation as Evidenced by Bibliometric Analysis of Publications on Desertification. Land Degrad. Dev. 2015, 26, 413–422. [Google Scholar] [CrossRef]
- Zupic, I.; Cater, T. Bibliometric methods in management and organization. Organ. Res. Methods. 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Gagolewski, M. Bibliometric impact assessment with R and the CITAN package. J. Informetr. 2011, 5, 678–692. [Google Scholar] [CrossRef]
- Alavifard, S. Hindex Calculator: H-index Calculator Using Data from a Web of Science (WoS) Citation Report. R PACKAGE version 1.0.0. 2015. Available online: https://CRAN.R-project.org/package=hindexcalculator (accessed on 11 September 2015).
- Uddin, A. scientoText: Text & Scientometric Analytics. R Package Version 0.1. 2016. Available online: https://CRAN.R-project.org/package=scientoText (accessed on 20 July 2016).
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Wessels, K.; Van den Bergh, F.; Scholes, R.J. Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens. Environ. 2012, 125, 10–22. [Google Scholar] [CrossRef]
- Wessels, K.; Prince, S.; Reshef, I. Mapping land degradation by comparison of vegetation production to spatially derived estimates of potential production. J. Arid. Environ. 2008, 72, 1940–1949. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid. Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Tong, C.; Wu, J.; Yong, S.; Yang, J.; Yong, W. A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. J. Arid. Environ. 2004, 59, 133–149. [Google Scholar] [CrossRef]
- Prince, S.; Becker-Reshef, I.; Rishmawi, K. Detection and mapping of long-term land degradation using local net production scaling: Application to Zimbabwe. Remote Sens. Environ. 2009, 113, 1046–1057. [Google Scholar] [CrossRef]
- Symeonakis, E.; Drake, N. Monitoring desertification and land degradation over sub-Saharan Africa. Int. J. Remote Sens. 2004, 25, 573–592. [Google Scholar] [CrossRef]
- Gisladottir, G.; Stocking, M. Land degradation control and its global environmental benefits. Land Degrad. Dev. 2005, 16, 99–112. [Google Scholar] [CrossRef]
- Vogt, J.V.; Safriel, U.; Von Maltitz, G.; Sokona, Y.; Zougmore, R.; Bastin, G.; Hill, J. Monitoring and assessment of land degradation and desertification: Towards new conceptual and integrated approaches. Land Degrad. Dev. 2011, 22, 150–165. [Google Scholar] [CrossRef]
- Contador, J.F.L.; Schnabel, S.; Gutiérrez, A.G.; Fernández, M.P. Mapping sensitivity to land degradation in Extremadura. SW Spain. Land Degrad. Dev. 2009, 20, 129–144. [Google Scholar] [CrossRef]
- Symeonakis, E.; Calvo-Cases, A.; Arnau-Rosalen, E. Land Use Change and Land Degradation in Southeastern Mediterranean Spain. Environ. Manag. 2007, 40, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Ravi, S.; Breshears, D.; Huxman, T.; D’Odorico, P. Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics. Geomorphology 2010, 116, 236–245. [Google Scholar] [CrossRef]
- Pickup, G.; Bastin, G.N.; Chewings, V.H. Identifying trends in land degradation in non-equilibrium rangelands. J. Appl. Ecol. 1998, 35, 365–377. [Google Scholar] [CrossRef]
- Chasek, P.; Safriel, U.; Shikongo, S.; Fuhrman, V. Operationalizing Zero Net Land Degradation: The next stage in international efforts to combat desertification? J. Arid. Environ. 2015, 112, 5–13. [Google Scholar] [CrossRef]
- Kelly, C.; Ferrara, A.; Wilson, G.; Ripullone, F.; Nolè, A.; Harmer, N.; Salvati, L. Community resilience and land degradation in forest and shrubland socio-ecological systems: Evidence from Gorgoglione, Basilicata, Italy. Land Use Pol. 2015, 46, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Marchi, M.; Ferrara, C.; Biasi, R.; Salvia, R.; Salvati, L. Agro-Forest Management and Soil Degradation in Mediterranean Environments: Towards a Strategy for Sustainable Land Use in Vineyard and Olive Cropland. Sustainability 2018, 10, 2565. [Google Scholar] [CrossRef] [Green Version]
- Stringer, L.; Twyman, C.; Thomas, D. Combating Land Degradation through Participatory Means: The Case of Swaziland. AMBIO: A J. Hum. Environ. 2007, 36, 387–393. [Google Scholar] [CrossRef]
- Stringer, L.; Twyman, C.; Thomas, D. Learning to reduce degradation on Swaziland’s arable land: Enhancing understandings of Striga asiatica. Land Degrad. Dev. 2007, 18, 163–177. [Google Scholar] [CrossRef]
- Liu, M.; Dries, L.; Heijman, W.; Huang, J.; Zhu, X.; Hu, Y.; Chen, H. The Impact of Ecological Construction Programs on Grassland Conservation in Inner Mongolia, China. Land Degrad. Dev. 2017, 29, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, J.; Liu, L. Diversification of rural livelihood strategies and its effect on local landscape restoration in the semiarid hilly area of the Loess Plateau, China. Land Degrad. Dev. 2010, 21, 433–445. [Google Scholar] [CrossRef]
- Lakshminarayan, P.; Gassman, P.; Bouzaher, A.; Izaurralde, R. A Metamodeling Approach to Evaluate Agricultural Policy Impact on Soil Degradation in Western Canada. Can. J. Agric. Econ-Rev. Can. Agroecon. 1996, 44, 277–294. [Google Scholar] [CrossRef]
- Zhang, X.; Estoque, R.C.; Xie, H.; Murayama, Y.; Ranagalage, M. Bibliometric analysis of highly cited articles on ecosystem services. PLoS ONE 2019, 14, e0210707. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.; Grainger, A.; Stafford Smith, D.; Bastin, G.; Garcia-Barrios, L.; Fernández, R. Scientific concepts for an integrated analysis of desertification. Land Degrad. Dev. 2011, 22, 166–183. [Google Scholar] [CrossRef] [Green Version]
- Darkoh, M. The nature, causes and consequences of desertification in the drylands of Africa. Land Degrad. Dev. 1998, 9, 1–20. [Google Scholar] [CrossRef]
- Dharumarajan, S.; Bishop, T.; Hegde, R.; Singh, S. Desertification vulnerability index-an effective approach to assess desertification processes: A case study in Anantapur District, Andhra Pradesh, India. Land Degrad. Dev. 2017, 29, 150–161. [Google Scholar] [CrossRef]
- Löw, F.; Navratil, P.; Kotte, K.; Schöler, H.; Bubenzer, O. Remote-sensing-based analysis of landscape change in the desiccated seabed of the Aral Sea—A potential tool for assessing the hazard degree of dust and salt storms. Environ. Monit. Assess. 2013, 185, 8303–8319. [Google Scholar] [CrossRef]
- Sepehr, A.; Zucca, C. Ranking desertification indicators using TOPSIS algorithm. Nat. Hazards 2012, 62, 1137–1153. [Google Scholar] [CrossRef]
- Wang, C.; Wan, S.; Xing, X.; Zhang, L.; Han, X. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biol. Biochem. 2006, 38, 1101–1110. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, H.; Dong, K.; Li, D. Plant Community and Succession in Lowland Grasslands under Saline–Alkali Conditions with Grazing Exclusion. Agron. J. 2017, 109, 2428. [Google Scholar] [CrossRef]
- Akiyama, T.; Kawamura, K. Grassland degradation in China: Methods of monitoring, management and restoration. Grassl. Sci. 2007, 53, 1–17. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion impact on agronomic productivity and environment quality. Crit. Rev. Plant. Sci. 1998, 17, 319–464. [Google Scholar] [CrossRef]
- Moritani, S.; Yamamoto, T.; Andry, H.; Inoue, M.; Kaneuchi, T. Using digital photogrammetry to monitor soil erosion under conditions of simulated rainfall and wind. Aust. J. Soil Res. 2010, 48, 36–42. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Y.; Wang, J.; Cai, C.; Deng, Y.; Xia, J. RUSLE erodibility of heavy-textured soils as affected by soil type, erosional degradation, and rainfall intensity: A field simulation. Land Degrad. Dev. 2018, 29, 408–421. [Google Scholar] [CrossRef]
- Ding, Y. Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks. J. Informetr. 2011, 5, 187–203. [Google Scholar] [CrossRef] [Green Version]
- Mori, Y.; Kuroda, M.; Makino, N. Multiple correspondence analysis. Encycl. Meas. Stat. 2014, 29, 91–116. [Google Scholar]
- Woo, M.; Young, K. Hydrogeomorphology of patchy wetlands in the high arctic, polar desert environment. Wetlands 2003, 23, 291–309. [Google Scholar] [CrossRef]
- Seilheimer, T.; Mahoney, T.; Chow-Fraser, P. Comparative study of ecological indices for assessing human-induced disturbance in coastal wetlands of the laurentian great lakes. Ecol. Indic. 2009, 9, 81–91. [Google Scholar] [CrossRef]
- Jacobs, A.; Kentula, M.; Herlihy, A. Developing an index of wetland condition from ecological data: An example using HGM functional variables from the Nanticoke watershed, USA. Ecol. Indic. 2010, 10, 703–712. [Google Scholar] [CrossRef]
- Richardson, C.; King, R.; Qian, S.; Vaithiyanathan, P.; Stow, C. Estimating ecological thresholds for phosphorus in the everglades. Environ. Sci. Technol. 2008, 41, 8084–8091. [Google Scholar] [CrossRef] [PubMed]
- Lake, P.; Bond, N.; Reich, P. Linking ecological theory with stream restoration. Freshw. Biol. 2007, 52, 597–615. [Google Scholar] [CrossRef]
- Niedermeier, A.; Robinson, J. Hydrological controls on soil redox dynamics in a peat-based, restored wetland. Geoderma 2007, 137, 318–326. [Google Scholar] [CrossRef]
- Datta, S.; Sarkar, K. Threatened access, risk of eviction and forest degradation: Case study of sustainability problem in a remote rural region in india. Environ. Dev. Sustain. 2012, 14, 153–165. [Google Scholar] [CrossRef]
- Salvati, L.; Carlucci, M. Towards sustainability in agro-forest systems? grazing intensity, soil degradation and the socioeconomic profile of rural communities in italy. Ecol. Econ. 2015, 112, 1–13. [Google Scholar] [CrossRef]
- Thompson, I. Biodiversity, ecosystem thresholds, resilience and forest degradation. Unasylva 2011, 62, 25–30. [Google Scholar]
- Lambin, E. Monitoring forest degradation in tropical regions by remote sensing: Some methodological issues. Glob. Ecol. Biogeogr. 1999, 8, 191–198. [Google Scholar] [CrossRef]
- Wang, J.; Sui, L.; Yang, X.; Wang, Z.; Ge, D. Economic Globalization Impacts on the Ecological Environment of Inland Developing Countries: A Case Study of Laos from the Perspective of the Land Use/Cover Change. Sustainability 2019, 11, 3940. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T. Drivers of forest change in Hoa Binh, Vietnam in the context of integration and globalization. Singap. J. Trop. Geogr. 2019, 40, 452–475. [Google Scholar] [CrossRef]
- Li, S.; Verburg, P.; Lv, S.; Wu, J.; Li, X. Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia, China. Reg. Envir. Chang. 2011, 12, 461–474. [Google Scholar] [CrossRef]
- Liu, Y.; Zha, Y.; Gao, J.; Ni, S. Assessment of grassland degradation near Lake Qinghai, West China, using Landsat TM andin situreflectance spectra data. Int. J. Remote Sens. 2004, 25, 4177–4189. [Google Scholar] [CrossRef]
- Gao, Q.; Wan, Y.; Xu, H.; Li, Y.; Jiangcun, W.; Borjigidai, A. Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China. Quat. Int. 2010, 226, 143–150. [Google Scholar] [CrossRef]
- Maitima, J.; Mugatha, S.; Reid, R.; Gachimbi, L.; Majule, A.; Lyaruu, H. The linkages between land use change, land degradation and biodiversity across east africa. Afr. J. Environ. Sci. Technol. 2004, 3, 310–325. [Google Scholar]
- De Valença, A.; Vanek, S.; Meza, K.; Ccanto, R.; Olivera, E. Land use as a driver of soil fertility and biodiversity across an agricultural landscape in the Central Peruvian Andes. Ecol. Appl. 2017, 27, 1138–1154. [Google Scholar] [CrossRef] [PubMed]
- Vityakon, P. Degradation and restoration of sandy soils under different agricultural land uses in northeast Thailand: A review. Land Degrad. Dev. 2007, 18, 567–577. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.; Singh, A. Ecological Restoration of Coal Mine-Degraded Lands in Dry Tropical Climate: What Has Been Done and What Needs to Be Done? Environ. Qual. Manag. 2016, 26, 25–36. [Google Scholar] [CrossRef]
- Martin, L.; Moloney, K.; Wilsey, B. An assessment of grassland restoration success using species diversity components. J. Appl. Ecol. 2005, 42, 327–336. [Google Scholar] [CrossRef]
- Liu, L.; Luo, X. Understanding Farmers’ Perceptions and Behaviors towards Farmland Quality Change in Northeast China: A Structural Equation Modeling Approach. Sustainability 2018, 10, 3345. [Google Scholar] [CrossRef] [Green Version]
- Cowie, A.; Penman, T.; Gorissen, L.; Winslow, M.; Lehmann, J.; Tyrrell, T. Towards sustainable land management in the drylands: Scientific connections in monitoring and assessing dryland degradation, climate change and biodiversity. Land Degrad. Dev. 2011, 22, 248–260. [Google Scholar] [CrossRef]
- Thomas, R.; Reed, M.; Clifton, K.; Appadurai, N.; Mills, A.; Zucca, C. A framework for scaling sustainable land management options. Land Degrad. Dev. 2018, 29, 3272–3284. [Google Scholar] [CrossRef] [Green Version]
- Ghassemi, F.; Jakeman, A.; Nix, H. Salinisation of Land and Water Resources: Human Causes, Extent, Management and Case Studies; CAB International: Wallingford, UK, 1995. [Google Scholar]
- Qadir, M.; Noble, A.; Schubert, S.; Thomas, R.; Arslan, A. Sodicity-induced land degradation and its sustainable management: Problems and prospects. Land Degrad. Dev. 2006, 17, 661–676. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y. Rural land engineering and poverty alleviation: Lessons from typical regions in China. J. Geogr. Sci. 2019, 29, 643–657. [Google Scholar] [CrossRef] [Green Version]
- Cobo, M.; López-Herrera, A.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Soundararajan, K.; Ho, H.; Su, B. Sankey diagram framework for energy and exergy flows. Appl. Energy 2014, 136, 1035–1042. [Google Scholar] [CrossRef]
- Baroudy, A. Monitoring land degradation using remote sensing and GIS techniques in an area of the middle Nile Delta, Egypt. Catena 2011, 87, 201–208. [Google Scholar] [CrossRef]
- Eckert, S.; Hüsler, F.; Liniger, H.; Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid. Environ. 2015, 113, 16–28. [Google Scholar] [CrossRef]
- Schulte, R.; Creamer, R.; Donnellan, T.; Farrelly, N.; Fealy, R.; O’Donoghue, C.; O’hUallachain, D. Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environ. Sci. Policy 2014, 38, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Rey Benayas, J.; Bullock, J. Restoration of Biodiversity and Ecosystem Services on Agricultural Land. Ecosystems 2012, 15, 883–899. [Google Scholar] [CrossRef]
- Requier-Desjardins, M.; Adhikari, B.; Sperlich, S. Some notes on the economic assessment of land degradation. Land Degrad. Dev. 2010, 22, 285–298. [Google Scholar] [CrossRef]
- Zhang, K.; Yu, Z.; Li, X.; Zhou, W.; Zhang, D. Land use change and land degradation in China from 1991 to 2001. Land Degrad. Dev. 2007, 18, 209–219. [Google Scholar] [CrossRef]
- Batunacun; Nendel, C.; Hu, Y.; Lakes, T. Land-use change and land degradation on the Mongolian Plateau from 1975 to 2015-A case study from Xilingol, China. Land Degrad. Dev. 2018, 29, 1595–1606. [Google Scholar] [CrossRef]
- Wu, J.; Gong, Y.; Zhou, J.; Wang, X.; Gao, J.; Yan, A. The governance of integrated ecosystem management in ecological function conservation areas in China. Reg. Envir. Chang. 2013, 13, 1301–1312. [Google Scholar] [CrossRef]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Liniger, H.; Harari, N.; Van Lynden, G.; Fleiner, R.; De Leeuw, J.; Bai, Z.; Critchley, W. Achieving land degradation neutrality: The role of SLM knowledge in evidence-based decision-making. Environ. Sci. Policy 2019, 94, 123–134. [Google Scholar] [CrossRef]
Documents | DOI | Year | LCS | GCS |
---|---|---|---|---|
Evans J, 2004, J Arid Environ [41] | 10.1016/S0140-1963(03)00121-6 | 2004 | 31 | 248 |
Prince SD, 2009, Remote Sens Environ [43] | 10.1016/J.RSE.2009.01.016 | 2009 | 23 | 89 |
Symeonakis E, 2004, Int J Remote Sens [44] | 10.1080/0143116031000095998 | 2004 | 20 | 105 |
Gisladottir G, 2005, Land Degrad Dev [45] | 10.1002/LDR.687 | 2005 | 20 | 90 |
WarrenA, 2002, Land Degrad Dev [8] | 10.1002/LDR.532 | 2002 | 19 | 108 |
Vogt JV, 2011, Land Degrad Dev [46] | 10.1002/LDR.1075 | 2011 | 18 | 81 |
Wessels KJ, 2008, J Arid Environ [40] | 10.1016/J.JARIDENV.2008.05.011 | 2008 | 17 | 63 |
Contador JFL, 2009, Land Degrad Dev [47] | 10.1002/LDR.884 | 2009 | 17 | 49 |
Reed MS, 2011, Land Degrad Dev [4] | 10.1002/LDR.1087 | 2011 | 16 | 63 |
Wessels KJ, 2012, Remote Sens Environ [39] | 10.1016/J.RSE.2012.06.022 | 2012 | 15 | 98 |
Paper | DOI | Year | LCS | GCS |
---|---|---|---|---|
Evans J, 2004, J Arid Environ [41] | 10.1016/S0140-1963(03)00121-6 | 2004 | 31 | 248 |
Tong C, 2004, J Arid Environ [42] | 10.1016/J.JARIDENV.2004.01.004 | 2004 | 13 | 161 |
Ravi S, 2010, Geomorphology [49] | 10.1016/J.GEOMORPH.2009.11.023 | 2010 | 11 | 135 |
Warren A, 2002, Land Degrad Dev [8] | 10.1002/LDR.532 | 2002 | 19 | 108 |
Symeonakis E, 2004, Int J Remote Sens [44] | 10.1080/0143116031000095998 | 2004 | 20 | 105 |
Wessels KJ, 2012, Remote Sens Environ [39] | 10.1016/J.RSE.2012.06.022 | 2012 | 15 | 98 |
Pickup G, 1998, J Appl Ecol [50] | 10.1046/J.1365-2664.1998.00319.X | 1998 | 11 | 90 |
Gisladottir G, 2005, Land Degrad Dev [45] | 10.1002/LDR.687 | 2005 | 20 | 90 |
Prince SD, 2009, Remote Sens Environ [43] | 10.1016/J.RSE.2009.01.016 | 2009 | 23 | 89 |
Vogt JV, 2011, Land Degrad De [46] | 10.1002/LDR.1075 | 2011 | 18 | 81 |
Author | h-Index | g-Index | Mean Citation per Document | Production Year_Start |
---|---|---|---|---|
Salvati L | 15 | 23 | 17 | 2009 |
Stringer LC | 12 | 19 | 19 | 2007 |
Dong SK | 8 | 12 | 17 | 2012 |
Li YY | 8 | 11 | 17 | 2012 |
Dougill AJ | 9 | 10 | 36 | 1999 |
Perini L | 7 | 10 | 20 | 2011 |
Zhang J | 6 | 13 | 15 | 2005 |
Akhtar Schuster M | 7 | 9 | 26 | 2011 |
Bajocco S | 6 | 9 | 21 | 2011 |
Kosmas C | 6 | 9 | 9 | 2000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Zhang, Y.; Wu, Z.; Lv, T. A Bibliometric Analysis on Land Degradation: Current Status, Development, and Future Directions. Land 2020, 9, 28. https://doi.org/10.3390/land9010028
Xie H, Zhang Y, Wu Z, Lv T. A Bibliometric Analysis on Land Degradation: Current Status, Development, and Future Directions. Land. 2020; 9(1):28. https://doi.org/10.3390/land9010028
Chicago/Turabian StyleXie, Hualin, Yanwei Zhang, Zhilong Wu, and Tiangui Lv. 2020. "A Bibliometric Analysis on Land Degradation: Current Status, Development, and Future Directions" Land 9, no. 1: 28. https://doi.org/10.3390/land9010028
APA StyleXie, H., Zhang, Y., Wu, Z., & Lv, T. (2020). A Bibliometric Analysis on Land Degradation: Current Status, Development, and Future Directions. Land, 9(1), 28. https://doi.org/10.3390/land9010028