Mapping of the Land Cover Changes in High Mountains of Western Carpathians between 1990–2018: Case Study of the Low Tatras National Park (Slovakia)
Abstract
:1. Introduction
- to find out the character of landscape structure based on a comparative analysis of land cover maps from 1990 and 2018 using the CORINE land cover (CLC) data;
- to assess land cover flows based on CORINE land cover change layers in period 1990–2000, 2000–2006, 2006–2012, 2012–2018;
- to describe landscape structure changes based upon landscape metrics calculations.
- What type of landscape changes prevailed in the Low Tatras National Park during the research period?
- What was the intensity of landscape changes in the observed period in the Low Tatras National Park?
- How do the land cover changes influence the ecological attributes of a national park?
- What were the causes and processes (drivers) of landscape changes in the Low Tatras National Park within the monitored period?
2. Materials and Methods
2.1. Territory of Interest
2.2. Data
2.3. Methods
- LCF1 Urban land management—internal transformation of urban areas
- LCF2 Urban residential sprawl—land uptake by residential buildings altogether with associated services and urban infrastructure (classified in CLC111 and 112) from non-urban land (extension over sea may happen)
- LCF3 Sprawl of economic sites and infrastructures—sprawl of economic sites and infrastructures: Land uptake by new economic sites and infrastructures (including sport and leisure facilities) from non-urban land (extension over sea may happen)
- LCF4 Agriculture internal conversions—conversion between farming types. Rotation between annual crops is not monitored by CLC
- LCF5 Conversion from forested and natural land to agriculture—extension of agriculture land use
- LCF6 Withdrawal of farming—farmland abandonment and other conversions from agriculture activity in favor of forests or natural land
- LCF7 Forests creation and management—creation of forests and management of the forest territory by felling and replanting. Due to the CLC cycle of 10 years, only one part of the shrubs is tall enough to be identified as trees. In order to take stock of all recent plantations, conversions of semi-natural land to CLC324 are conventionally recorded as afforestation (although some natural colonization may take place)
- LCF8 Water bodies creation and management—creation of dams and reservoirs and possible consequences of the management of the water resource on the water surface area
- LCF9 Changes of land cover due to natural and multiple causes—changes in land cover resulting from natural phenomena with or without any human influence.
- Number of patches (NumP)—a simple indicator that indicates the total increase, respectively, a decrease in the number of patches in all categories in the observed area.
- Mean patch size (MPS)—average patch size. This indicator shows the disintegration of the spatial structure of the landscape.
- Total edge (TE)—an indicator that represents the sum of perimeters of all patches.
- Area weighted mean shape index (AWMSI)—an index that reflects the shape complexity of patches. The index is equal to 1 if the patches have a circular or square shape. The index value increases if the shape is irregular. It differs from the “mean shape index” metric by assigning different weights to individual patches (the larger the area, the higher the weight).
- Shannon’s diversity index (SDI)—an index that determines landscape diversity calculated as the proportions of the land cover classes across the total area. SDI increases by the number of patches in the landscape feature categories. The higher the index value, the higher the landscape heterogeneity, i.e., the landscape is more abundant in the number of categories of landscape features and the number of patches [60]. The index will be equal to 0 when there is only one patch in the landscape and increases as the number of patch types or the proportional distribution of patch types increases.
- Shannon’s evenness index (SEI)—an index that determines the distribution of patches and their abundance. A proportional reduction in the number of patches and categories also causes a reduction in the overall balance. The landscape metrics balance within the observed landscape is better when the value of this index converges to one.
3. Results
3.1. Land Cover of Low Tatras National Park in 1990 and 2018
3.2. Land Cover Flows in Low Tatras National Park between 1990 and 2018
3.3. Assessment of Land Cover Changes Based on Landscape Metrics
4. Discussion
- To stop the deterioration of habitat status, in particular, for the habitats of European and national importance, maintain their current state, and then take steps towards a measurable improvement. Therefore, the National Park Administration should give priority to the detailed mapping of the habitat status, complete an overall map of the National Park and provide operational data for decision-making by state administration authorities, in a particular state and private forest managers;
- To map in detail the natural forests and primeval forests relics of the National Park in the shortest possible time to ensure that their area extent is maintained and to gradually increase their extent of areas with a potential for natural forest development;
- Prevent further fragmentation of forests and encourage their regeneration while ensuring compensatory mechanisms to cover the loss of forest management and favoring alternative uses of high nature value forests;
- Implement measures to preserve and improve habitats of European importance, particularly in Natura 2000 sites and habitats of national importance within the National Park;
- Improve the effectiveness of communication between the environmental and agricultural departments;
- Define or revise the nature and landscape conservation objectives in the National Park in more detail.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fiorini, L.; Zullo, F.; Marucci, A.; Romano, B. Land take and landscape loss: Efect of uncontrolled urbanization in Southern Italy. J. Urban Manag. 2019, 8, 42–56. [Google Scholar] [CrossRef]
- Tesfamariam, Z.; Nyssen, J.; Ghebreyohannes, T.; Tafere, K.; Zenebe, A.; Poesen, J.; Deckers, S.; Van Eetvelde, V. Transhumance as a driving force of landscape change in the marginal grabens of northern Ethiopia. Singap. J. Trop. Geogr. 2019, 40, 476–495. [Google Scholar] [CrossRef]
- Mendoza-Ponce, A.; Corona-Nunez, R.O.; Galicia, L.; Kraxner, F. Identifying hotspots of land use cover change under socioeconomic and climate change scenarios in Mexico. AMBIO 2019, 48, 336–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kedra, M.; Szczepanek, R. Land cover transitions and changing climate conditions in the Polish Carpathians: Assessment and management implications. Land Degrad. Dev. 2019, 30, 1040–1051. [Google Scholar] [CrossRef]
- Duan, C.; Shi, P.L.; Song, M.H.; Zhang, X.Z.; Zong, N.; Zhou, C.P. Land Use and Land Cover Change in the Kailash Sacred Landscape of China. Sustainability 2019, 11, 1788. [Google Scholar] [CrossRef] [Green Version]
- Hreško, J.; Bugár, G.; Boltižiar, M.; Kohút, F. The dynamics of recent geomorphic processes in the alpine zone of the Tatra Mountains. Geogr. Pol. 2008, 81, 53. [Google Scholar]
- Hreško, J.; Boltižiar, M.; Bugár, G. Spatial structures of geomorphic processes in high-mountain landscape of the Belianske Tatry Mts. Ekológia Bratislava 2003, 22, 341. [Google Scholar]
- Lieskovský, J.; Kaim, D.; Balász, P.; Boltižiar, M.; Chmiel, M.; Grabska, E.; Király, G.; Konkoly-Gyuró, E.; Kozak, J.; Antalová, K.; et al. Historical land use dataset of the Carpathain region (1819–1980). J. Maps 2018, 14, 644. [Google Scholar] [CrossRef] [Green Version]
- Petrovič, F.; Muchová, Z. The potential of the landscape with dispersed settlement (Case study Čadca town). In Book Series: Public Recreation and Landscape Protection—With Sense Hand in Hand…, 1st ed.; Fialová, J., Ed.; Mendel University: Brno, Czech Republic, 2013; pp. 199–204. [Google Scholar]
- Boltižiar, M.; Olah, B.; Gallay, I.; Gallayová, Z. Transformation of the Slovak cultural landscape and its recent trends. In Proceedings of the 17th International Symposium on Landscape Ecology: Landscape and Landscape Ecology, Nitra, Slovakia, 27–29 May 2015; Halada, Ľ., Bača, A., Boltižiar, M., Eds.; Institute of Landscape Ecology: Bratislava, Slovakia, 2016; pp. 57–67. [Google Scholar]
- Ivanová, M.; Michaeli, E.; Boltižiar, M.; Fazekašová, D. The analysis of changes ecological stability of landscape in the contrasting region of the mountain range and a lowland. In Book Series: International Multidisciplinary Scientific GeoConference-SGEM, 1st ed.; STEF92 Technology Ltd.: Sofia, Bulgaria, 2013; pp. 925–938. [Google Scholar]
- Muchová, Z.; Tarniková, M. Land cover change and its influence on the assessment of the ecological stability. Appl. Ecol. Environ. Res. 2018, 16, 2169. [Google Scholar] [CrossRef]
- Sweetman, B.M.; Cissell, J.R.; Rhine, S.; Steinberg, M.K. Land Cover Changes on Ambergris Caye, Belize: A Case Study of Unregulated Tourism Development. Prof. Geogr. 2019, 71, 123–134. [Google Scholar] [CrossRef]
- Stankov, U.; Klaučo, M.; Dragicevic, V.; Vujicic, M.D.; Solarevic, M. Assessing land-use changes in tourism area on the example of Cajetina municipality (Serbia). Geogr. Pannonica 2016, 20, 105–113. [Google Scholar] [CrossRef]
- Raczkowska, Z. Human impact in the Tatra mountains. Cuad. de Investig. Geogr. 2019, 45, 219–244. [Google Scholar] [CrossRef] [Green Version]
- Krtička, L.; Tomčíková, I.; Rakytová, I. Development versus conservation: Evaluation of landscape structure changes in Demanovska Valley, Slovakia. J. Mt. Sci. 2018, 15, 1153–1170. [Google Scholar] [CrossRef]
- Li, S.; Yang, H.; Lacayo, M.; Liu, J.; Lei, G. Impacts of Land-Use and Land-Cover Changes on Water Yield: A Case Study in Jing-Jin-Ji, China. Sustainability 2018, 10, 960. [Google Scholar] [CrossRef] [Green Version]
- Ozsahin, E.; Duru, U.; Eroglu, I. Land Use and Land Cover Changes (LULCC), a Key to Understand Soil Erosion Intensities in the Maritsa Basin. Water 2018, 10, 335. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Nehren, U.; Rahman, S.A.; Meyer, M.; Rimal, B.; Aria Seta, G.; Baral, H. Modeling Land Use and Land Cover Changes and Their Effects on Biodiversity in Central Kalimantan, Indonesia. Land 2018, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Reyes, U.J.; Niño-Maldonado, S.; Barrientos-Lozano, L.; Treviño-Carreón, J. Assessment of Land Use-Cover Changes and Successional Stages of Vegetation in the Natural Protected Area Altas Cumbres, Northeastern Mexico, Using Landsat Satellite Imagery. Remote Sens. 2017, 9, 712. [Google Scholar] [CrossRef] [Green Version]
- Millones, M.; Rogan, J.; Li, B.T.; Parmentier, B.; Harris, R.C.; Griffith, D.A. Fire Data as Proxy for Anthropogenic Landscape Change in the Yucatán. Land 2017, 6, 61. [Google Scholar] [CrossRef] [Green Version]
- Muchová, Z.; Konc, Ľ.; Petrovič, F. Land plots valuation in land consolidation in Slovakia: A need for a new approach. Int. J. Strateg. Prop. Manag. 2018, 22, 372. [Google Scholar] [CrossRef]
- Havlíček, M.; Skokanová, H.; Dostál, I.; Vymazalová, M.; Pavelková, R.; Petrovič, F. The consequences of establishing military training areas for land use development-A case study of Libava, Czech Republic. Land Use Policy 2018, 73, 84. [Google Scholar] [CrossRef]
- Pechanec, V.; Machar, I.; Pohanka, T.; Opršal, Z.; Petrovič, F.; Švajda, J.; Šálek, Ľ.; Chobot, K.; Filippovová, J.; Cudlín, P. Effectiveness of Natura 2000 system for habitat types protection: A case study from the Czech Republic. Nat. Conversat. Bulg. 2018, 24, 21. [Google Scholar] [CrossRef]
- Gómez, J.N.; Loures, L.; Castanho, R.A.; Cabezas, J.; Fernández-Pozo, L.; Lousada, S.; Escórcio, P. Assessing Land-Use Changes in European Territories: A Retrospective Study from 1990 to 2012. In Land Use—Assessing the Past, Envisioning the Future, 1st ed.; Loures, L.C., Ed.; InTech: London, UK, 2018; pp. 243–581. [Google Scholar] [CrossRef]
- Biely, A.; Bezák, V.; Bujnovský, A.; Vozárová, A.; Klinec, A.; Miko, O.; Halouzka, R.; Vozár, J.; Beňuška, P.; Hanzel, V.; et al. Explanations to the Geological Map of the Low Tatras 1: 50,000; GÚDŠ: Bratislava, Slovakia, 1992. (In Slovak) [Google Scholar]
- Biely, A.; Bezák, V. Explanations to the Geological Map of the Low Tatras 1: 50,000; Geologická služba Slovenskej republiky; Vydavateľstvo Dionýza Štúra: Bratislava, Slovakia, 1997. (In Slovak) [Google Scholar]
- Jasík, M.; Kaliská, Z.; Kaliský, M.; Galfyová, Z.; Hubková, M.; Dzúriková, Ľ.; Hančin, M.; Kuna, F. Low Tatras National Park, Yearbook 2004, 1st ed.; Správa Národného parku Nízke Tatry: Liptovský Hrádok, Slovakia, 2004; 61p. (In Slovak) [Google Scholar]
- Turis, P.; Jasík, M. Low Tatras, Natural Values, History and Current State of Protection of the Area, 1st ed.; Správa národného parku Nízke Tatry: Banská Bystrica, Slovakia, 2007; 116p. (In Slovak) [Google Scholar]
- Atlas of Landscape of Slovakia; Ministerstvo životného prostredia SR: Bratislava, Slovakia, 2002; CD ROM. (In Slovak)
- Soták, Š.; Borsányi, P. Climate monitoring of SHMÚ in the Low Tatras. In Príroda Nízkych Tatier 1, Zborník Referátov a Posterov z Konferencie Usporiadanej pri Príležitosti 25. Výročia Vyhlásenia Národného parku Nízke Tatry; Jasík, K., Kochjarová, S., Eds.; Štátna ochrana prírody Slovenskej republiky, Správa Národného parku Nízke Tatry: Banská Bystrica, Slovakia, 2004; pp. 275–282. (In Slovak) [Google Scholar]
- Hronček, P. Environmental history of the forest landscape in the Štiavnička valley in the Low Tatras. Quaest. Rerum Nat. 2015, 2, 91–115. (In Slovak) [Google Scholar]
- Madlen, J. Constitutio Maximiliana. In Sborník prác Lesníckeho a Drevárskeho Múzea v Antole; Osveta: Martin, Slovakia, 1962; pp. 9–45. [Google Scholar]
- Lukniš, M.; Plesník, P. Lowlands, Basins and Mountains of Slovakia, 1st ed.; Osveta: Bratislava, Slovakia, 1961; 134p. (In Slovak) [Google Scholar]
- SSR Government Regulation No. 119/1978 Coll. Available online: https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/1978/119/19781019.html (accessed on 13 January 2020).
- Decree No. 120/1978. Available online: https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/1978/120/vyhlasene_znenie.html (accessed on 13 January 2020).
- Act of the National Council of the Slovak Republic, No. 287/1994 Coll. on Nature and Landscape Protection. Available online: https://www.noveaspi.sk/products/lawText/1/42354/1/2/zakon-c-287-1994-zz-o-ochrane-prirody-a-krajiny (accessed on 13 January 2020).
- Act of the National Council of the Slovak Republic No. 543/2002 Coll. On Nature and Landscape Protection. Available online: https://www.zakonypreludi.sk/zz/2002-543 (accessed on 13 January 2020).
- Burkovský, J. History of the Low Tatras National Park. In Príroda Nízkych Tatier 1, Zborník Referátov a Posterov z Konferencie Usporiadanej pri Príležitosti 25. Výročia Vyhlásenia Národného Parku Nízke Tatry; Jasík, K., Kochjarová, S., Eds.; Štátna Ochrana Prírody Slovenskej Republiky, Správa Národného parku Nízke Tatry: Banská Bystrica, Slovakia, 2004; pp. 3–10. (In Slovak) [Google Scholar]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Büttner, G.; Kosztra, B.; Soukup, T.; Sousa, A.; Langanke, T. CLC2018 Technical Guidelines; EEA: Copenhagen, Denmark, 2017; Available online: https://land.copernicus.eu/user-corner/technical-library/clc2018technicalguidelines_final.pdf (accessed on 20 October 2020).
- Rodríguez-Rodríguez, D.; Martínez-Vega, J.; Echavarría, P. A twenty year GIS-based assessment of environmental sustainability of land use changes in and around protected areas of a fast developing country: Spain. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 169–179. [Google Scholar] [CrossRef]
- Pontius, R.G.; Shusas, E.; McEachern, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Stott, A.; Haines-Young, E. Linking land cover, intensity of use and botanical diversity in an accounting framework in the UK. In Environmental Accounting in Theory and Practice, 1st ed.; Uno, K., Bartelmus, P., Eds.; Kluwer: Dordrecht, The Netherlands, 1998; pp. 245–260. [Google Scholar]
- Feranec, J.; Jaffrain, G.; Soukup, J.; Hazeu, G.W. Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data. Appl. Geogr. 2010, 10, 285–301. [Google Scholar] [CrossRef]
- Perdigao, V.; Christensen, S. The LACOAST Atlas: Land Cover Changes in European Coastal Zones; Joint Research Centre: Milan, Italy, 2000. [Google Scholar]
- Köhler, R.; Olschofsky, K.; Gerard, F. Land Cover Change in Europe from the 1950′ies to 2000; Institute for Worldforestry, University of Hamburg: Hamburg, Germany, 2004. [Google Scholar]
- Haines-Young, R.; Weber, J.L. Land Account for Europe 1990–2000. Towards Integrated Land and Ecosystem Accounting. EEA Report No 11/2006. 2006. Available online: http://www.eea.europa.eu/publications/eea_report_2006_11 (accessed on 14 October 2019).
- Boltižiar, M. Analysis of development of heterogenity and chosen qualities of the spots of structure of alpine land (on example of chosen model land of High Tatra). Folia Geogr. 2010, 16, 105–124. [Google Scholar]
- Gajdoš, A.; Klaučo, M.; Škodová, M. Ecological significance of the forest ecotone vegetation in the Starohorské Hills. Geogr. J. 2012, 64, 253–266. [Google Scholar]
- Olahová, J.; Vojtek, M.; Boltižiar, M. Application of geoinaromation technologies for the assesment of landscape structure using landscape-ecological indexes (case study of the Handlová landslide). Tájökológiai 2013, 11, 351–366. [Google Scholar]
- Kumar, M.; Denis, D.M.; Singh, S.K.; Szabó, S.; Suryavanshi, S. Landscape metrics for assessment of land cover change and fragmentation of a heterogeneous watershed. Remote Sens. Appl. Soc. Environ. 2018, 10, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Basommi, B.P.; Mustak, S.K.; Srivastava, P.K.; Szabo, S. Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India. Geocarto Int. 2017, 33, 1202–1222. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Ma, W.Y.A.; Wang, J. Land-use change analysis in Yulin prefecture, northwestern China using remote sensing and GIS. Int. J. Remote Sens. 2004, 25, 5691–5703. [Google Scholar] [CrossRef]
- Araya, Y.H.; Cabral, P. Analysis and Modeling of Urban Land Cover Change in Setúbal and Sesimbra, Portugal. Remote Sens. 2010, 2, 1549. [Google Scholar] [CrossRef] [Green Version]
- Krajewski, P. Monitoring of Landscape Transformations within Landscape Parks in Poland in the 21st Century. Sustainability 2019, 11, 2410. [Google Scholar] [CrossRef] [Green Version]
- Feranec, J.; Kopecka, M.; Vatseva, R.; Stoimenov, A.; Oťahel, J.; Beták, J.; Husár, K. Landscape change analysis and assessment (case studies in Slovakia and Bulgaria). Cent. Eur. J. Geosci. 2009, 1, 106. [Google Scholar] [CrossRef]
- European Commission (EC). From Land Cover to Landscape Diversity in the European Union. Available online: https://enviro-edu.sk/pluginfile.php/137/mod_resource/content/6/Ucebnica_Ochrana_a_vyuzivanie_krajiny/Text/Eiden_et_al_2000.pdf (accessed on 2 April 2020).
- Obeidat, M.; Awawdeh, M.; Lababneh, A. Assessment of land use/land cover change and its environmental impacts using remote sensing and GIS techniques, Yarmouk River Basin, north Jordan. Arab. J. Geosci. 2019, 12, 685. [Google Scholar] [CrossRef]
- Klaučo, M.; Weis, K.; Gregorová, B.; Anstead, L. Geographic Information Systems 3; Vydavateľstvo Univerzity Mateja Bela Belianum: Banská Bystrica, Slovakia, 2014. (In Slovak) [Google Scholar]
- Feranec, K.; Oťahel, J. Land cover of Slovakia; Veda: Bratislava, Slovakia, 2001. (In Slovak) [Google Scholar]
- Pecho, J. Climate change: A global problem with local impacts. In Klimatická Zmena—Výzva pre Lokálny Rozvoj na Slovensku, 1st ed.; Šteiner, A., Hegyi, L., Eds.; Karpatský Rozvojový Inštitút: Spišská Nová Ves, Slovakia, 2012; pp. 9–26. (In Slovak) [Google Scholar]
- Kunca, A.; Zúbrik, M.; Vakula, J.; Galko, J. Occurrence of Harmful Factors in the Forests of Slovakia in the Years 1960–2014, in 2015 and a Forecast of Their Development, 1st ed.; Národné Lesnícke Centrum: Zvolen, Slovakia, 2016; 139p. (In Slovak) [Google Scholar]
- Kunca, A.; Galko, J.; Zúbrik, M. Significant calamities in the forests of Slovakia over the last 50 years. In Zborník Referátov z 23. Ročníka Medzinárodnej Konferencie, Ktorá sa Konala 23. a 24. Apríla 2014 v Novom Smokovci; Kunca, A., Ed.; Národné Lesnícke Centrum: Zvolen, Slovakia, 2014; pp. 25–31. (In Slovak) [Google Scholar]
- Konôpka, J.; Kunca, A. Accidental logging in the years 1960–2014. In Výskyt Škodlivých Činiteľov v Lesoch Slovenska v Rokoch 1960–2014, v Roku 2015 a Prognóza ich Vývoja, 1st ed.; Kunca, A., Zúbrik, M., Vakula, J., Galko, J., Eds.; Národné Lesnícke Centrum: Zvolen, Slovakia, 2016; pp. 19–25. (In Slovak) [Google Scholar]
- Kunca, A.; Vakula, J.; Galko, J.; Zúbrik, M.; Leontovyč, R.; Nikolov, C.; Rel, S.; Konôpka, B.; Longauerová, B.; Maľová, M. How to proceed in the processing of the wind calamity of Žofia? Les Letokruhy 2014, 11, 6–9. (In Slovak) [Google Scholar]
- Midriak, R. Eroded and Run-Down Soils of Slovakia; Ústav Vedy a Výskumu UMB: Banská Bystrica, Slovakia, 2010. (In Slovak) [Google Scholar]
- Hronček, P.; Štrba, L.; Gregorová, B. Heritage of the medieval human activity in the present landscape of the national park Low Tatras (Slovakia). In Book Series: Public Recreation and Landscape Protection—With Sense Hand in Hand…, 1st ed.; Fialová, J., Ed.; Mendel University: Brno, Czech Republic, 2019; pp. 172–176. [Google Scholar]
- Plesník, P. Upper forest border in Slovakia. In Sborník prác Lesníckeho a Drevárskeho Múzea; Osveta: Martin, Slovakia, 1961; pp. 84–98. (In Slovak) [Google Scholar]
- Zatkalík, F. The upper border of the forest in the Prašivá group in the Low Tatras. Geogr. Časopis 1973, 255, 148–164. (In Slovak) [Google Scholar]
- Midriak, R. Morphogenesis of the Surface of High Mountains; Veda: Bratislava, Slovakia, 1983. (In Slovak) [Google Scholar]
- Schlaepfer, R. (Ed.) Long-Term Implications of Climate Change and Air Pollution on Forest Ecosystems, 1st ed.; IUFRO: Vienna, Austria, 1993; 132p. [Google Scholar]
- Midriak, R.; Zaušková, Ľ. The country of Slovakia and its use in relation to climate change. In Klimatická Změna—Zmierňujúce a Adaptačné Opatrenia v Sektore Pôdohospodárstva; Národné Poľnohospodárske Centrum a Potravinárske Centrum: Nitra, Slovakia, 2014; pp. 64–72. (In Slovak) [Google Scholar]
- Mello, M.; Lapin, M.; Kapolková, H.; Pecho, J.; Križicová, A. Climate trends in the Slovak part of the Carpathians. In The Carpathians—Integrating Nature and Society towards Sustainability, 1st ed.; Kozak, J., Katarzyna, O., Bytnerowicz, A., Wyżga, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 131–150. [Google Scholar]
- Krajčovič, V. The structure of the agricultural land fund and the evaluation of permanent grasslands in the foothills and mountain areas. In Spustnuté Pôdy a Pustnutie Krajiny Slovenska, 1st ed.; Midriak, R., Ed.; UMB: Banská Bystrica, Slovakia, 2011; pp. 230–241. (In Slovak) [Google Scholar]
- Midriak, R.; Zaušková, Ľ. Non-forest and desolate soils in Slovakia, their afforestation and desolation. In Obnova Lesního Prostředí při Zalesnění Nelesních a Devastovaných Stanovišť, Kostelec nad Černými lesy; Česká zemědelská Univerzita, Lesy České republiky: Praha, Česká Republika, 2008; pp. 39–45. (In Slovak) [Google Scholar]
- Gabrielsen, P.; Bosch, P. Environmental Indicators: Typology and Use in Reporting. EEA Internal Working Paper. 2003. Available online: http://costabalearsostenible.es/PDFs/AMYKey%20References_Indicators/EEA%202003.pdf (accessed on 4 April 2020).
- Ružičková, J.; Moravčíková, Z.; Lehotská, B. Landscape Protection and Use; Univerzita Komenského v Bratislave: Bratislava, Slovakia, 2009. (In Slovak) [Google Scholar]
- Midriak, R. Anthropogenic influences on vegetation and soil in the high mountains of the Western Carpathians (Part I). In Zborník Lesníckeho, Drevárskeho a Poľovníckeho Múzea v Antole, Nr. VII.; Osveta: Martin, Slovakia, 1973; pp. 148–185. (In Slovak) [Google Scholar]
- Midriak, R. Anthropogenic influences on vegetation and soil in the high mountains of the Western Carpathians (Part II - Regional analysis). In Zborník Lesníckeho, Drevárskeho a Poľovníckeho Múzea v Antole. Nr. IX.; Osveta: Martin, Slovakia, 1977; pp. 141–182. (In Slovak) [Google Scholar]
- Ružičková, H.; Dobrovodská, M.; Valachovič, M. Landscape-ecological evaluation of vegetation in relation to the forms of anthropogenic relief in the cadastre of the Liptovská Teplička Village, the Nízke Tatry Mts. Ekol. Bratisl. 1999, 18, 381–400. [Google Scholar]
- Dobrovodská, M. Landscape Ecological Research of the Historical Agricultural Landscape in the Villages of Liptovská Teplička, Osturňa and Malá Franková; VEDA: Bratislava, Slovakia, 2014; 149p. (In Slovak) [Google Scholar]
- Midriak, R. Lowered soils and the desolation of the country of Slovakia. Fakulta Prírodných vied UMB B.; Bystrica: Banská Bystrica, Slovakia, 2011; 401p. (In Slovak) [Google Scholar]
- Gregorová, B. Analysis of selected factors influencing the origin and development of tourism in the Low Tatras. Geogr. Cassoviensis 2010, 4, 53–56. (In Slovak) [Google Scholar]
- Gregorová, B. The use of archival sources and geoinformation technologies in the research of the history of environmental protection on the example of the Bystra valley in the Low Tatras. Acta Reg. 2018, 3, 75–83. (In Slovak) [Google Scholar]
- Čech, V.; Gregorová, B. Tourism in the Low Tatras National Park — Basic prerequisites. In Mіждисциплінарні Інтеграційні Процеси у Системі Географічної, Туризмологічної та Екологічної Науки; Міністерство Освіти і Науки України: Тернопіль, Ukraine, 2020; pp. 264–275. (In Slovak) [Google Scholar]
- Károlyová, I.; Sabo, P.; Rossová, L. The impact of tourism on the natural environment of the Ďumbier Tatras and on hiking trails and their immediate surroundings. In Krajina, História a Tradície Čipkárskych obcí Horehronia, 1st ed.; Hronček, P., Ed.; Ústav Vedy a Výskumu: Banská Bystrica, Slovakia, 2007; pp. 161–178. (In Slovak) [Google Scholar]
- Frazier, A.E.; Kedron, P. Landscape Metrics: Past Progress and Future Directions. Curr. Landsc. Ecol. Rep. 2017, 2, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Guerra, C.A.; Rosa, I.M.D.; Pereira, H.M. Change versus stability: Are protected areas particularly pressured by global land cover change? Landsc. Ecol. 2019, 34, 2779–2790. [Google Scholar] [CrossRef] [Green Version]
Specification | CLC 1990 | CLC 2018 |
---|---|---|
Geometric accuracy, satellite data | ≤50 m | ≤10 m |
Min. mapping unit/width | 25 ha/100 m | 25 ha/100 m |
Geometric accuracy, CLC | 100 m | Better than 100 m |
Thematic accuracy, CLC | ≥85% | ≥85% |
Level 1 | Level 2 | Level 3 |
---|---|---|
1 Artificial surfaces | 11 Urban fabric | 112 Discontinuous urban fabric |
14 Artificial, non-agricultural vegetated areas | 142 Sport and leisure facilities | |
2 Agricultural areas | 21 Arable land | 211 Non-irrigated arable land |
23 Pastures | 231 Pastures | |
24 Heterogeneous agricultural areas | 243 Land principally occupied by agriculture, with significant areas of natural vegetation | |
3 Forest and semi-natural areas | 31 Forests | 311 Broad-leaved forest |
312 Coniferous forest | ||
313 Mixed forest | ||
32 Scrub and/or herbaceous vegetation associations | 321 Natural grasslands | |
322 Moors and heathland | ||
324 Transitional woodland-shrub | ||
33 Open spaces with little or no vegetation | 333 Sparsely vegetated areas | |
5 Water bodies | 51 Inland waters | 512 Water bodies |
CLC | 1990 | 2018 | ||
---|---|---|---|---|
Area in ha | % | Area in ha | % | |
112 | 6.39 | 0.01 | 0.46 | 0.00 |
142 | 421.92 | 0.56 | 576.05 | 0.76 |
211 | 47.48 | 0.06 | - | 0.00 |
231 | 1641.91 | 2.16 | 1004.76 | 1.32 |
243 | 203.73 | 0.27 | 228.45 | 0.30 |
311 | 1458.41 | 1.92 | 1286.17 | 1.69 |
312 | 48,913.12 | 64.35 | 39,958.69 | 52.57 |
313 | 6814.73 | 8.96 | 9114.03 | 12.00 |
321 | 8392.56 | 11.04 | 6632.16 | 8.72 |
322 | 4330.54 | 5.70 | 5062.95 | 6.66 |
324 | 3597.34 | 4.73 | 12,021.51 | 15.81 |
333 | 185.37 | 0.24 | 131.21 | 0.17 |
512 | 3.05 | 0.00 | 0.11 | 0.00 |
Total | 76,016.55 | 100.00 | 76,016.55 | 100.00 |
LCF | 1990–2000 | 2000–2006 | 2006–2012 | 2012–2018 | 1990–2018 | CLC Classes Changes | |
---|---|---|---|---|---|---|---|
LCF3 | ha | 0.00 | 0.00 | 13.80 | 193.32 | 207.12 | 312–142 |
% | 0.00% | 0.00% | 0.19% | 6.50% | 1.38% | ||
LCF4 | ha | 0.00 | 54.01 | 0.00 | 0.00 | 54.01 | 211–231 |
% | 0.00% | 1.80% | 0.00% | 0.00% | 0.36% | ||
LCF5 | ha | 9.07 | 0.00 | 0.00 | 0.00 | 9.07 | 243–211 |
% | 0.48% | 0.00% | 0.00% | 0.00% | 0.06% | ||
LCF6 | ha | 133.98 | 66.00 | 0.00 | 0.00 | 199.98 | 231–324 |
% | 7.14% | 2.20% | 0.00% | 0.00% | 1.33% | ||
LCF7 | ha | 1732.54 | 2901.05 | 7170.29 | 2778.76 | 14,582.64 | 311–324, 312–324, 313–324, 313–311, 321–324, 324–312, 324–313, 324–311 |
% | 92.37% | 96.03% | 99.81% | 93.50% | 96.88% | ||
change of total area (%) | 2.47% | 3.97% | 9.45% | 3.91% | 19.80% | - |
Landscape Metric | 1990 | 2018 | Change | Manifestation in Landscape |
---|---|---|---|---|
NumP | 275 | 281 | +6 | a small increase in the number of patches |
MPS | 276.536 | 270.521 | −6.015 | a more fragmented landscape |
TE | 2,998,750 | 3,609,590 | +610,840 | an increase in the total perimeter of patches |
AWMSI | 9.65107 | 6.16634 | −3.48473 | a decrease in the heterogeneity of patch shapes and a higher regularity of the shapes of larger patches |
SDI | 1.27467 | 1.46898 | +0.19431 | an increase in landscape heterogeneity |
SEI | 0.496958 | 0.591159 | +0.094201 | an increase in landscape balance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žoncová, M.; Hronček, P.; Gregorová, B. Mapping of the Land Cover Changes in High Mountains of Western Carpathians between 1990–2018: Case Study of the Low Tatras National Park (Slovakia). Land 2020, 9, 483. https://doi.org/10.3390/land9120483
Žoncová M, Hronček P, Gregorová B. Mapping of the Land Cover Changes in High Mountains of Western Carpathians between 1990–2018: Case Study of the Low Tatras National Park (Slovakia). Land. 2020; 9(12):483. https://doi.org/10.3390/land9120483
Chicago/Turabian StyleŽoncová, Michaela, Pavel Hronček, and Bohuslava Gregorová. 2020. "Mapping of the Land Cover Changes in High Mountains of Western Carpathians between 1990–2018: Case Study of the Low Tatras National Park (Slovakia)" Land 9, no. 12: 483. https://doi.org/10.3390/land9120483
APA StyleŽoncová, M., Hronček, P., & Gregorová, B. (2020). Mapping of the Land Cover Changes in High Mountains of Western Carpathians between 1990–2018: Case Study of the Low Tatras National Park (Slovakia). Land, 9(12), 483. https://doi.org/10.3390/land9120483