Understanding the Relationships between Extensive Livestock Systems, Land-Cover Changes, and CAP Support in Less-Favored Mediterranean Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Castagniccia Area
2.2. Data Collection
2.2.1. Land-Cover Data Collection and Processing
2.2.2. Farm Data Collection
2.3. Assessing the Relationship between Livestock and Land-Cover Changes (H1)
- The whole study area (WA);
- The area that was neither impacted by livestock breeding activities in the early 1990s nor in 2012, according to our data (hereafter NI area—i.e., “non-impacted area”), as a benchmark to assess the impact of livestock breeding activities;
- The areas that were assumed to have been impacted only by one kind of breeding activity over the period, in order to analyze the animal-specific impacts.
2.4. Analyzing Production Decision Drivers (H2)
- The variation in production site density around the farm (proxy of land abandonment) and the percentage of low scrubland area around the production sites (proxy of farm’s access to areas that are usable without human intervention, especially by cows) and the area declared by farmers in 2012 (proxy of farm’s access to eligible land);
- The number of full-time workers in the farm and, as a proxy for opportunity cost of labor, the demographic characteristics of the municipality where the holding of the farm is located and those of the surrounding municipalities. Indeed, proximity to a relatively populated municipality might increase the relative scarcity of labor through a higher opportunity cost, while remoteness might increase its absolute scarcity.
3. Results
3.1. Vegetation Cover Changes and Correlation with the Livestock Type
3.2. The Contribution of CAP Premiums to Farm Income and Drivers of Farmer Choices
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Caraveli, H. A comparative analysis on intensification and extensification in Mediterranean agriculture: Dilemmas for LFAs policy. J. Rural. Stud. 2000, 16, 231–242. [Google Scholar] [CrossRef]
- Serrano, E.; Lavín, M.P.; Ruiz-Mantecón, A. Caracterización de Los Sistemas de Producción de Ganado Vacuno de Carne de la Montaña de León; Valle del Esla, S.A., Ed.; CSIC: León, Spain, 2002. [Google Scholar]
- Bernués, A.; Ruiz, R.; Olaizola, A.; Villalba, D.; Casasús, I. Sustainability of pasture-based livestock farming systems in the European Mediterranean context: Synergies and trade-offs. Livest. Sci. 2011, 139, 44–57. [Google Scholar] [CrossRef]
- Franco, J.A.; Gaspar, P.; Mesias, F.J. Economic analysis of scenarios for the sustainability of extensive livestock farming in Spain under the CAP. Ecol. Econ. 2012, 74, 120–129. [Google Scholar] [CrossRef]
- Cocca, G.; Sturaro, E.; Gallo, L.; Ramanzin, M. Is the abandonment of traditional livestock farming systems the main driver of mountain landscape change in Alpine areas? Land Use Policy 2012, 29, 878–886. [Google Scholar] [CrossRef]
- De Rancourt, M.; Fois, N.; Lavín, M.P.; Tchakérian, E.; Vallerand, F. Mediterranean sheep and goats production: An uncertain future. Small Rumin. Res. 2006, 62, 167–179. [Google Scholar] [CrossRef]
- Bouju, S. Evolution des systèmes d’élevage de part et d’autre de la Méditerranée: Une difficile conciliation avec des objectifs de développement durable. Quelques réflexions à partir de deux études de cas en France (Préalpes de Digne) et en Tunisie (Khroumirie). Options Méditerr. Sér. A 2000, 39, 145–157. [Google Scholar]
- Hadjigeorgiou, I.; Osoro, K.; De Almeida, J.F.; Molle, G. Southern European grazing lands: Production, environmental and landscape management aspects. Livest. Prod. Sci. 2005, 96, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Bounejmate, M.; Norton, B.E.; El Mourid, M.; Khatib, A.; Bathikha, N.; Ghassali, F.; Mahyou, H. Partnership for understanding land use/cover change and reviving overgrazed rangeland in Mediterranean areas: ICARDA’s experience. Cahiers Options Méditerr. 2004, 62, 267–283. [Google Scholar]
- Ruiz, F.A.; Mena, Y.; Castel, J.M.; Guinamard, C.; Bossis, N.; Caramelle-Holtz, E.; Contu, M.; Sitzia, M.; Fois, N. Dairy goat grazing systems in Mediterranean regions: A comparative analysis in Spain, France and Italy. Small Rumin. Res. 2009, 85, 42–49. [Google Scholar] [CrossRef]
- Jouven, M.; Lapeyronie, P.; Moulin, C.H.; Bocquier, F. Rangeland utilization in Mediterranean farming systems. Animal 2010, 4, 1746–1757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaufoy, G.; Poux, X. Supporting HNV extensive livestock systems in Mountain and Mediterranean areas—The need for an adapted European Policy. Options Méditerr. 2014, 109, 19–30. [Google Scholar]
- García-Martínez, A.; Olaizola, A.; Bernués, A. Trajectories of evolution and drivers of change in European mountain cattle farming systems. Animal 2009, 3, 152–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Carignon, C.; Casabianca, F.; Torre, F.; Santucci, P.M. Primes à l’élevage bovin allaitant en Corse. Analyze des effets pervers et propositions de réorientation. Rencontre Recheches Runimants 1994, 1, 25–28. [Google Scholar]
- Bourbouze, A.; Gibon, A. Ressources individuelles ou ressources collectives? L’impact du statut des ressources sur la gestion des systèmes d’élevage des régions du pourtour méditerranéen. Options Méditerr. 1999, 27, 289–309. [Google Scholar]
- Lasant, T.; Nadal-Romero, E.; Errea, P.; Arnaez, J. The Effect of Landscape Conservation Measures in Changing Landscape Patterns: A Case Study in Mediterranean Mountains. Land Degrad. Dev. 2016, 27, 373–386. [Google Scholar] [CrossRef]
- Fernández, J.B.G.; Mora, M.R.G.; Novo, F.G. Vegetation dynamics of Mediterranean scrublands in former cultural landscape at Grazalema Mountains, South Spain. Plant Ecol. 2004, 172, 83–94. [Google Scholar] [CrossRef]
- Bernués, A.; Riedel, J.; Asensio, M.; Blanco, M.; Sanz, A.; Revilla, R.; Casasús, I. An integrated approach to studying the role of grazing livestock systems in the conservation of rangelands in a protected natural park (Sierra de Guara, Spain). Livest. Prod. Sci. 2005, 96, 75–85. [Google Scholar] [CrossRef]
- Saïd, S. Floristic and life form diversity in post-pasture successions on a Mediterranean island (Corsica). Plant Ecol. 2002, 162, 67–76. [Google Scholar] [CrossRef]
- Colantoni, A.; Egidi, G.; Quaranta, G.; D’Alessandro, R.; Vinci, S.; Turco, R.; Salvati, L. Sustainable Land Management, Wildfire Risk and the Role of Grazing in Mediterranean Urban-Rural Interfaces: A Regional Approach from Greece. Land 2020, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Kramer, K.; Groen, T.A.; van Wieren, S.E. The interacting effects of ungulates and fire on forest dynamics: An analysis using the model FORSPACE. For. Ecol. Manag. 2003, 181, 205–222. [Google Scholar] [CrossRef]
- Caballero, R.; Fernandez-Gonzalez, F.; Badia, R.P.; Molle, G.; Roggero, P.P.; Bagella SPapanastasis, V.P.; Fotiadis, G.; Sidiropoulou, A. Ispikoudis IGrazing systems and biodiversity in Mediterranean areas: Spain, Italy and Greece. Pastos 2011, 39, 9–154. [Google Scholar]
- San Miguel-Ayanz, A. Mediterranean European Silvopastoral Systems. In Silvopastoralism and Sustainable Land Management; CABI Publishing: Wallingford, UK, 2005; pp. 36–40. [Google Scholar]
- Kormann, U.G.; Scherber, C.; Tscharntke, T.; Batary, P.; Rosch, V. Connectedness of habitat fragments boosts conservation benefits for butterflies, but only in landscapes with little cropland. Landsc. Ecol. 2019, 34, 1045–1056. [Google Scholar] [CrossRef] [Green Version]
- Pecina, M.V.; Ward, R.D.; Bunce, R.G.H.; Sepp, K.; Kuusemets, V.; Luuk, O. Country-scale mapping of ecosystem services provided by semi-natural grasslands. Sci. Total Environ. 2019, 661, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Mueller, E.N.; Francke, T.; Batalla, R.J.; Bronstert, A. Modelling the effects of land-use change on runoff and sediment yield for a meso-scale catchment in the Southern Pyrenees. Catena 2009, 79, 288–296. [Google Scholar] [CrossRef]
- Pavel, C.; d’Artis, K.; Espinosa, M. The Impact of the 2013 CAP Reform on the Decoupled Payments’ Capitalisation into Land Values. J. Agric. Econ. 2018, 69, 306–337. [Google Scholar]
- García-Martínez, A.; Bernués, A.; Olaizola, A.M. Simulation of mountain cattle farming system changes under diverse agricultural policies and off-farm labor scenarios. Livest. Sci. 2011, 137, 73–86. [Google Scholar] [CrossRef]
- Lorent, H.; Sonnenschein, R.; Tsiourlis, G.; Hostert, P.; Lambin, E. Livestock subsidies and rangeland degradation in central Crete. Ecol. Soc. 2009, 14. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, M.; Espinosa, M.; Gomez y Paloma, S. The influence of the Common Agricultural Policy on agricultural landscapes. Eur. Comm. Jt. Res. Cent. 2012, 7. [Google Scholar] [CrossRef]
- Andersen, E.; Rutherford, A.; Winter, M. The CAP Regimes and the European Countryside: Prospects for Integration between Agricultural, Regional and Environmental Policies; Lowe, P., Brouwer, F.M., Eds.; CABI Pub: New York, NY, USA, 2000; pp. 55–70. [Google Scholar]
- Santucci, P.; Fabre, J.; Paoli, J.-C. Rôle des Parcours en Élevage Pastoral Corse; INRA: Paris, France, 2011; 37p. [Google Scholar]
- Bartolomé, J.; Franch, J.; Plaixats, J.; Seligman, N.G. Grazing alone is notenough to maintain landscape diversity in the Montseny Biosphere Reserve. Agr. Ecosyst. Environ. 2000, 77, 267–273. [Google Scholar] [CrossRef]
- Simi, P. Precis de Géographie de la Corse, Societé des Sciences Historiques et Naturelles de la Corse; Perriquet Editeur: Corte, France, 1981. [Google Scholar]
- Cristofini, B.; Deffontaines, J.-P.; Raichon, C.; De Verneuil, B. Pratiques d’élevage en Castagniccia. Exploration d’un milieu naturel et social en Corse. Études Rural. 1978, 71–72, 89–109. [Google Scholar] [CrossRef]
- Vercherand, J. La question du développement de l’élevage en Corse. Etudes Corses 1989, 32, 5–77. [Google Scholar] [CrossRef]
- Lafitte, L.M. Analyse-Diagnostic de L’agriculture de la Castagniccia (Corse); Master’s Dissertation, Agroparistech: Paris, France, 2012. [Google Scholar]
- Alados, C.L.; ElAich, A.; Papanastasis, V.P.; Ozbek, H.; Navarro, T.; Freitas HVrahnakis, M.; Larrosi, D.; Cabezudo, B. Change in plant spatial patterns and diversity along the successional gradient of Mediterranean grazing ecosystems. Ecol. Model. 2004, 180, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Biondini, M.; Kandus, P. Transition matrix analysis of land-cover change in the accretion area of the Lower Delta of the Paraná River (Argentina) reveals two succession pathways. Wetlands 2006, 26, 981–991. [Google Scholar] [CrossRef]
- Hu, Y.; Zhen, L.; Zhuang, D. Assessment of land-use and land-cover change in Guangxi, China. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Osoro, K.; Ferreira, L.M.M.; Garcia, U.; Martinez, A.; Celaya, R. Forage intake, digestibility and performance of cattle, horses, sheep and goats grazing together on an improved heathland. Anim. Prod. Sci. 2017, 57, 102–109. [Google Scholar] [CrossRef]
- Doi, K.; Tamiya, S.; Nakajima, N.; Yayota, M. Sustainable goat grazing for managing abandoned fields: Dynamics of vegetation quality, quantity and nutritional status of goats over five years. Grassl. Sci. 2020, 66, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Martinez, J.; Gomez-Villar, A.; Lasanta, T. The Use of Goats Grazing to Restore Pastures Invaded by Shrubs and Avoid Desertification: A Preliminary Case Study in the Spanish Cantabrian Mountains. Land Degrad. Dev. 2020, 27, 3–13. [Google Scholar] [CrossRef]
- Garcia, R.R.; Fraser, M.; Celaya, R.; Mendes Ferreira, L.M.; Garcia, U.; Osoro, K. Grazing land management and biodiversity in the Atlantic European heathlands: A review. Agrofor. Syst. 2013, 87, 19–43. [Google Scholar] [CrossRef]
- Osoro, K.; Martínez, A.; Celaya, R. Effect of breed and sward height on sheep performance and production per hectare during the spring and autumn in Northern Spain. Grass Forage Sci. 2002, 57, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Kizos, T.; Plieninger, T.; Schaich, H. Instead of 40 Sheep there are 400: Traditional Grazing Practices and Landscape Change in Western Lesvos, Greece. Landsc. Res. 2013, 38, 476–498. [Google Scholar] [CrossRef]
- Psyllos, G.; Kizos, T.; Hadjigeorgiou, I.; Dimitrakopoulos, P.G. Grazing Land Management and Sheep Farm Viability in Semi—Arid Areas: Evidence from Western Lesvos, Greece. Options Méditerranéennes. Series A: Mediterranean Seminars. 2016. Available online: http://agris.fao.org/agris-search/search.do?recordID=QC2018600130 (accessed on 27 February 2018).
- Chatellier, V.; Guyomard, H.; Bris, K.L. La diversité des exploitations professionnelles du type bovins-viande dans l’Union européenne. Économie rurale. Agric. Aliment. Territ. 2005, 288, 9–23. [Google Scholar]
- Gutman, M.; Henkin, Z.; Holzer, Z.; Noy-Meir, I.; Seligman, N.G. A case study of beef-cattle grazing in a Mediterranean-type woodland. Agrofor. Syst. 2000, 48, 119–140. [Google Scholar] [CrossRef]
- Calleja, J.A.; Escola, M.; Carvalho, J.; Forcadel, J.M.; Serrano, E.; Bartolome, J. Cattle Grazing Fails to Control Shrub Encroachment in Mediterranean Landscapes. Rangel. Ecol. Manag. 2019, 72, 803–811. [Google Scholar] [CrossRef]
- Jones, N.; Duarte, F.; Rodrigo, I.; van Doorn, A.; de Graaff, J. The role of EU agri-environmental measures preserving extensive grazing in two less-favoured areas in Portugal. Land Use Policy 2016, 54, 177–187. [Google Scholar] [CrossRef]
- Galanopoulos, K.; Zaphiris, A.; Vassiliki, L.; Hatziminaoglou, I.; Boyazoglu, J. The Technical Efficiency of Transhumance Sheep and Goat Farms and the Effect of EU Subsidies: Do Small Farms Benefit More than Large Farms? Small Rumin. Res. 2011, 100, 1–7. [Google Scholar] [CrossRef]
- Garcia-Launay, F.; Sibra, C.; Molenat, H.; Agabriel, C.; Brunschwig, G. Grassland use in mountain bovine systems according to a hierarchy of geographical determinants. J. Agric. Sci. 2012, 150, 203–217. [Google Scholar] [CrossRef]
- Holmstrom, K.; Hessle, A.; Andersson, H.; Kumm, K.I. Merging Small Scattered Pastures into Large Pasture-Forest Mosaics Can Improve Profitability in Swedish Suckler-Based Beef Production. Land 2018, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Gourdouvelis, D.; Dotas, V.; Kaimakamis, I.; Zagorakis, K.; Yiakoulaki, M. Typology and structural characterisation of suckler cow farming system in Central Macedonia, Greece. Ital. J. Anim. Sci. 2019, 18, 1082–1092. [Google Scholar] [CrossRef]
- Peer, G.; Bonn, A.; Bruelheide, H.; Dieker, P.; Eisenhauer, N.; Feindt, P.H.; Hagedorn, G.; Hansjürgens, B.; Herzon, I.; Lomba, Â.; et al. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2020, 2, 305–316. [Google Scholar] [CrossRef]
- European Commission, Future of the Common Agricultural Policy. Available online: https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/future-cap_en (accessed on 31 March 2020).
- Europe Direct, Programmes Européens 2021–2027: PAC Après 2020. 2018. Available online: https://www.europedirectpyrenees.eu/agriculture/2021-2027-pac (accessed on 2 June 2018).
- CAPeye. Propositions et Réactions Pour la Future PAC. Available online: https://www.supagro.fr/capeye/propositions-et-reactions-pour-la-future-pac// (accessed on 11 June 2018).
Type of Production | Number of Sites of Production (Early 1990s) | Number of Sites of Production (2012) | Change 1990s–2012 | Number of Farms with This Kind of Production (Early 1990s, Approximate) | Number of Farms with This Kind of Production (2012) | Change 1990s–2012 |
---|---|---|---|---|---|---|
Pigs | 101 | 129 | ↗ | 73 | 81 | ↗ |
Sheep | 40 | 53 | ↗ | 23 | 21 | ≈ |
Goats | 75 | 119 | ↘ | 34 | 36 | ≈ |
Suckler-cows | 95 | 123 | ↗ | 42 | 40 | ≈ |
Chestnut trees | 75 | 63 | ↘ | 50 | 36 | ↘ |
Total number of farms according to field surveys | 184 | 177 | ↘ |
Subsidies | Type of Subsidies | Amounts 2012 (€/Year) | Source |
---|---|---|---|
Animal premiums for suckler-cows | First pillar, coupled | EUR 200 per suckler-cow up to 40 cows, EUR 175.85 per suckler cow over 40 cows. Having at least 3 suckler-cows is required. | Direct communication from local agriculture and forestry administration. |
Animal premiums for dairy goats | First pillar, coupled | EUR 8.68 per adult dairy goat (EUR +3 per adult dairy goat under specific conditions), if at least 25 adult dairy goats. No more than 400 adult dairy goats can receive the premium. | |
Animal premiums for dairy ewes | First pillar, coupled | EUR 21 per adult dairy ewe (EUR +3.22 per adult dairy ewe under specific conditions), if at least 50 adult dairy ewes. | |
SFPs | First pillar, decoupled | In our study area (for farms receiving SFP): Mean value 219 €/ha, Median Value: 93 €/ha. Support requires very basic agro-environmental maintenance. | Our data: CAP parcel register, 2012 for Castagniccia. |
LFA subsidies (for animal feed areas*) (EUR) | Second pillar | 274 EUR/ha under 25 ha, 183 EUR/ha up to 50 ha of area used to feed animals; premium increased by 30% for the first 25 ha if 50% of livestock units (LSU) are goats and/or sheep. These amounts are granted for areas where the stocking rate is from 0.8 to 1.2 LSU per declared ha. LFA support per ha decreases outside that range. | Direct communication from local agriculture and forestry administration. |
Name | Variable Description | Source | Ranch | Mean | Sd | Min | Median | Max | n |
---|---|---|---|---|---|---|---|---|---|
pct_lscrub | Area of low scrubland in 1994 as a percentage of the “holding area” in 2012 | 0 | 0.5 | 1.4 | 0.0 | 0.0 | 12.0 | 103 | |
1 | 6.2 | 12.2 | 0.0 | 0.2 | 58.0 | 31 | |||
2 | 12.8 | 22.1 | 0.0 | 0.7 | 92.5 | 31 | |||
ΔDsites | Percentage change in the number of production sites in the municipality where the farm is based | 0 | 37.7 | 44.5 | −84.6 | 28.6 | 200.0 | 103 | |
1 | 18.7 | 39.0 | −84.6 | 18.2 | 90.9 | 31 | |||
2 | 5.7 | 50.3 | −84.6 | 16.2 | 100.0 | 31 | |||
area_d | Area declared to CAP administration (ha) | LPIS | 0 | 28.0 | 44.3 | 0.0 | 0.0 | 218.1 | 103 |
1 | 148.8 | 92.3 | 3.0 | 137.2 | 355.3 | 31 | |||
2 | 116.4 | 96.3 | 6.3 | 90.3 | 479.6 | 31 | |||
n_workers | Number of workers per farm | Our data combination on farms | 0 | 1 w. | 2 w. | 1–2 w. | 3 w. | 4 w. | 3–4 |
96 | 4 | 100 | 2 | 1 | 3 | ||||
1 | 1 w. | 2 w. | 1–2 w. | 3 w. | 4 w. | 3–4 w. | |||
23 | 6 | 29 | 2 | 0 | 2 | ||||
2 | 1 w. | 2 w. | 1–2 w. | 3 w. | 4 w. | 3–4 w. | |||
24 | 7 | 31 | 0 | 0 | 0 | ||||
Popgrowth_munneigh | Percentage change in the population of a municipality and its neighbors from 1990 to 2010 | INSEE | 0 | 23.9 | 22.3 | −21.4 | 28.1 | 66.6 | 103 |
1 | 20.8 | 19.7 | −21.4 | 23.0 | 53.7 | 31 | |||
2 | 34.5 | 16.7 | −15.3 | 34.0 | 66.6 | 31 |
1994 | Bare Soil in | Grassland | Low Scrublands | High Scrublands | Forest | Total | % of the Area Covered in 2012 |
---|---|---|---|---|---|---|---|
2012 | |||||||
Bare soil | 1032 | 486 | 667 | 799 | 147 | 3132 | 7.0% |
Grassland | 2194 | 297 | 175 | 430 | 1298 | 4395 | 9.8% |
Low scrubland | 1105 | 1997 | 713 | 2371 | 616 | 6801 | 15.1% |
High scrubland | 264 | 1558 | 418 | 2116 | 527 | 4884 | 10.8% |
Forest | 1215 | 1185 | 294 | 3563 | 19,549 | 25,807 | 57.3% |
Total | 5811 | 5524 | 2266 | 9280 | 22,137 | 45,018 | 100.0% |
% of the total area covered in 1994 | 12.9% | 12.3% | 5.0% | 20.6% | 49.2% | 100.0% |
Heteroskedasticity-Robust Multinomial Logit Estimation (Number of Obs = 165) | |||||||
Hausman test of IIA * | chi2 | df | P > chi2 | H0: Odds (Outcome-J vs. Outcome-K) are independent of other alternatives | |||
0 | 0.232 | 2 | 0.891 | ||||
1 | 1.139 | 2 | 0.566 | ||||
2 | −9.516 | 6 | . | ||||
Wald tests for combining alternatives * | chi2 | df | P > chi2 | H0: All coefficients except intercepts associated with a given pair of alternatives are 0 (i.e., alternatives can be combined) | |||
0&1 | 0&1 | 35.329 | 5 | 0.000 | |||
0&2 | 0&2 | 31.863 | 5 | 0.000 | |||
1&2 | 1&2 | 10.103 | 5 | 0.072 | |||
Wald Chi2 (10) = 600.55; Prob > chi2 = 0.0000; Log-pseudolikelihood = −93.764158; Pseudo-R2 = 0.3839 | |||||||
Endogenous variable: Ranch | Odd ratio | Coefficient | Std. Err. | Z | P > |z| | ||
0 | Base outcome | ||||||
1 | n_workers (3_4) | 0.036 | −3.334 | 1.686 | −1.980 | 0.048 | ** |
Area_d (ha) | 1.034 | 0.034 | 0.008 | 4.210 | 0.000 | * | |
pct_lscrub (%) | 1.109 | 0.104 | 0.069 | 1.490 | 0.135 | ||
ΔDsites (%) | 0.985 | −0.015 | 0.006 | −2.290 | 0.022 | ** | |
popgrowth_munneigh | 0.980 | −0.021 | 0.015 | −1.340 | 0.182 | ||
Intercept | 0.076 | −2.579 | 0.668 | −3.860 | 0.000 | *** | |
2 | n_workers (3_4) | 3.08–8 | −17.295 | 1.435 | −12.050 | 0.000 | *** |
Area_d (ha) | 1.030 | 0.030 | 0.008 | 3.660 | 0.000 | *** | |
pct_lscrub (%) | 1.141 | 0.131 | 0.069 | 1.900 | 0.057 | * | |
ΔDsites (%) | 0.988 | −0.012 | 0.006 | −1.990 | 0.047 | ** | |
popgrowth_munneigh | 1.031 | 0.031 | 0.017 | 1.840 | 0.066 | * | |
Intercept | 0.023 | −3.766 | 0.754 | −4.990 | 0.000 | *** | |
Akaike’s information criterion and Bayesian information criterion | Obs | ll(null) | ll(model) | df | AIC | BIC | |
165 | −152.1967 | −93.76416 | 12 | 211.5283 | 248.7997 |
Heteroskedasticity-Robust Binomial Logit Estimation (Number of Obs = 165) | |||||||
Wald chi2(5) = 26.61; Prob > chi2 = 0.0001; Pseudo-R2 = 0.4621; Log-pseudolikelihood = −58.75 | |||||||
Variance inflation factor * | n_workers | Area_d | pct_lscrub | ΔDexp | popgrowth_munneigh | ||
1.404422 | 1.513635 | 1.029434 | 1.281444 | 1.122359 | |||
No Studentized residuals with Bonferonni p < 0.05 | Largest |rstudent|: | rstudent | Unadjusted p-value | Bonferonni p | |||
12 | −3.016446 | 0.0025576 | 0.422 | ||||
Ranch = having suckler (1) cows or not (0) | Odd Ratio | Coef. | Std.Err | Z | P > |z| | ||
n_workers (3_4) | 0.017 | −4.072 | 1.559 | −2.610 | 0.009 | *** | |
Area_d | 1.032 | 0.031 | 0.008 | 4.020 | 0.000 | *** | |
pct_lscrub | 1.119 | 0.113 | 0.063 | 1.790 | 0.074 | * | |
ΔDsites | 0.987 | −0.013 | 0.005 | −2.410 | 0.016 | ** | |
popgrowth_munneigh | 1.004 | 0.004 | 0.013 | 0.300 | 0.767 | ||
Intercept | 0.101 | −2.293 | 0.618 | −3.710 | 0.000 | *** | |
Note: 0—failures; 1—success completely determined. | |||||||
Akaike’s information criterion and Bayesian information criterion | Obs | ll(null) | ll(model) | Df | AIC | BIC | |
165 | −109.2216 | −58.75505 | 6 | 129.5101 | 148.1458 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delattre, L.; Debolini, M.; Paoli, J.C.; Napoleone, C.; Moulery, M.; Leonelli, L.; Santucci, P. Understanding the Relationships between Extensive Livestock Systems, Land-Cover Changes, and CAP Support in Less-Favored Mediterranean Areas. Land 2020, 9, 518. https://doi.org/10.3390/land9120518
Delattre L, Debolini M, Paoli JC, Napoleone C, Moulery M, Leonelli L, Santucci P. Understanding the Relationships between Extensive Livestock Systems, Land-Cover Changes, and CAP Support in Less-Favored Mediterranean Areas. Land. 2020; 9(12):518. https://doi.org/10.3390/land9120518
Chicago/Turabian StyleDelattre, Laurence, Marta Debolini, Jean Christophe Paoli, Claude Napoleone, Michel Moulery, Lara Leonelli, and Pierre Santucci. 2020. "Understanding the Relationships between Extensive Livestock Systems, Land-Cover Changes, and CAP Support in Less-Favored Mediterranean Areas" Land 9, no. 12: 518. https://doi.org/10.3390/land9120518
APA StyleDelattre, L., Debolini, M., Paoli, J. C., Napoleone, C., Moulery, M., Leonelli, L., & Santucci, P. (2020). Understanding the Relationships between Extensive Livestock Systems, Land-Cover Changes, and CAP Support in Less-Favored Mediterranean Areas. Land, 9(12), 518. https://doi.org/10.3390/land9120518