Three Decades of Changes in Brazilian Municipalities and Their Food Production Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Average Soybean Farm Size, Labor, and Production Values
2.2. Crop Diversity
2.3. Statistical and Spatiotemporal Analysis
3. Results
3.1. Changes in Soybean Farm Sizes and Spatiotemporal Patterns
3.2. Yield, Crop Diversity, Production Value, and Rural Labor Dynamics
3.3. Synergies and Trade-Offs Across Space and Time
4. Discussion
4.1. Trade-Offs in the Food System
4.2. Synergies in the Food System
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Samberg, L.H.; Gerber, J.S.; Ramankutty, N.; Herrero, M.; West, P.C. Subnational distribution of average farm size and smallholder contributions to global food production. Environ. Res. Lett. 2016, 11, 124010. [Google Scholar] [CrossRef]
- Maes, M.J.A.; Jones, K.E.; Toledano, M.B.; Milligan, B.M. Mapping synergies and trade-offs between urban ecosystems and sustainable development goals. Environ. Sci. Policy 2019, 93, 181–188. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Transforming Food and Agriculture to Achieve the SDGs: 20 Interconnected Actions to Guide Decision-Makers. 2018. Available online: http://www.fao.org/news/story/en/item/1139028/icode/ (accessed on 22 September 2020).
- Rada, N.E.; Fuglie, K.O. New perspectives on farm size and productivity. Food Policy 2019, 84, 147–152. [Google Scholar] [CrossRef]
- Silva, R.F.B.; Batistella, M.; Moran, E.; Celidonio, O.L.M.; Millington, J.D.A. The Soybean Trap: Challenges and Risks for Brazilian Producers. Front. Sustain. Food Syst. 2020, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Chan-kang, C. Is small beautiful? Farm size, productivity, and poverty in Asian agriculture. Agric. Econ. 2005, 32, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Rada, N.; Helfand, S.; Magalhães, M. Agricultural productivity growth in Brazil: Large and small farms excel. Food Policy 2019, 84, 176–185. [Google Scholar] [CrossRef]
- Zhang, A.; Hochman, Z.; Horan, H.; Navarro, J.G.; Das, B.T.; Waldner, F. Socio-psychological and management drivers explain farm level wheat yield gaps in Australia. Agron. Sustain. Dev. 2019, 39, 10. [Google Scholar] [CrossRef] [Green Version]
- Klapwijk, C.J.; Wijk, M.T.; Rosenstock, T.S.; Asten, P.J.A.; Thornton, P.K.; Giller, K.E. Analysis of trade-offs in agricultural systems: Current status and way forward. Curr. Opin. Environ. Sustain. 2014, 6, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Meyfroidt, P. Mapping farm size globally: Benchmarking the smallholders debate. Environ. Res. Lett. 2017, 12, 031002. [Google Scholar] [CrossRef]
- Porter, M.E. Location, competition, and economic development: Local clusters in a global economy. Econ. Dev. Q. 2000, 14, 15–34. [Google Scholar] [CrossRef]
- Macdonald, J.M. Consolidation, Concentration, and Competition in the Food System. Farm. Policy J. 2017, 14, 25–35. [Google Scholar]
- Meyfroidt, P.; Chowdhury, R.R.; Bremond, A.D.; Ellis, E.C.; Erb, K.; Filatova, T.; Garrett, R.D.; Grove, J.M.; Heinimann, A.; Kuemmerle, T.; et al. Middle-range theories of land system change. Glob. Environ. Chang. 2018, 53, 52–67. [Google Scholar] [CrossRef]
- Abson, D.J. The Economic Drivers and Consequences of Agricultural Specialization. Agroecosyst. Divers. 2019. [Google Scholar] [CrossRef]
- Ricciardi, V.; Ramankutty, N.; Mehrabi, Z.; Jarvis, L. How much of the world’s food do smallholders produce? Glob. Food Secur. 2018, 17, 64–72. [Google Scholar] [CrossRef]
- Garrett, R.D.; Rausch, L.L. Green for gold: Social and ecological tradeoffs influencing the sustainability of the Brazilian soy industry. J. Peasant Stud. 2015, 326. [Google Scholar] [CrossRef] [Green Version]
- Herzberger, A.; Chung, M.G.; Kapsar, K.; Frank, K.A.; Liu, J. Telecoupled Food Trade affects Pericoupled Trade and Intracoupled Production. Sustainability 2019, 11, 2908. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.F.B.; Batistella, M.; Dou, Y.; Moran, E.; Torres, S.M.; Liu, J. The Sino-Brazilian Telecoupled Soybean System and Cascading Effects for the Exporting Country. Land 2017, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Lowder, S.K.; Skoet, J.; Raney, T. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Cai, M.; Wang, F.; Winkler, J.A.; Connor, T.; Chung, M.G.; Zhang, J.; Yang, H.; Xu, Z.; Tang, Y.; et al. Synergies and tradeoffs among Sustainable Development Goals across boundaries in a metacoupled world. Sci. Total Environ. 2020, 751, 141749. [Google Scholar] [CrossRef] [PubMed]
- Cord, A.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schröter-Schlaack, C.; et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Trade-Offs in Future Food Systems—Consumer Perspectives. Food Futures Panel. 2017. Available online: www.dialoguebydesign.co.uk (accessed on 22 September 2020).
- Tälle, M.; Wiréhn, L.; Ellström, D.; Hjerpe, M.; Huge-Brodin, M.; Jensen, P.; Lindström, T.; Neset, T.; Wennergren, U.; Metson, G. Synergies and Trade-Offs for Sustainable Food Production in Sweden: An Integrated Approach. Sustainability 2019, 11, 601. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, S.; Zougmoré, R.; Wollenberg, E.; Thornton, P.K.; Nelson, G.; Kristjanson, P.; Kinyangi, J.; Jarvis, A.; Hansen, J.; Challinor, A.J.; et al. Climate change, agriculture and food security: Global partnership to link research and action for low-income agricultural producers and consumers. Curr. Opin. Environ. Sustain. 2011, 4, 128–133. [Google Scholar] [CrossRef] [Green Version]
- DeFries, R.; Rosenzweig, C. Toward a whole-landscape approach for sustainable land use in the tropics. Proc. Natl. Acad. Sci. USA 2010, 107, 19627–19632. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–442. [Google Scholar] [CrossRef] [Green Version]
- IBGE (Brazilian Institute of Geography and Statistics). Pesquisa Nacional por Amostra de Domicílios Contínua; IBGE: Rio de Janeiro, Brazil, 2020; 108p. [Google Scholar]
- Aguilar, J.; Gramig, G.G.; Hendrickson, J.R.; Archer, D.W.; Forcella, F.; Liebig, M.A. Crop Species Diversity Changes in the United States: 1978–2012. PLoS ONE 2015, 10, e0136580. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Santana, A.C.; Homma, A.K.O. The cost of production and profitability of soybeans in the municipalities of Santar’em and Belterra, State of Pará. Acta Amaz. 2013, 43, 23–32. [Google Scholar]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Campanhola, C.; Pandey, S. Sustainable Food and Agriculture, 2nd ed.; FAO and Elsevier: London, UK, 2019. [Google Scholar]
- Tittonell, P.; Wijk, M.T.; Rufino, M.C.; Vrugt, J.A.; Giller, K.E. Analysing trade-offs in resource and labour allocation by smallholder farmers using inverse modelling techniques: A case-study from Kakamega distrisct, western Kenya. Agric. Syst. 2007, 95, 76–95. [Google Scholar] [CrossRef]
- Haase, D.; Schwarz, N.; Strohbach, M.; Kroll, F.; Seppelt, R. Synergies, Trade-offs, and Losses of Ecosystem Services in Urban Regions: An Integrated Multiscale Framework Applied to the Leipzig-halle Region. Ecol. Soc. 2012, 17, 22. [Google Scholar] [CrossRef]
- Lemaire, G.; Franzluebbers, A.; Carvalho, P.C.F.; Dedieu, B. Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Fader, M.; Cranmer, C.; Lawford, R.; Engel-Cox, J. Toward and Understanding of Synergies and Trade-offs Between Water, Energy, and Food SDG Targets. Front. Environ. Sci. 2018, 6, 112. [Google Scholar] [CrossRef]
- Mier, M.; Cacho, T.G. Soybean agri-food systems dynamics and the diversity of farming styles on the agricultural frontier in Mato Grosso, Brazil. J. Peasant Stud. 2015, 43, 419–441. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Food and Agricultural Data. Available online: http://www.fao.org/faostat/en/#data (accessed on 22 September 2020).
- Empinotti, V. Beyond the dualities: A nuanced understanding of Brazilian soybean producers. Food Secur. 2015, 7, 1165–1174. [Google Scholar] [CrossRef]
- Chaddad, F.R.; Jank, M.S. The Evolution of Agricultural Policies and Agribusiness Development in Brazil. Choices 2014, 21, 81–90. [Google Scholar]
- Jepson, W. Private agricultural colonization on a Brazilian frontier, 1970–1980. Hist. Geogr. 2006, 32, 839–863. [Google Scholar] [CrossRef]
- Valencia, V.; Wittman, H.; Blesh, J. Structuring Markets for Resilient Farming Systems. Agron. Sustain. Dev. 2019, 39, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jepson, W.; Brannstrom, C.; Filippi, A. Access regimes and regional land change in the Brazilian Cerrado, 1972–2002. Ann. Am. Assoc. Geogr. 2009, 100, 87–111. [Google Scholar] [CrossRef]
- Galvão, J.A.C. Colonização e cidades em Mato Grosso. In XXVII Simpósio Nacional de História, ANPUH/Natal; ANPUH: Natal, Brazil, 2013; Available online: http://www.snh2013.anpuh.org/site/anaiscomplementares#J (accessed on 27 October 2020).
- Jia, F.; Peng, S.; Green, J.; Koh, L.; Chen, X. Soybean Supply Chain Management: A systematic literature review. J. Clean. Prod. 2020, 225, 120254. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Batistella, M.; Silva, R.F.B.; Moran, E. Soy expansion and socioeconomic development in municipalities of Brazil. Land 2017, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, R. US—China trade war imperils Amazon rainforest. Nature 2018, 567, 452. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, C.M.; Hawthorne, P.L.; Miteva, D.A.; Baumggarten, L.; Sochi, K.; Matsumoto, M.; Evans, J.; Polasky, S.; Hamel, P.; Vieira, E.M.; et al. Optimizing land use decision-making to sustain Brazilian agricultural profits, biodiversity and ecosystem services. Biol. Conserv. 2016, 204, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Vargas, M.C.; Oliveira, B.F. Estratégias de diversificação em áreas de cultivo de tabaco no Vale do Rio Pardo: Uma análise comparativa. Rev. Econ. Sociol. Rural 2012, 50, 175–192. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, P.D.; Martins, A.G.; Moura, A.D.D. The economics of post-harvest loss: A case study of the new large soybean-maize producers in tropical Brazil. Food Secur. 2015, 7, 875–888. [Google Scholar] [CrossRef]
- Fuganti, E.N.; Carvalho Júnior, L.C. Caracterização da cadeia produtiva da soja em Santa Catarina. Rev. Cad. Econ. 2015, 19, 5–29. [Google Scholar]
- Cutforth, L.B.; Francis, C.A.; Lynne, G.D.; Mortensen, D.A.; Eskridge, K.M. Factors affecting farmers’ crop diversity decisions: An integrated approach. Am. J. Altern. Agric. 2001, 16, 168–176. [Google Scholar] [CrossRef]
- Martin, A.R.; Cadotte, M.W.; Isaac, M.E.; Milla, R.; Vile, D.; Violle, C. Regional and global shifts in crop diversity through the Anthropocene. PLoS ONE 2019. [Google Scholar] [CrossRef] [Green Version]
- Gotelli, N.J.; Chao, A. Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In Encyclopedia of Biodiversity; Levin, S.A., Ed.; Academic Press: Waltham, MA, USA, 2013; pp. 195–211. [Google Scholar]
- Vennet, B.V.; Schneider, S.; Dessein, J. Different farming styles behind the homogenous soy production in southern Brazil. J. Peasant Stud. 2015, 43, 396–418. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of Spatial Association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Cumming, G.; Fidler, F.; Vaux, D. Error bars in experimental biology. J. Cell Biol. 2007, 177, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Sen, A.K. Peasants and Dualism with or without Surplus Labor. J. Political Econ. 1966, 74, 425–450. [Google Scholar] [CrossRef]
- le Polain de Waroux, Y.; Baumann, M.; Gasparri, N.I.; Gavier-Pizarro, G.; Godar, J.; Kuemmerle, T.; Müller, R.; Vázquez, F.; Volante, J.N.; Meyfroidt, P. Rents, Actors, and the Expansion of Commodity Frontiers in the Gran Chaco. Ann. Am. Assoc. Geogr. 2018, 108, 204–225. [Google Scholar] [CrossRef]
- Nolte, K.; Ostermeier, M. Labour Market effect of large-scale agricultural investment: Conceptual consideration and estimated employment effects. World Dev. 2017, 98, 430–446. [Google Scholar] [CrossRef]
- Leite, A.C. Análise da concentração fundiária no Brasil: Desafios e limites do uso do índice de Gini. Nera 2018, 43, 10–28. [Google Scholar]
- Uthes, S.; Kelly, E.; König, H.J. Farm-level indicators for crop landscape diversity derived from agricultural beneficiaries data. Ecol. Indic. 2020, 108, 105725. [Google Scholar] [CrossRef]
- CONAB (National Company of Food and Supply). A produtividade da Soja: Análise e perspectivas. In Compêndio de Estudos CONAB; CONAB: Brasilia, Brazil, 2017. [Google Scholar]
- Helfand, S.M.; Levine, E.S. Farm size and the determinants of productive efficiency in the Brazilian Center-West. Agric. Econ. 2007, 31, 214–249. [Google Scholar] [CrossRef]
- Roy, E.D.; Willig, E.; Richards, P.D.; Martinelli, L.A.; Ferraz, F. Soil phosphorus sorption capacity after three decades of intensive fertilization in Mato Grosso, Brazil. Agric. Ecosyst. Environ. 2017, 249, 206–214. [Google Scholar] [CrossRef]
- IBGE (Brazilian Institute of Geography and Statistics). Indicadores de Desenvolvimento Sustentável: Brasil 2015; IBGE: Rio de Janeiro, Brazil, 2015; 348p. [Google Scholar]
- Nerini, F.F.; Tomei, J.; To, L.S.; Bisaga, I.; Parikh, P.; Black, M.; Borrion, A.; Spataru, C.; Broto, V.C.; Anandarajah, G.; et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 2017, 3, 10–15. [Google Scholar] [CrossRef] [Green Version]
- McCollum, D.L.; Gomez, E.; Busch, S.; Pachauri, S.; Parkinson, S.; Rogelj, J. Connecting the sustainable development goals by their energy inter-linkages. Environ. Res. Lett. 2018, 13, 033006. [Google Scholar] [CrossRef]
- Balbino, L.C.; Cordeiro, L.A.M.; Porfírio-da-Silva, V.; Moraes, A.; Martínez, G.B.; Alvarenga, R.C.; Kichel, A.N.; Fontaneli, R.S.; Santos, H.P.D.; Franchini, J.C.; et al. Evolução tecnológica e arranjos produtivos de sistemas de integração lavoura-pecuária-floresta no Brasil. Pesqui. Agropecu. Bras. 2011, 46. [Google Scholar] [CrossRef] [Green Version]
- Peltonen-Sainio, P.; Jauhianinen, L.; Sorvali, J. Diversity of high-latitude agricultural landscapes and crop rotations: Increased, decreased or back and forth? Agric. Syst. 2017, 154, 25–33. [Google Scholar] [CrossRef]
- Halberg, N.; Peramaiyan, P.; Treyer, S. Eco-functional intensification and food security: Synergy or Compromise? Sustain. Agric. Res. 2015, 4, 3. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Bueren, E.T.L.; Ceccarelli, S.; Grando, S.; Upadhyaya, H.D.; Ortiz, R. Diversifying Food Systems in the Pursuit of Sustainable Food Production and Healthy Diets. Trends Plant Sci. 2017, 22, 842–856. [Google Scholar] [CrossRef] [Green Version]
- Berkes, F. Shifting Perspectives on Resource Management: Resilience and the Reconceptualization of ‘Natural Resources’ and ‘Management’. Marit. Stud. 2010, 9, 13–40. [Google Scholar]
- Khanal, A.R. Interlinked diversification strategies: Evidences from US farm business household. J. Agribus. Dev. Emerg. Econ. 2018, 10, 0144. [Google Scholar] [CrossRef]
IBGE Code | Variable Name | Variable Description | Source * | Year |
---|---|---|---|---|
5457 | AgriProd | Planted and harvested area, production, yield (kg ha−1), and production value for each annual and perennial crop | IBGE/PAM | 1995/2006/2017 |
6899 | Wage17 | Wages paid for rural workers in 1 agricultural year (total of 1 year) | IBGE/AC | 2017 |
6615 | RuralP17 | Number of rural properties producing per each annual crop | IBGE/AC | 2017 |
6887 | Laborers17 | Number of rural laborers in annual and perennial crops | IBGE/AC | 2017 |
820 | Wage06 | Wages paid for rural workers in 1 agricultural year (total of 1 year) | IBGE/AC | 2006 |
949 | RuralP06 | Number of rural properties producing per each annual crop | IBGE/AC | 2006 |
956 | Laborers06 | Number of rural laborers in annual and perennial crops | IBGE/AC | 2006 |
492 | RuralP95 | Number of informants producing per each annual crop | IBGE/AC | 1995 |
321 | Laborers95 | Number of rural laborers in annual and perennial crops | IBGE/AC | 1995 |
SoyMFarm | Average soybean farm size | Derived | 1995/2006/2017 | |
CropPerLaborer | Hectares of cropland per laborer | Derived | 1995/2006/2017 | |
ProdValue | Production value (R$) per hectare | Derived | 1995/2006/2017 | |
SDI | Shannon diversity index for crops | Derived | 1995/2006/2017 | |
ENC | Effective number of crops | Derived | 1995/2006/2017 | |
SoyMFarmClass | Municipalities grouped in categories according the average soybean farm size | Derived | 1995/2006/2017 | |
WageAverage | Average spent as wage for 1 agricultural year with each rural labor | Derived | 2006/2017 |
Year | Average Soybean Farm Size (Hectares) | Soybean Yield (kg.ha−1) | ENC | ProdValue (R$ 1000/ha) | CropPerLaborer (ha/Laborer) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
1995 | 140 | 331 | 2033 | 574 | 3.5 | 1 | 0.6 | 0.4 | 19.7 | 22.5 |
2006 | 404 | 853 | 2252 | 560 | 3.3 | 1 | 1.5 | 1 | 34 | 61.6 |
2017 | 346 | 674 | 3266 | 544 | 3.2 | 1.2 | 4.7 | 2.6 | 34 | 45.1 |
Farm Size Class | |||||||
---|---|---|---|---|---|---|---|
Variable | Year | A | B | C | D | E | F |
Soybean yield | 1995 | 1928 | 2160 | 2107 | 2167 | 2400 | 2439 |
(kg.ha−1) | 2006 | 2096 | 2280 | 2309 | 2406 | 2445 | 2515 |
2017 | 3349 | 3309 | 3200 | 3097 | 3121 | 3068 | |
ENC | 1995 | 3.5 | 3.5 | 3.3 | 3 | 2.9 | 2.4 |
2006 | 3.3 | 3.5 | 3.3 | 3.2 | 2.8 | 2.2 | |
2017 | 3.4 | 3.2 | 3.2 | 2.8 | 2.6 | 2.6 | |
ProdValue | 1995 | 0.6 | 0.7 | 0.6 | 0.5 | 0.5 | 0.4 |
(R$ 1000/ha) | 2006 | 1.4 | 1.7 | 1.7 | 1.5 | 1.3 | 1 |
2017 | 5.2 | 5.2 | 4.4 | 3.6 | 3.1 | 2.9 | |
CropPerLaborer | 1995 | 7 | 22.1 | 35.7 | 56.2 | 54.7 | 33 |
(ha/laborer) | 2006 | 11 | 23.3 | 37.9 | 50.8 | 88.7 | 164.8 |
2017 | 13.6 | 28.6 | 41.7 | 61.6 | 84.1 | 99.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bicudo da Silva, R.F.; Batistella, M.; Millington, J.D.A.; Moran, E.; Martinelli, L.A.; Dou, Y.; Liu, J. Three Decades of Changes in Brazilian Municipalities and Their Food Production Systems. Land 2020, 9, 422. https://doi.org/10.3390/land9110422
Bicudo da Silva RF, Batistella M, Millington JDA, Moran E, Martinelli LA, Dou Y, Liu J. Three Decades of Changes in Brazilian Municipalities and Their Food Production Systems. Land. 2020; 9(11):422. https://doi.org/10.3390/land9110422
Chicago/Turabian StyleBicudo da Silva, Ramon Felipe, Mateus Batistella, James D. A. Millington, Emilio Moran, Luiz A. Martinelli, Yue Dou, and Jianguo Liu. 2020. "Three Decades of Changes in Brazilian Municipalities and Their Food Production Systems" Land 9, no. 11: 422. https://doi.org/10.3390/land9110422
APA StyleBicudo da Silva, R. F., Batistella, M., Millington, J. D. A., Moran, E., Martinelli, L. A., Dou, Y., & Liu, J. (2020). Three Decades of Changes in Brazilian Municipalities and Their Food Production Systems. Land, 9(11), 422. https://doi.org/10.3390/land9110422