The Potential of Switchgrass and Miscanthus to Enhance Soil Organic Carbon Sequestration—Predicted by DayCent Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Crop Management
2.3. DayCent Description and Input Parameters
2.4. DayCent: Initialization and Calibration for Crop Rotation and WSGs
2.4.1. Initialization
2.4.2. Parametrization
2.4.3. Validation
2.4.4. Simulation 2009–2100
2.5. Statistical Evaluation
3. Results
4. Discussion
4.1. SOC Sequestration Rate
4.2. Climate Scenarios
4.3. Potential Shortcoming in this Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pachauri, R.K.; Mayer, L. Intergovernmental Panel on Climate Change. In Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; ISBN 9789291691432. [Google Scholar]
- Kludze, H.; Deen, B.; Weersink, A.; van Acker, R.; Janovicek, K.; De Laporte, A. Impact of land classification on potential warm season grass biomass production in Ontario, Canada. Can. J. Plant Sci. 2013, 93, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Ag Innovation Ontario, Ontario’s Biomass Industry Ready to Grow by Seeking New Markets. Available online: https://www.aginnovationontario.ca/en/ontarios-biomass-industry-ready-to-grow-by-seeking-new-markets/ (accessed on 5 September 2020).
- Samson, R. Using Switchgrass and Miscanthus as a Sustainable Mulch; Ontario Biomass Producers Co-Operative Inc.: Markdale, ON, Canada, 2018; Available online: http://www.ontariobiomass.com/resources/Documents/KTT Projects/KTT Documents and Videos/Switchgrass and Miscanthus as a Sustainable Mulch.pdf (accessed on 5 September 2020).
- Marsal, F.; Thevathasan, N.V.; Guillot, S.; Mann, J.; Gordon, A.M.; Thimmanagari, M.; Deen, W.; Silim, S.; Soolanayakanahally, R.; Sidders, D. Biomass yield assessment of five potential energy crops grown in southern Ontario, Canada. Agrofor. Syst. 2016, 90, 773–783. [Google Scholar] [CrossRef]
- Deen, B. Biomass for Biofuel: Understanding the risks and opportunities for Ontario agriculture. Can. J. Plant Sci. 2017, 97, 964–971. [Google Scholar] [CrossRef]
- Bazrgar, A.B.; Ng, A.; Coleman, B.; Ashiq, M.W.; Gordon, A.; Thevathasan, N. Long-Term Monitoring of Soil Carbon Sequestration in Woody and Herbaceous Bioenergy Crop Production Systems on Marginal Lands in Southern Ontario, Canada. Sustainability 2020, 12, 3901. [Google Scholar] [CrossRef]
- McCalmont, J.P.; Hastings, A.; McNamara, N.P.; Richter, G.M.; Robson, P.; Donnison, I.S.; Clifton-Brown, J. Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. GCB Bioenergy 2017, 9, 489–507. [Google Scholar] [CrossRef]
- Lemus, R.; Lal, R. Bioenergy crops and carbon sequestration. Crit. Rev. Plant Sci. 2005, 24, 1–21. [Google Scholar] [CrossRef]
- Felten, D.; Emmerling, C. Accumulation of Miscanthus-derived carbon in soils in relation to soil depth and duration of land use under commercial farming conditions. J. Plant Nutr. Soil Sci. 2012, 175, 661–670. [Google Scholar] [CrossRef]
- Gelfand, I.; Sahajpal, R.; Zhang, X.; César Izaurralde, R.; Gross, K.L.; Robertson, G.P. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 2013, 493, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.; Voroney, P.; Coleman, B.; Deen, B.; Gordon, A.; Thimmanagari, M.; Thevathasan, N. Quantifying soil organic carbon stocks in herbaceous biomass crops grown in Ontario, Canada. Agrofor. Syst. 2019, 93, 1627–1635. [Google Scholar] [CrossRef]
- Agostini, F.; Gregory, A.S.; Richter, G.M. Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out? Bioenergy Res. 2015, 8, 1057–1080. [Google Scholar] [CrossRef] [Green Version]
- Volk, T.A.; Verwijst, T.; Tharakan, P.J.; Abrahamson, L.P.; White, E.H. Growing fuel: A sustainability assessment of willow biomass crops. Front. Ecol. Environ. 2004, 2, 411–418. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Crop Residue Management and Soil Carbon Dynamics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 291–309. [Google Scholar]
- Borak, B.; Ort, D.R.; Burbaum, J.J. Energy and carbon accounting to compare bioenergy crops. Curr. Opin. Biotechnol. 2013, 24, 369–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, B.B.; Smith, W.N.; Campbell, C.A.; Desjardins, R.L.; Lemke, R.L.; Kröbel, R.; McConkey, B.G.; Smith, E.G.; Lafond, G.P. Comparison of DayCent and DNDC Models: Case Studies Using Data from Long-Term Experiments on the Canadian Prairies; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 21–57. [Google Scholar]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Brief history of agricultural systems modeling. Agric. Syst. 2017, 155, 240–254. [Google Scholar] [CrossRef]
- Necpálová, M.; Anex, R.P.; Fienen, M.N.; Del Grosso, S.J.; Castellano, M.J.; Sawyer, J.E.; Iqbal, J.; Pantoja, J.L.; Barker, D.W. Understanding the DayCent model: Calibration, sensitivity, and identifiability through inverse modeling. Environ. Model. Softw. 2015, 66, 110–130. [Google Scholar] [CrossRef] [Green Version]
- Parton, W.J.; Hartman, M.; Ojima, D.; Schimel, D. DAYCENT and its land surface submodel: Description and testing. Glob. Planet. Chang. 1998, 19, 35–48. [Google Scholar] [CrossRef]
- Del Grosso, S.; Parton, W.J.; Mosier, A.R.; Hartman, M.D.; Brenner, J.; Ojima, D.S.; Schimel, D.S. Simulated Interaction of Carbon Dynamics and Nitrogen Trace Gas Fluxes Using the DAYCENT Model. In Modeling Carbon and Nitrogen Dynamics for Soil Management; Schaffer, M.J., Ma, L., Hansen, S., Eds.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Bista, P.; Machado, S.; Ghimire, R.; Del Grosso, S.J.; Reyes-Fox, M. Simulating Soil Organic Carbon in a Wheat-Fallow System Using the Daycent Model. Agron. J. 2016, 108, 2554–2565. [Google Scholar] [CrossRef]
- Davis, S.C.; Parton, W.J.; Dohleman, F.G.; Smith, C.M.; Del Grosso, S.; Kent, A.D.; DeLucia, E.H. Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a Miscanthus × giganteus agro-ecosystem. Ecosystems 2010, 13, 144–156. [Google Scholar] [CrossRef]
- Robertson, A.D.; Zhang, Y.; Sherrod, L.A.; Rosenzweig, S.T.; Ma, L.; Ahuja, L.; Schipanski, M.E. Climate Change Impacts on Yields and Soil Carbon in Row Crop Dryland Agriculture. J. Environ. Qual. 2018, 47, 684–694. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Yang, J.Y.; Drury, C.F.; Smith, W.N.; Grant, B.B.; He, P.; Qian, B.; Zhou, W.; Hoogenboom, G. Estimating the impacts of climate change on crop yields and N2O emissions for conventional and no-tillage in Southwestern Ontario, Canada. Agric. Syst. 2018, 159, 187–198. [Google Scholar] [CrossRef]
- Munroe, J.W.; McCormick, I.; Deen, W.; Dunfield, K.E. Effects of 30 Years of Crop Rotation and Tillage on Bacterial and Archaeal Ammonia Oxidizers. J. Environ. Qual. 2016, 45, 940–948. [Google Scholar] [CrossRef]
- Soi1 Classification Working Group. The Canadian Sysfem of SoiI Classification; NRC Research press, Ottawa Publ. 1646 (Revised); Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 1998; 187p.
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006; World Soil Resources Reports No. 103; FAO: Rome, Italy, 2007. [Google Scholar]
- Kelly, R.H.; Parton, W.J.; Hartman, M.D.; Stretch, L.K.; Ojima, D.S.; Schimel, D.S. Intra-annual and interannual variability of ecosystem processes in shortgrass steppe. J. Geophys. Res. Atmos. 2000, 105, 20093–20100. [Google Scholar] [CrossRef]
- Del Grosso, S.J.; Ojima, D.S.; Parton, W.J.; Stehfest, E.; Heistemann, M.; DeAngelo, B.; Rose, S. Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils. Glob. Planet. Chang. 2009, 67, 44–50. [Google Scholar] [CrossRef]
- Del Grosso, S.J.; Mosier, A.R.; Parton, W.J.; Ojima, D.S. DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. In Soil and Tillage Research; Elsevier: Amsterdam, The Netherlands, 2005; Volume 83, pp. 9–24. [Google Scholar]
- Del Grosso, S.; Ojima, D.; Parton, W.; Mosier, A.; Peterson, G.; Schimel, D. Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model. Environ. Pollut. 2002, 116, S75–S83. [Google Scholar] [CrossRef]
- Adler, P.R.; Del Grosso, S.J.; Parton, W.J. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol. Appl. 2007, 17, 675–691. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada; Government of Canada. Available online: https://www.canada.ca/en/environment-climate-change.html (accessed on 15 September 2020).
- Saxton, K.T.; Rawls, W. Soil Water Characteristics: Hydraulic Properties Calculator; Washington State University: Pullman, WA, USA, 2009. Available online: https://hrsl.ba.ars.usda.gov/soilwater/Index.htm (accessed on 9 September 2020).
- Ramnarine, R.; Voroney, R.P.; Wagner-Riddle, C.; Dunfield, K.E. Conventional and No-Tillage Effects on the Distribution of Crop Residues and Light Fraction Organic Matter. Soil Sci. Soc. Am. J. 2015, 79, 74–80. [Google Scholar] [CrossRef]
- Gaudin, A.C.M.; Tolhurst, T.N.; Ker, A.P.; Janovicek, K.; Tortora, C.; Martin, R.C.; Deen, W. Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability. PLoS ONE 2015, 10, e0113261. [Google Scholar] [CrossRef] [Green Version]
- Hartman, M.D.; Parton, W.J.; Del Grosso, S.J.; Easter, M.; Hendryx, J.; Hilinski, T.; Kelly, R.; Keough, C.A.; Killian, K.; Lutz, S.; et al. DayCent Ecosystem Model. The Daily Century Ecosystem, Soil Organic Matter, Nutrient Cycling, Nitrogen Trace Gas, and Methane Model. User Manual, Scientific Basis, and Technical Documentation; Colorado State University: Fort Collins, CO, USA, 2017. [Google Scholar]
- Jarecki, M.; Grant, B.; Smith, W.; Deen, B.; Drury, C.; VanderZaag, A.; Qian, B.; Yang, J.; Wagner-Riddle, C. Long-term Trends in Corn Yields and Soil Carbon under Diversified Crop Rotations. J. Environ. Qual. 2018, 47, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Wutzler, T.; Reichstein, M. Soils apart from equilibrium–consequences for soil carbon balance modelling. Biogeosciences 2007, 4, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Larson, B.M.; Riley, J.L.; Snell, E.A.; Godschalk, H.G. The Woodland Heritage of Southern Ontario: A Study of Ecological Change, Distribution and Significance; Federation of Ontario Naturalists: Toronto, ON, Canada, 1999; 262p. [Google Scholar]
- Scinocca, J.F.; Kharin, V.V.; Jiao, Y.; Qian, M.W.; Lazare, M.; Solheim, L.; Flato, G.M.; Biner, S.; Desgagne, M.; Dugas, B. Coordinated global and regional climate modeling. J. Clim. 2016, 29, 17–35. [Google Scholar] [CrossRef]
- Casler, M.D.; Vogel, K.P.; Taliaferro, C.M.; Ehlke, N.J.; Berdahl, J.D.; Brummer, E.C.; Kallenbach, R.L.; West, C.P.; Mitchell, R.B. Latitudinal and Longitudinal Adaptation of Switchgrass Populations; USDA-ARS/UNL Faculty: Washington, DC, USA, 2007. Available online: https://digitalcommons.unl.edu/usdaarsfacpub/1938/ (accessed on 5 September 2020).
- Linde-Laursen, I. Cytogenetic Analysis of Miscanthus Giganteus, an Interspecific Hybrid. Hereditas 2004, 119, 297–300. [Google Scholar] [CrossRef]
- Heaton, E.; Voigt, T.; Long, S.P. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 2004, 27, 21–30. [Google Scholar] [CrossRef]
- Oliveira, J.A.; West, C.P.; Afif, E.; Palencia, P. Comparison of miscanthus and switchgrass cultivars for biomass yield, soil nutrients, and nutrient removal in northwest Spain. Agron. J. 2017, 109, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Eichelmann, E.; Wagner-Riddle, C.; Warland, J.; Deen, B.; Voroney, P. Carbon dioxide exchange dynamics over a mature switchgrass stand. GCB Bioenergy 2016, 8, 428–442. [Google Scholar] [CrossRef]
- Samson, R.; Delaquis, E.; Deen, B.; Debruyn, J.; Eggimann, U. Switchgrass Agronomy; Ontario Biomass Producers Co-Operative Inc.: Markdale, ON, Canada, 2016. [Google Scholar]
- Withers, K.; Deen, B.; Debruyn, J.; Eggimann, U. Miscanthus Agronomy; Ontario Biomass Producers Co-Operative Inc.: Markdale, ON, Canada, 2016. [Google Scholar]
- Jamieson, P.D.; Porter, J.R.; Wilson, D.R. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crop. Res. 1991, 27, 337–350. [Google Scholar] [CrossRef]
- Garten, C.T. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum). Bioenergy Res. 2012, 5, 124–138. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Soil carbon changes under Miscanthus driven by C4 accumulation and C3 decomposition—toward a default sequestration function. GCB Bioenergy 2014, 6, 327–338. [Google Scholar] [CrossRef]
- Haas, H.J.; Evans, C.E. Nitrogen and Carbon Changes in Great plains Soils as Influenced by Cropping and Soil Treatments; Technical Bulletins 157187; United States Department of Agriculture, Economic Research Service: Washington, DC, USA, 1957.
- Dumanski, J.; Desjardins, R.L.; Tarnocai, C.; Monreal, C.; Gregorich, E.G.; Kirkwood, V.; Campbell, C.A. Possibilities for future carbon sequestration in Canadian agriculture in relation to land use changes. Clim. Chang. 1998, 40, 81–103. [Google Scholar] [CrossRef]
- Barney, J.N.; DiTomaso, J.M. Bioclimatic predictions of habitat suitability for the biofuel switchgrass in North America under current and future climate scenarios. Biomass Bioenergy 2010, 34, 124–133. [Google Scholar] [CrossRef]
- Hager, H.A.; Sinasac, S.E.; Gedalof, Z.; Newman, J.A. Predicting Potential Global Distributions of Two Miscanthus Grasses: Implications for Horticulture, Biofuel Production, and Biological Invasions. PLoS ONE 2014, 9, e100032. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.; Yamada, T.; Anzoua, K.G.; Kokubo, R.; Noborio, K. Carbon sequestration and yield performances of Miscanthus × giganteus and Miscanthus sinensis. Carbon Manag. 2018, 9, 415–423. [Google Scholar] [CrossRef]
- Del Grosso, S.J.; Parton, W.J.; Adler, P.R.; Davis, S.C.; Keough, C.; Marx, E. Daycent model simulations for estimating soil carbon dynamics and greenhouse gas fluxes from agricultural production systems. In Managing Agricultural Greenhouse Gases; Elsevier Inc.: Amsterdam, The Netherlands, 2012; pp. 241–250. ISBN 9780123868978. [Google Scholar]
Climate Scenario | RCP 4.5 | RCP 8.5 | ||||||
---|---|---|---|---|---|---|---|---|
t max | t min | prec | CO2 | t max | t min | prec | CO2 | |
Decade | (°C) | (mm) | (mg m−3) | (°C) | (mm) | (mg m−3) | ||
2011–2020 | 11.9 | 2.9 | 912 | 382 | 12.0 | 2.8 | 908 | 382 |
2021–2030 | 12.5 | 3.4 | 965 | 409 | 12.9 | 3.7 | 1030 | 437 |
2031–2040 | 13.0 | 3.8 | 1065 | 427 | 13.1 | 4.1 | 969 | 504 |
2041–2050 | 13.1 | 3.9 | 1030 | 444 | 13.9 | 4.7 | 1042 | 571 |
2051–2060 | 13.3 | 4.3 | 987 | 461 | 14.3 | 5.3 | 1106 | 637 |
2061–2070 | 13.6 | 4.7 | 995 | 478 | 15.1 | 5.9 | 1049 | 704 |
2071–2080 | 14.2 | 5.2 | 1039 | 496 | 15.8 | 6.7 | 1085 | 771 |
2081–2090 | 14.4 | 5.3 | 1058 | 513 | 16.3 | 7.4 | 1045 | 838 |
2091–2100 | 14.7 | 5.5 | 1012 | 530 | 17.7 | 8.5 | 1016 | 905 |
Forest and Cropping System | Years |
---|---|
Temperate_Mixed_Forest | 0–1910 |
Deforestation | 1911 |
Corn-Barley | 1912–1958 |
Continuous corn | 1959–1980 |
Corn–corn–soybean–winter wheat | 1981–2008 |
Corn–corn–soybean–winter wheat | 2009–2100 |
Switchgrass | 2009–2100 |
Miscanthus | 2009–2100 |
Crop | n | Yield | CL # p = 0.05 | St Dev | St Error | RMSE $ | MAPE & | |
---|---|---|---|---|---|---|---|---|
-----------------------(kg ha−1)------------------------- | (%) | |||||||
Corn Grain | observed | 35 | 8770 | 613 | 1786 | 302 | 1936 | 18.6 |
predicted | 35 | 8600 | 632 | 1842 | 311 | |||
Soybean Grain | observed | 17 | 2874 | 277 | 539 | 131 | 872 | 24.7 |
predicted | 17 | 2511 | 369 | 719 | 174 | |||
Winter Wheat Grain | observed | 18 | 5101 | 379 | 763 | 180 | 1547 | 23.9 |
predicted | 18 | 4885 | 594 | 1176 | 277 | |||
Switchgrass Biomass | observed | 2 | 9420 | 1500 | 167 | 118 | 278 | 2.9 |
predicted | 2 | 9446 | 209 | 23 | 16 | |||
Miscanthus Biomass | observed | 2 | 20940 | 2893 | 322 | 228 | 661 | 2.7 |
predicted | 2 | 20376 | 1178 | 132 | 93 |
Scenario | Year | CCSW | Switchgrass | Miscanthus | ||
---|---|---|---|---|---|---|
RCP 4.5 | 1913 | 94.9 (100) | ||||
2008 | 56.2 (59) | |||||
2060 | 57.0 (60) | 78.9 (83) | 133.7 (140) | |||
2100 | 56.2 (59) | 79.5 (84) | 63.5 (67) & | 144.0 (151) | 79.6 (84) & | |
RCP 8.5 | 2060 | 55.0 (58) | 77.8 (82) | 126.58 (133) | ||
2100 | 55.0 (58) | 76.9 (81) | 60.6 (64) & | 124.9 (132) | 73.7 (78) & |
Biomass | Switchgrass | Miscanthus | ||
---|---|---|---|---|
SOC at RCP 4.5 | SOC at RCP 8.5 | SOC at RCP 4.5 | SOC at RCP 8.5 | |
Aboveground | 0.70 * | 0.87 ** | 0.61 * | Ns |
Belowground | 0.72 * | 0.87 ** | 0.63 * | Ns |
Above + Belowground | 0.71 * | 0.87 ** | 0.64 * | Ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarecki, M.; Kariyapperuma, K.; Deen, B.; Graham, J.; Bazrgar, A.B.; Vijayakumar, S.; Thimmanagari, M.; Gordon, A.; Voroney, P.; Thevathasan, N. The Potential of Switchgrass and Miscanthus to Enhance Soil Organic Carbon Sequestration—Predicted by DayCent Model. Land 2020, 9, 509. https://doi.org/10.3390/land9120509
Jarecki M, Kariyapperuma K, Deen B, Graham J, Bazrgar AB, Vijayakumar S, Thimmanagari M, Gordon A, Voroney P, Thevathasan N. The Potential of Switchgrass and Miscanthus to Enhance Soil Organic Carbon Sequestration—Predicted by DayCent Model. Land. 2020; 9(12):509. https://doi.org/10.3390/land9120509
Chicago/Turabian StyleJarecki, Marek, Kumudinie Kariyapperuma, Bill Deen, Jordan Graham, Amir Behzad Bazrgar, Sowthini Vijayakumar, Mahendra Thimmanagari, Andrew Gordon, Paul Voroney, and Naresh Thevathasan. 2020. "The Potential of Switchgrass and Miscanthus to Enhance Soil Organic Carbon Sequestration—Predicted by DayCent Model" Land 9, no. 12: 509. https://doi.org/10.3390/land9120509
APA StyleJarecki, M., Kariyapperuma, K., Deen, B., Graham, J., Bazrgar, A. B., Vijayakumar, S., Thimmanagari, M., Gordon, A., Voroney, P., & Thevathasan, N. (2020). The Potential of Switchgrass and Miscanthus to Enhance Soil Organic Carbon Sequestration—Predicted by DayCent Model. Land, 9(12), 509. https://doi.org/10.3390/land9120509