Spatial and Ecological Farmer Knowledge and Decision-Making about Ecosystem Services and Biodiversity
Abstract
:1. Introduction
1.1. The Malawi Farmer-To-Farmer Agroecology (MAFFA) Intervention
1.2. Participatory Geographic Information Systems (PGIS) and Environmental Decision-Making
1.3. Knowledge Flows, Farm-Level Decisions and Prioritization of Biodiversity Conservation Strategies
2. Materials and Methods
2.1. Study Area Description
2.2. Data Collection and Analysis
2.3. PPGIS Training and Mapping
2.3.1. Mapping of Farm-Level Processes and Practices
2.3.2. Ecosystem Service Use Mapping and Focus Groups
3. Results
3.1. Knowing the Farm: Spatial Perception, Farm Processes and Practices
3.2. Mapping Farm-Level Practices and Processes
3.3. Knowledge of and Priorities for Extension Services
3.4. Ecosystem Service Use Patterns
3.5. Conservation Priorities across Knowledge Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2019. Safeguarding Against Economic Slowdowns and Downturns; FAO: Rome, Italy, 2019. [Google Scholar]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services; IPBES: Bonn, Germany, 2019. [Google Scholar]
- Nyerges, T.L.; Jankowski, P.; Ramsey, K.; Tuthill, D. PPGIS in collaborative water resource decision making: Results of a field experiment. In Proceedings of the 2nd Annual Public Participation in GIS Conference, Portland, OR, USA, 20–22 July 2003. [Google Scholar]
- de Marchi, B. Public participation and risk governance. Sci. Public Policy 2003, 30, 171–176. [Google Scholar] [CrossRef]
- de Oliveira, J.A.P.; Paleo, U.F. Lost in participation: How local knowledge was overlooked in land use planning and risk governance in Tōhoku, Japan. Land Use Policy 2016, 52, 543–551. [Google Scholar] [CrossRef]
- Bowns, C. Facilitating the production of place-based knowledge for participatory community development in rural Pennsylvania. Child. Youth Environ. 2011, 21, 275–292. [Google Scholar]
- Ramirez-Gomez, S.O.I.; Torres-Vitolas, C.A.; Schreckenberg, K.; Honzák, M.; Cruz-Garcia, G.S.; Willcock, S.; Palacios, E.; Pérez-Miñana, E.; Verweij, P.A.; Poppy, G.M. Analysis of ecosystem services provision in the Colombian Amazon using participatory research and mapping techniques. Ecosyst. Serv. 2015, 13, 93–107. [Google Scholar] [CrossRef] [Green Version]
- Butler, C.D.; Oluoch-Kosura, W. Linking future ecosystem services and future human well-being. Ecol. Soc. 2006, 11, 30. [Google Scholar] [CrossRef] [Green Version]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Reyes-García, V.; Aceituno-Mata, L.; Calvet-Mir, L.; Garnatje, T.; Gómez-Baggethun, E.; Lastra, J.J.; Ontillera, R.; Parada, M.; Rigat, M.; Vallès, J.; et al. Resilience of traditional knowledge systems: The case of agricultural knowledge in home gardens of the Iberian Peninsula. Glob. Environ. Chang. 2014, 24, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Abah, J.; Mashebe, P.; Denuga, D.D. Prospect of integrating African indigenous knowledge systems into the teaching of sciences in Africa. Am. J. Educ. Res. 2015, 3, 668–673. [Google Scholar]
- Nalau, J.; Becken, S.; Schliephack, J.; Parsons, J.; Brown, C.; Mackey, B. The role of indigenous and traditional knowledge in ecosystem-based adaptation: A review of the literature and case studies from the Pacific Islands. Weather Clim. Soc. 2018, 10, 851–865. [Google Scholar] [CrossRef]
- McCall, M.K.; Dunn, C.E. Geo-information tools for participatory spatial planning: Fulfilling the criteria for ‘good’governance? Geoforum 2012, 43, 81–94. [Google Scholar] [CrossRef]
- Darvill, R.; Lindo, Z. Quantifying and mapping ecosystem service use across stakeholder groups: Implications for conservation with priorities for cultural values. Ecosyst. Serv. 2015, 13, 153–161. [Google Scholar] [CrossRef]
- Nedkov, S.; Burkhard, B. Flood regulating ecosystem services—Mapping supply and demand, in the Etropole municipality, Bulgaria. Ecol. Indic. 2012, 21, 67–79. [Google Scholar] [CrossRef]
- Nyantakyi-Frimpong, H.; Hickey, C.; Lupafya, E.; Dakishoni, L.; Bezner Kerr, R.; Luginaah, I.; Katundu, M. A farmer-to-farmer agroecological approach to addressing food security in Malawi. People’s Knowl. Ed. Collect. 2017, 121–136. [Google Scholar]
- Moyo, B.H.Z.; Moyo, D.Z. Indigenous knowledge perceptions and development practice in northern Malawi. Geogr. J. 2014, 180, 392–401. [Google Scholar] [CrossRef]
- Mulwafu, W.O. Conservation Song: A History of Peasant-state Relations and the Environment in Malawi, 1860–2000; White Horse Press: Cambridgeshire, UK, 2011. [Google Scholar]
- Bisch, V.K.; Quaresma, V.S.; Teixeira, J.B.; Bastos, A.C. Using GIS to Map Priority Areas for Conservation Versus Mineral Exploration: Territorial Sea of Espírito Santo State, Brazil, Study Case. In International Business, Trade and Institutional Sustainability; Springer: Berlin/Heidelberg, Germany, 2020; pp. 677–689. [Google Scholar]
- Karakuş, C.B.; Demiroğlu, D.; Çoban, A.; Ulutaş, A. Evaluation of GIS-based multi-criteria decision-making methods for sanitary landfill site selection: The case of Sivas city, Turkey. J. Mater. Cycles Waste Manag. 2020, 22, 254–272. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, M.; Hasteer, N. Applications of GIS in Management of Water Resources to Attain Zero Hunger. In Advances in Water Resources Engineering and Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 211–218. [Google Scholar]
- Schlossberg, M.; Brehm, C. Participatory geographic information systems and active transportation: Collecting data and creating change. Transp. Res. Rec. 2009, 2105, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Aitken, S. Public participation, technological discourses and the scale of GIS. In Community Participation and Geographical Information Systems; Taylor & Francis: Abingdon, UK, 2002; pp. 357–366. [Google Scholar]
- Hasala, D.; Supak, S.; Rivers, L. Green infrastructure site selection in the Walnut Creek wetland community: A case study from southeast Raleigh, North Carolina. Landsc. Urban Plan. 2020, 196, 103743. [Google Scholar] [CrossRef]
- Saadallah, D.M. Utilizing participatory mapping and PPGIS to examine the activities of local communities. Alex. Eng. J. 2020. [Google Scholar] [CrossRef]
- Brown, G.; Reed, P.; Raymond, C.M. Mapping place values: 10 lessons from two decades of public participation GIS empirical research. Appl. Geogr. 2020, 116, 102156. [Google Scholar] [CrossRef]
- Brown, G.; Reed, P. Validation of a forest values typology for use in national forest planning. For. Sci. 2000, 46, 240–247. [Google Scholar]
- Aberley, D. Public Participation GIS (PPGIS) Guiding Principles. Available online: http://deathstar.rutgers.edu/ppgis/PPGISPrinciples.htm (accessed on 23 July 2020).
- Schlossberg, M.; Shuford, E. Delineating “Public” and ”Participation” in PPGIS. Urban Reg. Inf. Syst. Assoc. (URISA) J. 2005, 6, 15–26. [Google Scholar]
- Kpienbaareh, D.; Luginaah, I. After the flames then what? Exploring the linkages between wildfires and household food security in the northern Savannah of Ghana. Int. J. Sustain. Dev. World Ecol. 2019, 26, 612–624. [Google Scholar] [CrossRef]
- Kyem, P.A.K. Promoting local community participation in forest management through a PPGIS application in Southern Ghana. In Community Participation and Geographical Information Systems; CRC Press: Boca Raton, FL, USA, 2002; pp. 218–231. [Google Scholar]
- Miladan, N.; Ariani, F.; Pertiwi, S.N.I.; Setiawan, R.; Handayani, K.N. Land Use Vulnerability towards the Flood Risk in Surakarta City. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2019; Volume 280, p. 1011. [Google Scholar]
- Zhong, F. Design of public participation geographic information system for geologic hazard warning. Manag. Eng. 2011, 3, 1838–5745. [Google Scholar] [CrossRef]
- Brown, G.G. Donovan, S. Escaping the national forest planning quagmire: Using public participation GIS to assess acceptable national forest use. J. For. 2013, 111, 115–125. [Google Scholar]
- Wolf, I.D.; Wohlfart, T.; Brown, G.; Lasa, A.B. The use of public participation GIS (PPGIS) for park visitor management: A case study of mountain biking. Tour. Manag. 2015, 51, 112–130. [Google Scholar] [CrossRef]
- Tulloch, D. Public participation GIS (PPGIS). Encycl. Geogr. Inf. Sci. 2008, 1, 352–355. [Google Scholar]
- Aggens, L. Identifying different levels of public interest in participation. In US Army Corps of Engineers, Engineer Institute for Water Ressources. Public Involvement Techniques. A Reader of Ten Years Experience at the Institute for Water Resources; US Army Corps of Engineers: Alexandria, VA, USA, 1983; pp. 193–198. [Google Scholar]
- Arnstein, S.R. A ladder of citizen participation. J. Am. Inst. Plann. 1969, 35, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.; Riley, M.; Spees, J. Knowledge flows: Farmers’ social relations and knowledge sharing practices in ‘Catchment Sensitive Farming. Land Use Policy 2020, 90, 104254. [Google Scholar] [CrossRef]
- Reed, M.S.; Evely, A.C.; Cundill, G.; Fazey, I.; Glass, J.; Adele, L.; Newig, J.; Parrish, B.; Prell, C.; Raymond, C.; et al. What is social learning? Ecol. Soc. 2010, 15. [Google Scholar] [CrossRef]
- Cundill, G.; Rodela, R. A review of assertions about the processes and outcomes of social learning in natural resource management. J. Environ. Manag. 2012, 113, 7–14. [Google Scholar] [CrossRef]
- Muro, M.; Jeffrey, P. A critical review of the theory and application of social learning in participatory natural resource management processes. J. Environ. Plan. Manag. 2008, 51, 325–344. [Google Scholar] [CrossRef]
- Riley, M. Experts in their fields: Farmer—Expert knowledges and environmentally friendly farming practices. Environ. Plan. A 2008, 40, 1277–1293. [Google Scholar] [CrossRef]
- McKenzie, A.J.; Emery, S.B.; Franks, J.R.; Whittingham, M.J. Landscape-scale conservation: Collaborative agri-environment schemes could benefit both biodiversity and ecosystem services, but will farmers be willing to participate? J. Appl. Ecol. 2013, 50, 1274–1280. [Google Scholar] [CrossRef]
- Franks, J.R. An assessment of the landscape-scale dimensions of land based environmental management schemes offered to farmers in England. Land Use Policy 2019, 83, 147–159. [Google Scholar] [CrossRef]
- Franks, J.R.; Emery, S.B. Incentivising collaborative conservation: Lessons from existing environmental Stewardship Scheme options. Land Use Policy 2013, 30, 847–862. [Google Scholar] [CrossRef]
- Riley, M.; Sangster, H.; Smith, H.; Chiverrell, R.; Boyle, J. Will farmers work together for conservation? The potential limits of farmers’ cooperation in agri-environment measures. Land Use Policy 2018, 70, 635–646. [Google Scholar] [CrossRef]
- Stock, P.V.; Forney, J.; Emery, S.B.; Wittman, H. Neoliberal natures on the farm: Farmer autonomy and cooperation in comparative perspective. J. Rural Stud. 2014, 36, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Government of Malawi. Population and Housing Census; National Statistics Office: Zomba, Malawi, 2018.
- Gama, A.C.; Mapemba, L.D.; Masikat, P.; Tui, S.H.-K.; Crespo, O.; Bandason, E. Modeling Potential Impacts of Future Climate Change in Mzimba District, Malawi, 2040–2070: An Integrated Biophysical and Economic Modeling Approach; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2014; Volume 8. [Google Scholar]
- Mzimba District Planning Department. Mzimba District Socioeconomic Profile; Mzimba District Assembly: Mzimba, Malawi, 2008. [Google Scholar]
- Chinsinga, B. The Political Economy of Agricultural Policy Processes in Malawi: A Case Study of the Fertilizer Subsidy Programme; Working Paper 39; Future Agricultures Consortium: Brighton, UK, 2012. [Google Scholar]
- FAO. Country Fact Sheet on Food and Angriculture Policy Trends (Malawi); FAO: Rome, Italy, 2015. [Google Scholar]
- Gilbert, R.A.; Komwa, M.K.; Benson, T.D.; Sakala, W.D. A Comparison of Best-Bet Soil Fertility Technologies for Maize Grown by Malawian Smallholders: A Research Report of the Results of the Nationwide 1998/99 and 1999/2000 on-Farm Cropping System Verification Trial by Action Group I, Maize Productivity Task F.; Malawi Press: Lilongwe, Malawi, 2002. [Google Scholar]
- Mungai, L.M.; Snapp, S.; Messina, J.P.; Chikowo, R.; Smith, A.; Anders, E.; Richardson, R.B.; Li, G. Smallholder farms and the potential for sustainable intensification. Front. Plant Sci. 2016, 7, 1720. [Google Scholar] [CrossRef] [Green Version]
- Zulu, L.C. The forbidden fuel: Charcoal, urban woodfuel demand and supply dynamics, community forest management and woodfuel policy in Malawi. Energy Policy 2010, 38, 3717–3730. [Google Scholar] [CrossRef]
- Shumba, L.; Dakishoni, L.; Lupafya, E.; Tchuwa, F.; Luginaah, I.; Kansanga, M.; Kpienbaareh, D.; Bermel, C.; Hickey, C.; Bezner Kerr, R. Mapping Agroecological, Nutrition, Gender Equity Practices and Knowledge Systems Amongst Smallholder Farmers; Final Report to CCRP; McKnight Foundation: Minneapolis, Minnesota, 2020. [Google Scholar]
- Eimer, M. Multisensory integration: How visual experience shapes spatial perception. Curr. Biol. 2004, 14, R115–R117. [Google Scholar] [CrossRef]
- Hatfield, G.C. The Natural and the Normative: Theories of Spatial Perception from Kant to Helmholtz; MIT Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Saldaña, J. The Coding Manual for Qualitative Researchers; Sage: Thousand Oaks, CA, USA, 2015. [Google Scholar]
- Canavosio-Zuzelski, R.; Agouris, P.; Doucette, P. A photogrammetric approach for assessing positional accuracy of OpenStreetMap© roads. ISPRS Int. J. Geo-Inf. 2013, 2, 276–301. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 50–60. [Google Scholar] [CrossRef]
- Nachar, N. The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution. Tutor. Quant. Methods Psychol. 2008, 4, 13–20. [Google Scholar] [CrossRef]
- Millennium Ecosystem. Assessment. Ecosystems and Human Well-Being; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Congalton, R.G.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Lowery, D.R.; Morse, W.C. A qualitative method for collecting spatial data on important places for recreation, livelihoods, and ecological meanings: Integrating focus groups with public participation geographic information systems. Soc. Nat. Resour. 2013, 26, 1422–1437. [Google Scholar] [CrossRef]
- Beggs, D.S.; Jongman, E.C.; Hemsworth, P.E.; Fisher, A.D. Lame cows on Australian dairy farms: A comparison of farmer-identified lameness and formal lameness scoring, and the position of lame cows within the milking order. J. Dairy Sci. 2019, 102, 1522–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerslake, J.I.; Amer, P.R.; O’Neill, P.L.; Wong, S.L.; Roche, J.R.; Phyn, C.V.C. Economic costs of recorded reasons for cow mortality and culling in a pasture-based dairy industry. J. Dairy Sci. 2018, 101, 1795–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AMLR. Biodiversity Conservation Strategies. 2020. Available online: https://www.naturalresources.sa.gov.au/adelaidemtloftyranges/plants-and-animals/native-plants-animals-and-biodiversity/biodiversity-conservation-strategies. (accessed on 12 June 2020).
- Piponiot, C.; Rutishauser, E.; Derroire, G.; Putz, F.E.; Sist, P.; West, T.A.P.; Descroix, L.; Guedes, M.C.; Coronado, E.N.H.; Kanashiro, M.; et al. Optimal strategies for ecosystem services provision in Amazonian production forests. Environ. Res. Lett. 2019, 14, 124090. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Laestadius, L.; Turubanova, S.; Yaroshenko, A.; Thies, C.; Smith, W.; Zhuravleva, I.; Komarova, A.; Minnemeyer, S.; et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 2017, 3, e1600821. [Google Scholar] [CrossRef] [Green Version]
- Rusch, A.; Bommarco, R.; Ekbom, B. Conservation biological control in agricultural landscapes. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2017; Volume 81, pp. 333–360. [Google Scholar]
- Micha, E.; Fenton, F.; Daly, K.; Kakonyi, G.; Ezzati, G.; Moloney, T.; Thornton, S. The complex pathway towards farm-level sustainable intensification: An exploratory network analysis of stakeholders’ knowledge and perception. Sustainability 2020, 12, 2578. [Google Scholar] [CrossRef] [Green Version]
- Bezner Kerr, R.; Nyantakyi-Frimpong, H.; Dakishoni, L.; Lupafya, E.; Shumba, L.; Luginaah, I.; Snapp, S.S. Knowledge politics in participatory climate change adaptation research on agroecology in Malawi. Renew. Agric. Food Syst. 2018, 33, 238–251. [Google Scholar] [CrossRef] [Green Version]
- Franzel, S.; Kiptot, E.; Degrande, A. Farmer-To-Farmer Extension: A Low-Cost Approach for Promoting Climate-Smart Agriculture. In The Climate-Smart Agriculture Papers; Springer: Berlin/Heidelberg, Germany, 2019; pp. 277–288. [Google Scholar]
- Kiptot, E.; Franzel, S.; Hebinck, P.; Richards, P. Sharing seed and knowledge: Farmer to farmer dissemination of agroforestry technologies in western Kenya. Agrofor. Syst. 2006, 68, 167–179. [Google Scholar] [CrossRef]
- de Bruyn, L.L.; Jenkins, A.; Samson-Liebig, S. Lessons learnt: Sharing soil knowledge to improve land management and sustainable soil use. Soil Sci. Soc. Am. J. 2017, 81, 427–438. [Google Scholar] [CrossRef]
- Snapp, S.S.; Blackie, M.J.; Gilbert, R.A.; Kerr, R.B.; Kanyama-Phiri, G.Y. Biodiversity can support a greener revolution in Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 20840–20845. [Google Scholar] [CrossRef] [Green Version]
- Mills, J.; Gaskell, P.; Ingram, J.; Dwyer, J.; Reed, M.; Short, C. Engaging farmers in environmental management through a better understanding of behaviour. Agric. Hum. Values 2017, 34, 283–299. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Gemmill-Herren, B.; D’Annolfo, R.; Graeub, B.E.; Cunningham, S.A.; Breeze, T.D. Farming approaches for greater biodiversity, livelihoods, and food security. Trends Ecol. Evol. 2017, 32, 68–80. [Google Scholar] [CrossRef]
- Valencia, V.; West, P.; Sterling, E.J.; García-Barrios, L.; Naeem, S. The use of farmers’ knowledge in coffee agroforestry management: Implications for the conservation of tree biodiversity. Ecosphere 2015, 6, 1–17. [Google Scholar] [CrossRef]
- Schneiderhan-Opel, J.; Bogner, F.X. The relation between knowledge acquisition and environmental values within the scope of a biodiversity learning module. Sustainability 2020, 12, 2036. [Google Scholar] [CrossRef] [Green Version]
- Berkes, F.; Colding, J.; Folke, C. Rediscovery of traditional ecological knowledge as adaptive management. Ecol. Appl. 2000, 10, 1251–1262. [Google Scholar] [CrossRef]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Kangalawe, R.Y.M.; Liwenga, E.T. Livelihoods in the wetlands of Kilombero Valley in Tanzania: Opportunities and challenges to integrated water resource management. Phys. Chem. Earth, Parts A/B/C 2005, 30, 968–975. [Google Scholar] [CrossRef]
- Kremen, C.; Merenlender, A.M. Landscapes that work for biodiversity and people. Science 2018, 362, eaau6020. [Google Scholar] [CrossRef] [Green Version]
- Kremen, C.; Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecol. Soc. 2012, 17, 40. [Google Scholar] [CrossRef]
- Phalan, B.; Onial, M.; Balmford, A.; Green, R.E. Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science 2011, 6047, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ren, J.; Wen, Y. Spatial Perception of Urban Forests by Citizens Based on Semantic Differences and Cognitive Maps. Forests 2020, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Peano, C.; Massaglia, S.; Ghisalberti, C.; Sottile, F. Pathways for the Amplification of Agroecology in African Sustainable Urban Agriculture. Sustainability 2020, 12, 2718. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, C.I.; Altieri, M.A. Pathways for the amplification of agroecology. Agroecol. Sustain. Food Syst. 2018, 42, 1170–1193. [Google Scholar] [CrossRef]
- McGowan, J.; Beaumont, L.J.; Smith, R.J.; Chauvenet, A.L.M.; Harcourt, R.; Atkinson, S.C.; Mittermeier, J.C.; Esperon-Rodriguez, M.; Baumgartner, J.B.; Beattie, A.; et al. Conservation prioritization can resolve the flagship species conundrum. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jones-Walters, L.; Çil, A. Biodiversity and stakeholder participation. J. Nat. Conserv. 2011, 19, 327–329. [Google Scholar] [CrossRef]
- van Berkel, D.B.; Verburg, P.H. Spatial quantification and valuation of cultural ecosystem services in an agricultural landscape. Ecol. Indic. 2014, 37, 163–174. [Google Scholar] [CrossRef]
- Martínez-Harms, M.J.; Balvanera, P. Methods for mapping ecosystem service supply: A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 17–25. [Google Scholar] [CrossRef]
- Chowa, C.; Garforth, C.; Cardey, S. Farmer experience of pluralistic agricultural extension, Malawi. J. Agric. Educ. Ext. 2013, 19, 147–166. [Google Scholar] [CrossRef]
- Ragasa, C.; Mazunda, J.; Kadzamira, M. The Impact of Agricultural Extension Services within the Context of Heavily-subsidized Input System: The Case in Malawi. Draft IFPRI Discussion Paper; IFPRI: Washington, DC, USA, 2015. [Google Scholar]
- Dunn, C.E. Participatory GIS—A people’s GIS? Prog. Hum. Geogr. 2007, 31, 616–637. [Google Scholar] [CrossRef]
- Brown, G.; Kyttä, M. Key issues and research priorities for public participation GIS (PPGIS): A synthesis based on empirical research. Appl. Geogr. 2014, 46, 122–136. [Google Scholar] [CrossRef]
1 | In the study context, a village area typically comprises several smaller villages with its catchment area. |
Variable | Edundu Area | Thimalala Area | ||||
---|---|---|---|---|---|---|
Education | ||||||
No Education | 1 | - | 1 | - | - | - |
Primary | 21 | 9 | 30 | 14 | 8 | 22 |
Secondary | 1 | 3 | 4 | 7 | 4 | 11 |
Crop cultivated (rainy season farms n = 11) | ||||||
Beans | 5 | 2 | 7 | 2 | - | 2 |
Bambara beans | 1 | 1 | 2 | - | 3 | 3 |
Cassava | 1 | - | 1 | 2 | 2 | 4 |
Groundnut | 5 | 4 | 9 | 5 | 2 | 7 |
Maize | 13 | 5 | 18 | 6 | 3 | 9 |
Pigeon peas | 1 | 1 | 2 | - | 1 | 1 |
Pumpkin | 1 | 1 | 2 | - | - | - |
Soya | 4 | 2 | 6 | 5 | 2 | 7 |
Sweet potato | - | 1 | 1 | - | 1 | 1 |
Tomato | - | 1 | 1 | - | - | - |
Finger millet | - | - | - | 1 | - | - |
Cropping system | ||||||
Monocropping | 10 | 3 | 13 | 16 | 10 | 26 |
Intercropping | 12 | 10 | 22 | 5 | 2 | 7 |
Statistic | Edundu | Thimalala |
---|---|---|
Multiple R | 0.77 | 0.02 |
R Square | 0.59 | 0.0003 |
Adjusted R Square | 0.57 | −0.03 |
p-Value | <0.0001 *** | 0.93 |
Standard Error | 0.29 | 0.75 |
Observations | 35 | 33 |
Category | Farm Area Estimation Method | Number of Farms | Mean Rank | Sum of Ranks | Null Hypothesis | Mann–Whitney U | Asymptotic. (2-Tailed) | Decision |
---|---|---|---|---|---|---|---|---|
Agroecology | Farmers | 35 | 35.73 | 1250.5 | Agroecology farmers’ estimates of farm area are the same as GNSS estimate | 604.5 | 0.925 | Retain the null hypothesis. |
GNSS | 35 | 35.27 | 1234.5 | |||||
Total | 70 | |||||||
Non-Agroecology | Farmers’ | 33 | 39.39 | 1300 | Non-agroecology farmers’ estimates of farm area are the same as GNSS estimate | 350 | 0.012 *** | Reject the null hypothesis |
GNSS | 33 | 27.61 | 911 | |||||
Total | 66 |
Description of Crop Condition | Edundu | Thimalala | ||
---|---|---|---|---|
Insect Identification and Treatment | Response | % Total | Response | % Total |
No infestation | 6 | 10.71 | 12 | 30.00 |
Infested | 29 | 51.79 | 23 | 57.50 |
Organic treatment | 16 | 28.57 | 0 | - |
Chemical treatment | 5 | 8.93 | 5 | 12.50 |
Total | 56 | 100 | 40 | 100 |
Plant Condition | ||||
Healthy | 32 | 86.49 | 26 | 54.17 |
Water-stressed | - | - | 1 | 2.08 |
Discoloration | - | - | 2 | 4.17 |
Stressed (due to insects) | 2 | 5.41 | 16 | 33.33 |
Stunted | 3 | 8.11 | 3 | 6.25 |
Total | 37 | 100.00 | 48 | 100.00 |
Edundu Area | Thimalala Area | ||||||
---|---|---|---|---|---|---|---|
Insect | Function | No. of Responses | % of Total | Insect | Function | No. of Responses | % of Total |
Fall armyworms | Destructive | 19(19) | 28.36 | Fall armyworms | Destructive | 12(5) | 29.26 |
Stem borers | Destructive | 17(17) | 25.37 | Stemborer | Destructive | 7(4) | 17.07 |
Flea beetles | Destructive | 9(9) | 13.43 | Flea beetles | Destructive | 7(7) | 17.07 |
Butterflies | Pollination | 2(2) | 2.99 | Butterflies | None | 1(1) | 2.44 |
Bees | Pollination | 5(5) | 7.46 | Bees | Food/harmful | 3(3) | 7.32 |
Grasshopper | Destructive | 8(8) | 11.94 | Grasshopper | Destructive | 5(5) | 12.20 |
Black millipede | Destructive | 2(1) | 2.99 | Black millipede | Destructive | 1(?) | 2.44 |
Rats | Destructive | 2(2) | 2.99 | Rats | Destructive | 1(1) | 2.44 |
Termites | Destructive | 2(1) | 2.99 | White worms | Destructive | 2(?) | 4.88 |
Blister beetles | Destructive | 1(1) | 1.48 | Green worms | Destructive | 2(?) | 4.88 |
Total | 67 | 100 | 41 | 100 |
Edundu Area | Thimalala Area | ||||
---|---|---|---|---|---|
Access to extension officer(s) | Respondents | Respondents | |||
Yes | 3 | 3 | |||
Services acquired | Training on vegetable growing skills Crop caring Different advice agricultural practices | Demonstration at field office Application of manure to MH33 Information on farming different crop types | |||
Ranking of extension service needs by farmers | |||||
Service | Response | % of Total | Service | Response | % of Total |
Provision of improved seed | 18 | 21.69 | Provision of free fertilizers | 23 | 31.51 |
Education/information on farm practices | 12 | 14.46 | Education/information on farm practices | 16 | 21.92 |
Training on manure/pesticide preparation | 10 | 12.05 | Provision of free Seed | 13 | 17.81 |
Information on new farming methods | 9 | 10.84 | Provision of agro-chemicals | 6 | 8.22 |
Provision of fertilizers | 8 | 9.64 | Food aid | 5 | 6.85 |
Research, innovation/technology sharing | 8 | 9.64 | Training on manure/pesticide preparation | 3 | 4.11 |
Market information | 7 | 8.43 | Information on new farming methods | 3 | 4.11 |
Provision of agro-chemicals | 6 | 7.23 | Problem identification | 2 | 2.74 |
Pest and disease management training | 3 | 3.61 | Market information | 2 | 2.74 |
Information on tree planting | 2 | 2.41 | Pest and disease management training | 0 | 0 |
Food aid | 0 | 0 | Research, innovation/technology sharing | 0 | 0 |
Total responses | 83 | 100 | 73 | 100 |
Edundu Area | Thimalala Area | ||||||
---|---|---|---|---|---|---|---|
Ecosystem Service Indicator | ES Category | No. of Participants | Total Polygon | Mean Area (ha) | No. of Participants | Total Polygon | Mean Area (ha) |
Hunting/trapping wildlife | Provisioning | 11 | 23 | 10.64 | 17 | 30 | 25.15 |
Wild edible plants (for food) | Provisioning | 18 | 76 | 2.55 | 15 | 34 | 9.43 |
Wood (fuelwood and charcoal) | Provisioning | 16 | 82 | 1.33 | 13 | 96 | 6.44 |
Natural medicines | Provisioning | 3 | 9 | 2.25 | 2 | 12 | 9.83 |
Dimba/dry season farming | Provisioning | 11 | 34 | 0.92 | 12 | 37 | 1.62 |
Food (food crops) | Provisioning | 18 | 103 | 3.21 | 19 | 112 | 4.99 |
Aesthetic landscapes | Cultural | 2 | 5 | 15.50 | 6 | 22 | 10.95 |
Scientific/educational landscapes | Cultural | 1 | 4 | 14.35 | 2 | 9 | 31.72 |
Erosion regulation | Regulating | 13 | 53 | 0.34 | 11 | 27 | 4.75 |
Edundu Area | Thimalala Area | |||
---|---|---|---|---|
Ecosystem Service | No. of Overlapping ES | Total Area of Overlap (ha) | No. of Overlapping ES | Total Area of Overlap (ha) |
Hunting/wildlife trapping | 4 | 66.13 | 7 | 240.58 |
Wild edible plants (for food) | 6 | 41.97 | 6 | 96.27 |
Wood (fuelwood and charcoal) | 6 | 25.44 | 6 | 137.16 |
Natural medicines | 4 | 9.37 | 6 | 33.90 |
Dimba/dry season farming | 2 | 0.22 | 2 | 2.58 |
Food (food crops) | 2 | 0.17 | 4 | 3.60 |
Aesthetic landscape | 4 | 33.87 | 5 | 154.02 |
Scientific/educational landscapes | 3 | 1.14 | 7 | 210.81 |
Erosion prevention | 7 | 0.92 | 5 | 12.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kpienbaareh, D.; Bezner Kerr, R.; Luginaah, I.; Wang, J.; Lupafya, E.; Dakishoni, L.; Shumba, L. Spatial and Ecological Farmer Knowledge and Decision-Making about Ecosystem Services and Biodiversity. Land 2020, 9, 356. https://doi.org/10.3390/land9100356
Kpienbaareh D, Bezner Kerr R, Luginaah I, Wang J, Lupafya E, Dakishoni L, Shumba L. Spatial and Ecological Farmer Knowledge and Decision-Making about Ecosystem Services and Biodiversity. Land. 2020; 9(10):356. https://doi.org/10.3390/land9100356
Chicago/Turabian StyleKpienbaareh, Daniel, Rachel Bezner Kerr, Isaac Luginaah, Jinfei Wang, Esther Lupafya, Laifolo Dakishoni, and Lizzie Shumba. 2020. "Spatial and Ecological Farmer Knowledge and Decision-Making about Ecosystem Services and Biodiversity" Land 9, no. 10: 356. https://doi.org/10.3390/land9100356
APA StyleKpienbaareh, D., Bezner Kerr, R., Luginaah, I., Wang, J., Lupafya, E., Dakishoni, L., & Shumba, L. (2020). Spatial and Ecological Farmer Knowledge and Decision-Making about Ecosystem Services and Biodiversity. Land, 9(10), 356. https://doi.org/10.3390/land9100356